
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Signature GOA: A novel comfort zone parameter
adjustment using fuzzy signature for task scheduling

in cloud environment

Aboozar Zandvakili∗1, Najme Mansouri†2 and Mohammad Masoud
Javidi‡3

1,2,3Department of Computer Science, Shahid Bahonar University of kerman, Kerman, Iran.

ABSTRACT ARTICLE INFO

Task scheduling in cloud computing plays an essential
role for service provider to enhance its quality of service.
Grasshopper Optimization Algorithm (GOA) is an evo-
lutionary computation technique developed by emulat-
ing the swarming behavior of grasshoppers while search-
ing for food. GOA is easy to implement but it cannot
make full utilization of every iteration, and there is a risk
of falling into the local optimal. This paper proposes a
suitable approach for adjusting the comfort zone param-
eter based on the fuzzy signatures called signature GOA
(SGOA) to balance exploration and exploitation. Then,
we propose task scheduling based on SGOA by consid-
ering different objectives such as completion time, delay,
and the load balancing on the machines. Finally,

Article history:
Research Paper
Received 11, June 2020
Received in revised form 18,
April 2021
Accepted 2 May 2021
Available online 01, June 2021

Keyword:Task scheduling , Fuzzy signature , Multi-objective
optimization.

AMS subject Classification:PACS 07.05.Kf and MSC 68

∗zandvakili.a@gmail.com
†Corresponding author: N. Mansouri. Email: najme.mansouri@gmail.com
‡javidi@uk.ac.ir

Journal of Algorithms and Computation 53 issue 1, June 2021, PP. 61 - 95

62 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

1 Abstract continued

different algorithms such as Particle Swarm Optimization (PSO), Simulated Annealing
(SA), Tabu Search (TS), and multi-objective genetic algorithm, are used for compari-
son. The results show that among all algorithms, SGOA can be successful in much less
iteration.

2 Introduction

All graphs considered here are simple, finite, connected and undirected. For One way
to provide various services through the Internet is cloud computing. Different services
can be hardware or software. The hardware part includes storage facilities and servers.
The software part includes databases and networks. The important thing is that all
these services are performed remotely, which saves money, increases productivity, speed
and efficiency, performance, and security. Due to these reasons, cloud computing is very
popular.
But with all these advantages, task scheduling is a major challenge in cloud computing.
Task scheduling is the technique of assigning some machines (VMs) to some tasks so that
user requests are answered quickly. Because task scheduling does not have a solution of
polynomial order, researchers have used metaheuristic algorithms such as PSO, SA, TS,
and multi-objective genetic algorithm, to solve it. In the following, cloud computing and
task scheduling briefly are described.

2.1 Cloud computing

Cloud computing is a new method of processing in which integrating a huge amount of
computing resources in a virtualized and scalable way to create an integrated system
and is delivered through internet communication networks. The focus of this model is to
provide service to the user on-demand, without the user to need special equipment for
processing or being aware of the location of this processing (24).
One of the advantages of cloud computing is that users can avoid the increasing costs
and complexity of owning and maintaining technology infrastructure and instead pay
for the feature they consume at the time of use. Figure 1, summarizes the advantages,
disadvantages, and other parameters of cloud computing.
In Fig. 1, the service-based classification is presented as follows (38):
Infrastructure as a Service (IaaS): In this service, companies rent their required
resources from servers. Users can run any program on leased servers without paying
maintenance costs.
Platform as a service (PaaS): In this service, hardware and software tools are provided
to users through the Internet. These tools are usually needed to develop applications. The
hardware and software are hosted on the infrastructure of PaaS provider. Developers are
released from installing internal hardware and software to develop or run new applications
by PaaS.

63 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Software as a service (SaaS): This service is a software distribution model in which
applications are hosted by the provider.
In Fig. 1, the deployment models include the following sections:
Public cloud: Public cloud is a standard model of cloud computing service that is
available to the general public. It is a collection of virtual resources. These resources
are powered by hardware owned, managed, and organized by a third-party company.
Resources in the public cloud are automatically provided and allocated to multiple clients
through a self-service interface.
Private cloud: Private cloud is a special model of cloud computing that includes a
separate, secure cloud-based environment that works for only one customer. In the private
cloud model, the cloud (resource pool) is provided by only one provider organization with
higher control that has privacy is available.
Hybrid cloud: Hybrid cloud considers a mix of private cloud and public cloud services.
It can communicate between each separate service through proprietary software. Applying
a hybrid cloud strategy will shift workloads due to fluctuations in needs and costs, and
ultimately provide more flexibility and adaptability for jobs. Hybrid cloud is very popular
since it allows an organization to manage its private data in the best possible way and
keep important data on a private cloud and at the same time use the powerful computing
resources of a managed public cloud. Unlike a multi-cloud approach that the manager
controls each cloud system separately, a hybrid cloud relies on one level of management.
Because cloud service providers are required to provide services in the shortest time to
compete with each other, one of the most important challenges in cloud computing is the
issue of task scheduling. Task scheduling is the decision of which task to do by which
machine.

2.2 Task scheduling

An efficient task scheduling is a critical technique for resource management in a cloud
environment with numerous users. The single objective task scheduling algorithm assumes
only one criterion while multi-objective task scheduling considers two or more parameters
(e.g., waiting time, load, and energy usage). The search space is in the form of Eq. (1).

SpaceSize =
(M ∗N)!

(M !)N
(1)

In Eq. (1), N: number of tasks and M: number of machines.
As a result, the task scheduling problem is one of the problems for which there is no
solution with polynomial order. For this reason, solving it with precise methods is very
time consuming and costly. Therefore, the best choice is to use meta-heuristic algorithms.
In practice, the task scheduling problem can be modeled in different modes (Fig.2). In
this classification, the classical type is divided into two sub-categories. In the classic type,
the machines are the same. But in the flexible type, jobs can be divided into smaller
sections (commonly known as tasks), and these sections can be executed on machines
independently or in a specific order. In the flexible sub-category, all machines are capable

64 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 1: Cloud computing.

65 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 2: Task scheduling issue.

to do all tasks, but in the sub-category, some machines are not capable to do certain
tasks. In this paper, machines are capable to perform all tasks, but each task is considered
individually (each task does not include smaller parts).
To solve the problem in single-machine mode, different permutations of tasks can be
considered and the best permutation can be selected. Several solutions have been proposed
to solve these types of problems. 1) Accurate solution methods, 2) Heuristic methods.
Although precise solutions is obtained by dynamic programming (20; 33) and branch and
bound algorithms (4; 44), their implementation requires a lot of memory and time. In
most recent works, prohibited search-based methods with specific neighborhoods have
been proposed that have better results than exploratory methods (9). In conventional
genetic algorithms, the combination operator is used as the basic operator to improve
the performance of the algorithm and the progress of the algorithm depends a lot on this
operator (54). In (28), using real data, the effect of ten combination operators on the
mentioned problem has been investigated.
But the multi-machine mode is more complex. Undoubtedly, solving the task scheduling
problem is very time consuming and has a high computational load due to the nature of
these types of problems with precise methods, so an acceptable answer can be obtained
by choosing the proper meta-heuristic algorithms. Because the proposed methods require
a lot of computational time or complex mathematical calculations, using the Genetic
Algorithm (GA) has been successfully started over the last 20 years (27; 58; 62; 66; 67).
For the task scheduling problem, different versions of optimization algorithms have been
developed with superior performance. The authors in the research paper (2) used Cuckoo
Search (CS) algorithm to reduce makespan, but this paper did not take QoS into account.
In (35), the authors used an artificial Bee Colony (ABC) to minimize the completion
time and total workloads of all devices. However, the response time or tardiness was not
considered. In (64), PSO Algorithm is used for task scheduling problems. The authors
optimized the execution cost, but load balancing and other effective QoS is not considered.
In (56), ACO Algorithm is used for task scheduling problems. The proposed algorithm
could reduce makespan and balance cloud clusters, but it still needs to consider some
other QoS factors (e.g., deadline). The authors in the research paper (39) used GWO to

66 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

reduce makespan and energy usage, but this paper did not consider any constraints like
the deadline, priority of applications, etc. In (70), a hybrid algorithm (SGA with CHC)
is used for task scheduling problem. The presented work improved the completion time
of tasks, but it did not pay attention to the effective parameters (e.g., energy, reliability,
and cost). The focus of previous researches is to minimize the cost or completion time
of the task scheduling without regarding the QoS metrics such as tardiness and the load
balancing of the cloud servers. In addition, none of them considered the tardiness, the
load balancing, and the completion time with each other. We tackle this problem of devel-
oping a scheduling algorithm in the cloud environment to optimize tardiness, completion
time, and load balancing, using a meta-heuristic algorithm, named Signature Grasshopper
Optimization Algorithm (SGOA) that is improved GOA.
In this paper, we select grasshoppers algorithm for solving task scheduling problem since:

• Effectively explore promising areas of a search space

• Have large-scale changes in the initial steps

• Tend to move locally in the final steps

• Gradually balance exploration and exploitation

The comfort zone parameter is an important factor in GOA, we optimize GOA using
the fuzzy signature. Second, we use SGOA to solve the task scheduling problem in the
cloud environment. Finally, SGOA compared with the SA, TS, PSO, GOA, and GA. The
divisions of the used algorithms can be seen in Fig. 3 and Fig. 4.

Figure 3: Classification of algorithms used according to the nature of the algorithm.

In this paper, the major contributions are as follows:

• Improve grasshopper optimization algorithm by the fuzzy signature and named
SGOA.

67 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 4: Classification of algorithms used in terms of the type of optimization.

• Design a multi-objective scheduling algorithm for finding an optimal mapping based
on multiple conflicting objectives, namely makespan, load balancing, and tardiness.

• Use SGOA for scheduling in the cloud computing environment.

• The extensive experiments are performed to evaluate the proposed strategy with
SA, TS, PSO, GOA, Non-dominated Ranking Genetic Algorithm (NRGA), and
Non-dominated Sorting Genetic Algorithm II (NSGA-II).

The rest of the paper is organized as follows: Section 3 discusses the overview of the
GOA, PSO - inertia weight, and Fuzzy Signature. In Section 4, the related works of the
task scheduling approaches are explained briefly. Related definitions and task scheduling
models are discussed in Section 5. The proposed SGOA is discussed in Section 6. In
Section 7, the performance evaluation is provided. We conclude our work in Section 8.

3 Background knowledge

This section discusses the overview of GOA, PSO - inertia weight, and Fuzzy Signature.

3.1 Grasshopper Optimization Algorithm (GOA)

In the early articles, the word locust was used instead of grasshopper. Much research
has been done on community, migration, velocity, population density, rolling structure,
take-off zone, the zone of settlement, interior zone, and grasshoppers movement (16). The
locust rolling movement is approximately 1 km long. Large clusters of locusts are often
seen in cross-sections of 10 to100 km2 or more. The flight speed of the locust is usually
in the range of 12 km/hr, and a maximum of 23 km/hr is visible. Locusts can move in
the range of 5 to 50 km per day. In a typical group of locusts, there are approximately
107 to 109 locusts. The life cycle of grasshoppers can be seen in Fig. 5. Exploration and
exploitation are very important in swarm-based algorithms. Usually in the initial steps,
exploration is very important and in the final steps, exploitation is very important. In

68 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

(47) it is stated that these two phases are inherent in the behavior of grasshoppers. When
the grasshoppers are immature, they have a smooth and continuous movement and have
the role of exploitation. Instead, adult grasshoppers have random movements and play
the role of exploration. The rolling grasshoppers swarm can be seen in Fig. 6

Figure 5: The life cycle
of grasshoppers.

Figure 6: Schematic depiction of a rolling grasshoppers
swarm (63).

The group behavior of grasshoppers was discussed in (63). After that, the mathematical
equations of grasshoppers’ motion were formulated in (60). Finally, in (47), the grasshop-
per optimization algorithm is presented. The mathematical model used to simulate the
group behavior of grasshoppers is as follows (47):

Xi = Si +Gi + Ai (2)

In Eq. (2), Xi: the position of the i− th grasshopper, Si: the social interaction, Gi: the
gravity force on the i− th grasshopper, and Ai: the wind advection.

Si =
N∑

j=1,i 6=j

s(dij)d̂ij (3)

In Eq. (3), dij: the distance between the i− th and the j − th grasshopper, s: the social

forces, d̂ij: unit vector from the i− th grasshopper to the j − th grasshopper.

dij = ‖xj − xi‖ (4)

d̂ij =
xj − xi
dij

(5)

s(r) = fe
−r
l − e−r (6)

In Eq. (6), f : the intensity of attraction, and l: the attractive length scale. According
to (47), we have chosen l = 1.5 and f = 0.5.
In Eq. (2), The G component is calculated as follows:

69 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Gi = −gêg (7)

In Eq. (7), g: the gravitational constant, and êg : a unity vector towards the center of
the earth.
In Eq. (2), The A component is calculated as follows:

Ai = uêw (8)

In Eq. (8), u: a constant drift, and êw : a unity vector in the direction of the wind.
Eq. (2) is not suitable for solving optimization problems in the same way. Because
grasshoppers mostly reach the comfort zone quickly and do not gather at a specific point.
An improved version of this equation is presented as ((9)) (47):

Xi
d = c(

N∑
j=1,i 6=j

c
ubd − lbd

2
s(|xdj − xdi |)

xj − xi
dij

) + T̂d (9)

In Eq. (9), the first c from the left is responsible for balancing the exploration and
exploitation in the swarm and the second c decreases the attraction zone, comfort zone,
and repulsion zone between grasshoppers. The ubd and lbd show the upper and lower
bounds in dimension D, respectively. In Eq. (9), term T̂d is used instead of terms Gi and
Ai, which indicates moving towards the goal.

3.2 Particle Swarm Optimization (PSO)-inertia weight (W)

A population of simple members that interact locally with each other and with their
environment is called a swarm behavior-based system. However, their local behavior
towards each other creates public behavior, but there is no focused control over individual
or group behavior. PSO is one of the most important algorithms in this field.
Kennedy and Eberhart introduced PSO based on the behavior of social animals such as
fish and birds that live together in groups (29). In the PSO algorithm, the members of
the population of answers are directly related to each other and reach the solution of the
problem through the exchange of information. Using the following equations, the velocity
and position of each particle can be updated:

vi
t+1 = w ∗ vit+1 + c1 ∗ r1 ∗ (pbestti − xti) + c2 ∗ r2 ∗ (gbestti − xti) (10)

xi
t+1 = xi

t + vi
t+1 (11)

In Eq. (10), the inertia weight (w) parameter is very important and a lot of research
has been done to adjust it. Constant inertia weights (w within the range [0.8, 1.2]) (50).
Random inertia weights (15).

w = 0.5 +
rand()

2
(12)

70 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Eq. (12), shows linear time-varying inertia weights (15; 51; 52; 72; 73).

w(iter) =
itermax − iter

itermax

(wmax − wmin) + wmin (13)

Eq. (13), shows nonlinear time-varying inertia weights (11; 19; 26; 34).

w(iter) = f(iter) = {(itermax − iter)n

(itermax)n
}(wmax − wmin) + wmin (14)

Eq. (14) shows adaptive inertia weights (the inertia weight value adapted based on one
or more feedback parameters) (53; 46; 68; 8; 43; 45; 57).
In (53), the inertia weight parameter is set adaptively as follows:

NCBPE =
CBPE − CBPEmin

CBPEmax − CBPEmin

(15)

In Eq. (15), NCBPE: Normalized Current Best Performance Evaluation (as a perfor-
mance measure of the best candidate solution found so far).
In (68), the inertia weight was adapted based on the following equation:

wt
i = winitial − α(1− hti) + βs (16)

In Eq. (16), α and β are two constants typically within the range [0,1]. hti: the speed
factor is define as:

hti = |min(F (pbestt−1i), F (pbestti))

max(F (pbestt−1i), F (pbestti))
| (17)

S: aggregation degree is defined as:

s = |min(Ftbest, F̄t)

max(Ftbest, F̄t)
| (18)

In Eq. (18), F̄t: the mean fitness of all particles in the swarm at the t− th iteration, Ftbest

: the best fitness achieved by the particles at the same iteration.
The comfort zone parameter (c) in GOA is similar to the inertia weight (w) parameter in
PSO. In this article, we use the mentioned methods and fuzzy signature to set the comfort
zone parameter (c) in GOA.

3.3 Fuzzy Signatuer

Professor Lotfi Zadeh first introduced the fuzzy concept in 1965 under the title fuzzy
sets and created a new and realistic worldview and approach that was more attuned to
the world inhabited by humans and lent a new form to mathematics and sciences with
human concepts (69). Formally, fuzzy logic can approximate a function based on linguistic
input/output connections and includes three main components (i.e., inference system, a
membership function, and rule bases). Today, fuzzy systems are used in a wide range of

71 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

sciences and technologies, including medicine, event prediction, and trade and commerce
since fuzzy systems have a precise definition. They are a powerful instrument for modeling
and controlling complex nonlinear systems, and are therefore used for defining nonlinear,
unspecific, and ambiguous phenomena.
The simplified form of fuzzy multidimensional system can be considered as fuzzy signature
(31). Different decision problems can be modeled with fuzzy signatures. The vector can
be used to display a fuzzy signature and can be shown in Eq. (19) or a tree structure
such as Fig. 7.

s = [[x11, x12] x2 [x31 [x321, x322, x323] x33]] (19)

In Eq. (19), x1, x2, and x3 are the members of vector x. x1 is divided into two parts
called x11 and x12, which are shown as [x11, x12]. x32 is divided into three parts called
x321, x322, and x323, which are shown as [x321, x322, x323].
A variety of aggregation functions such as max, min, and mean functions can be used in
fuzzy signatures. These functions must be used to reach the higher branches of the tree.
For example, you can use the minimum function to convert [x321, x322, x323] to x32.

Figure 7: The tree structure of the fuzzy signature.

The advantages of fuzzy signature are expressed as follows:

• It enhances the applicability of fuzzy systems.

• It is independent of the problem properties and is suitable for complex structures.

72 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

• It can delete unnecessary information with weighted aggregated.

• It can be extracted directly from data.

4 Related works

Due to the greatness and variety of scheduling problems, research on this issue remains
one of the most important issues in cloud computing. Therefore, creating a suitable and
efficient algorithm is necessary.Because metaheuristic algorithms do not guarantee that
the optimal solution can be found, they must be combined with other algorithms, but
this increases the time complexity and is not suitable for real-world problems. To solve
the mentioned NP-problem effectively, the authors in (17) suggested the Moth Search
Algorithm (MSA) based on Differential Evolution (DE) for solving the task scheduling
problem in cloud computing. The exploitation phase of MSA is weak, so the authors have
used DE to improve this section. The authors proposed a hybrid method and named
MSDE. The framework of their method consists of two phases (i.e., initial phase and
updating phase). First, the best solution is selected then the DE or MSA can change
the current solution. The authors simulated an improved algorithm in CloudSim. They
reduced makespan.
In (2), CA is used for task scheduling. The optimized parameter is the overall response
time. Tasks are scheduled based on two parameters, the first is the processing power of
the machine and the second is the length of the task. In terms of makespan, comparison
results have shown that the proposed cuckoo search algorithm clearly is better than the
FIFO and greedy algorithms.
In (35), the task scheduling problem has been done using the bee pattern in a cloud
environment. In this work, both single-objective and multi-objective parameters such as
completion time, the workload of machines, and the workload of all devices are optimized.
They used two types of machines, parallel and identical machines, and heterogeneous
machines. As a result, the presented algorithm can improve the balance between the
exploration and exploitation phases.
In (48), a hybrid of the PSO and GA is used to optimize the parameters such as completion
time, scalability, and availability. To do this, two queues are used (i.e., the priority queue
and queue-based on-demand). The manager stores the user tasks in the queue and then
determines their priorities. After that tasks are assigned to the suitable resources. Tasks
are analyzed and then stores in the queue. After that, tasks are given to the Hybrid
Genetic-Particle Swarm Optimization (HGPSO) algorithm. HGPSO compared with GA
and PSO. The optimized parameters are execution time, availability, and scalability.
Many studies combined optimization algorithms and taken advantage of them. In (12),
the Ant Colony Optimization (ACO) algorithm is used to adjust the parameters of the
PSO algorithm. This integrated algorithm can keep particles at the right level of com-
patibility and ensure population diversity. In addition, the best global solution with high
convergence can be obtained by adjusting the learning factor. Experimental results indi-
cated that the improved PSO algorithm could better find the fitness value based on cost

73 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

and running time.
In (41), a hybrid algorithm is used to schedule the workflow in the cloud environment.
The parameters that have been optimized are the execution time and execution costs.
The algorithms that are combined are the Catfish algorithm and the PSO algorithm.
The simulation environment is the WorkFlowSim simulator, which is an extension of
the CloudSim simulator. The effectiveness of C-PSO is determined in harsh conditions.
Where the workflow is high. This algorithm improves the makespan and execution cost.
In (32) to improve the quality of service, multi-objective PSO is used to optimize pa-
rameters such as time, cost, processing power, and acceptance rate. The authors used
the CloudSim simulator environment and compared it with improved PSO, Artificial Bee
Community (ABC), Bat Algorithm (BA), and PSO algorithms. The simulation results
show that their improved algorithm is significantly better than other advanced approaches
in other conditions.
In (74), the genetic algorithm has been used to improve the completion time, the quality
of work, and the average response time. The authors have used greedy algorithms and
improved genetic algorithms. The novel algorithm is named MGGS. An optimal solution
is found in the fewer number of iterations. The porosed algorithm is compared with
GA, MGGS, MinMin, and First Come First Service (FCFS). The results proved, this
algorithm improved total completion time and average response time when compared
with other methods.
The most common strategies that use PSO structure suffers from the local optima prob-
lem. The task scheduling is a discrete problem but PSO suitable for continuous problems.
Researchers are always looking for algorithms that are suitable for single-objective and
multi-objective problems. In (3), researchers presented a discrete version of the PSO. This
algorithm, called Integer-PSO, can be used to optimize one or more goals in a scheduling
problem in cloud computing. When the position of the population members is updated,
the values obtained are continuous. In this paper, some operators such as mod and ceil
are used to overcome this problem. They proposed a new equation for position of the
particles. This algorithm compared with PSO and in most cases, has had better results.
The whale optimization algorithm (WOA) suffers from the early convergence. When an
algorithm has poor exploration ability, it cannot converge. In (25), researchers solved the
task scheduling problem using the WOA and also improved it. By improved WOA, they
optimized the execution time, response time, and operational capacity in the cloud.
One of the newest meta-heuristic algorithms, which is in the category of biological and
population-based algorithms, is the Chicken swarm optimization Algorithm (CSO). This
algorithm is based on the movement of chickens and their methods to search space in
a population. The chickens’ varied movements in finding food strike a global search.
Raven roosting optimization (RRO) is in the category of biological and population-based
algorithms. RRO uses individual perception mechanisms in the search process. In (61),
the properties of these two algorithms are used to create a hybrid algorithm for task
scheduling. The proposed method reduced runtime, response time, and increased the
throughput of the cloud environment.
In (22), BA is used to solve the workflow scheduling problem. This paper focuses on

74 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

energy consumption and quality of service, so the Energy-Aware, Time, and Throughput
Optimization (EATTO) algorithm is proposed. Experiments showed that EATTO can
find the global optimal and optimize all three objective functions.

Table 1: Scheduling objectives of the state-of-art algorithms.
Reference Year Algorithm Compared Methods Objective

Function
Elaziz et al.(17) 2019 MSA+DE PSO WOA MSA makespan.
Senthil et
al.(48)

2018 PSO+GA GA PSO GA PSO
HEFT

completion
time scal-
ability
availability.

Chen and
Long.(12)

2017 PSO+ ACO PSO ACO makespan
cost.

Nirmala and
Bhanu.(41)

2016 PSO+ CATfish PSO makespan
cost.

Kumar and
Sharma(32)

2019 PSO+ Bee Colony PSO BA ABC makespan
cost Re-
sponse time.

Zhou et al.(74) 2020 Improved GA GA Min-Min FCFS makespan
Response
time.

Ajeena et al.(3) 2019 Discrete PSO algo-
rithm (IntegerPSO)

RND-PSO SPV-
PSO

makespan
cost

Gu and
Budati(22)

2020 EATTO based on
BA

ACO Binary Search
Heuristic (BSH)
Random Algorithm
(RN)

energy con-
sumption ex-
ecution time

Al-Zoubi(6) 2019 GOA PSO Resource
Demand Aware
Scheduling (RDAS)

makespan

Adhikari et
al.(1)

2020 Firefly algorithm
(FA)

GSA Linewise Ear-
liest Finish Time
(LEFT)

makespan
Resource
utilization
Reliability

Thirumalaiselvan
and
Venkatachalam.(59)

2019 Equal Load Balanc-
ing (ELB)+ high
priority scheduling
algorithm+ Rate
Based Scheduling
(RBS)

Cloud-DLS Adap-
tive EE schedul-
ing(AEES)

Makespan
average
efficiency

Sheng.(49) 2019 ISACW (Improved
Scheduling Algo-
rithm for Cloud
Workflow)

Max-Min Dead-
lineMDP

Execution
time Execu-
tion cost

Table 1 shows some of the researches that have been done in the field of task scheduling
in the cloud environment. Most of those approaches focus on bi-objective optimization
by minimizing the cost or makespan of the task scheduling without regarding the QoS
metrics such as tardiness and the load balancing of the cloud servers. This causes user

75 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

dissatisfaction. To increase the efficiency and to minimize the makespan, SGOA finds a
suitable virtual machine for each task using multiple scheduling objectives (i.e., makespan,
load balancing, and tardiness).

Table 2: Some types of grasshopper optimization algorithms.
Reference Year Category Problem
Mafarja et al.(36) 2019 Binary GOA Feature selection
Ewees et al.(18) 2018 Hybridization of GOA Benchmark problems
Arora and Anand.(7) 2018 Chaotic GOA Global optimization
Mirjalili et al.(37) 2018 Multi-objective of GOA Multi-objective problems
Zhao et al.(71) 2019 IGOA The nonlinear comfort zone

parameter was used to promote the
utilization of the iterations of the al-
gorithm

Benchmark problems

Dwivedi et al.(14) 2020 Feature Selection (EFS) + Chaotic
Adaptive Grasshopper Optimization
Algorithm (CAGOA) method, called
ECAGOA

Feature selection

In recent years, swarm and evolutionary computing developed to optimize problems. One
of the best of them is the GOA. GOA is very simple and converged in high-speed (47).
Table 2 idicates some of the researches that have been done based on the grasshopper opti-
mization algorithm. Different types of GOA have been developed for different applications
(7; 14; 18; 36; 37; 71).
In this paper, we propose another extension to GOA algorithm for the task scheduling
problem using fuzzy signature.

5 Task scheduling model

Definition 1: (Initial preparation time for each task). Which is marked with the symbol
S0.
Definition 2: (Preparation time between tasks). Which is marked with the symbol S.
In fact, S is an N × N matrix. With this analysis, the preparation time is the same as
the time required to complete the next task.
Definition 3: (The ratio of computational requirements to machine processing rate etij)
(22).

etij =
sti
prj

(20)

In Eq. (20), sti: the computational requirements of the i−th task, and prj: the processing
rate of the j − th machine.
Definition 4: (The completion time of tasks in each machine (CTM)). We indicate the
execution time on each machine with the symbol STi,j. To calculate STi,j we have to
consider S01 for the first task running on this machine plus the time required to run it
(S01+ptt1). For subsequent tasks (e.g., a−th and after that b−th tasks), we have Sab+pttb.

76 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Fig. 9, describes this process. Suppose machine number 2 is selected to perform tasks 1
and 3, respectively, so we have vm2 = 1, 3. On the other hand, the initial preparation
time for these two tasks is S01 = 3 ,S03 = 2 and the processing time of the first is 12
(ptt1 = 12) and the third task is 15 (ptt3 = 15). Eq. (21) indicates the time interval
between these tasks.

S =

[
S11 =∞ S12 =∞
S21 =∞ S22 =∞

]
(21)

According to the explanations given, because task number 1 is the first task that is
performed on machine 2, so currently the time of completion of the number 2 task is the
sum of two elements S01 and ptt1 (Fig. 8.).

Figure 8: Calculation of the completion time of the first task on the vm2.

After entering the number 3 task in this machine, the completion time of this machine
changes as shown in Fig. 9

Figure 9: Calculation of completion time on the vm2.

So, for each machine we have:

CTMj =
k∑

i=1

(eti,j + STi,j) (22)

In Eq. (22), k: The number of tasks performed on the j − th machine.
Definition 5: (makespan). The makespan of a task scheduling depends on the execution
time of each task on the selected machine instance Vj (1).

makespan = max1<j<mCTMj (23)

Definition 6: (The completion time of each task (CTT)). Since each task can only
be performed on one machine and does not leave the machine until it is completed, the
completion time, the total execution time is the time interval between this task and the
previous task, and the completion time of the previous tasks. For example, the completion
time of the first task in Fig. 8 is the sum of the first two parameters.
Definition 7: (Lateness). Which is characterized by Eq.24 (55).

latenessi = CTTi − di (24)

Definition 8: (Unit Penalty). For each task is defined as Eq. 25 (55).

77 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Ui =

{
1, if CTTi > di

0, otherwise.
(25)

Definition 9: (Tardiness (Ti)). It is characterized by Eq. 26 (5).

Ti = max(lateness, 0) (26)

6 Proposed comfort zone parameter adaptation

This section explains how to improve the performance of the grasshopper algorithm.
Improving the performance of the grasshopper algorithm by setting the comfort zone
parameter is done adaptively. The fuzzy signature has been used for adaptive adjustment.
The following is a definition of the scheduling problem.

6.1 Fuzzy signature comfort zone adaptation

The fuzzy graph includes inputs, output, and aggregation functions. The output is deter-
mined using the input and aggregation functions. To indicate the value of leaves (input)
in the fuzzy graph, there are two ways. The expert determines it or the value is estimated.
In this paper, we consider the fuzzy signature structure as Fig. 10 and Eq. 27. We also
used max, min, and mean functions as aggregation functions. The c parameter is the
higher level of the structure. The adaptation of c was constrained with divmax, cmax and
cmin where the value of divmax is 1, cmin is 0.00001, and cmax is 1 according to (42; 47).

c = [cmax [[[ps [divmax, diversity]]] cmin]] (27)

To implement the comfort zone adaptively, we first determine the position of each particle.
The percentage of success is used for this purpose. In Eq. 27, the successful count of
particles is in the form of Eq. 28 (40):

Ui =

{
1, if f(pibest(t)) < f(pibest(t− 1))

0, otherwise.
(28)

In Eq. 28, pibest(t) : the best position found by particle i until iteration t, and SCi(t): the
count of particle which has the best position to minimize the objective function.

PS(t) =

npop∑
i=1

SCi(t) (29)

PS =
1

npop

PS(t) (30)

78 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

In Eq. 30, PS(t): the percentage of success (PS) which have had an improvement in their
fitness in the last iteration. The distribution of particles in the search space is considered
as the diversity factor and is obtained based on Eq. 31 (42).

d =

npop∑
i=1

√√√√ D∑
d=1

(xid − gd)2 (31)

diversity =
1

npop

d (32)

In Eq. 31, gd: the current best particle of the swarm. xid: the d-dimension of the particle
i. D: the total number of dimensions.

Figure 10: The structure of the fuzzy signature for the comfort zone parameter(c).

Some models may not work properly when the data is noisy, but the fuzzy signature
can overcome this weakness due to bottom-up execution. In this structure, we consider
cmin and cmax. The final result is in range ([cmin , cmax]). In addition to the parameters
that specify the lower bound and the upper bound for parameter c, we also use divmax,
diversity, and ps parameters to set c. In this scheme, the values of cmin, cmax, divmax

are fixed, but the values of diversity and ps change adaptively in each iteration of the
main loop. So with this interpretation, we have 100 different values for diversity and ps,
which are finally converted to c using aggregation functions. Given that these parameters
(diversity and ps) can be considered as membership values and their values change in the
range of [0, 1].
The aggregation functions are used as follows:

div = divmax

⋂
diversity = min[divmax, diversity] = divmax AND diversity (33)

c11 = mean[ps, div] (34)

79 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

c1 = c11
⋃

cmin = max[c11, cmin] = c11 OR cmin (35)

c1 = cmax

⋂
c1 = min[cmax, c1] = cmax AND c1 (36)

The example of the aggregation process in the structure of Fig. 10 is described as follow:
c = [1 [[[ps [1,diversity]]] 0.00001]]
Suppose that in the first iteration, the count of particles equals 21 and so the value of ps
equals 0.21. Moreover, diversity equals 0.006.

c = [1 [[[ps [1, diversity]]] 0.00001]]→ [1 [[[0.21 [1, 0.006]]] 0.00001]]

byEq.32−−−−−→[1 [[0.21, 0.006] 0.00001]]

byEq.33−−−−−→[1 [0.108, 0.00001]]byEq.34−−−−−→
[1, 0.108]byEq.35−−−−−→[0.108]

Thus, the comfort zone parameter c is 0.108.
In (47), the c parameter decreases as the iteration count increases. Adaptive update
means that parameter c changes as some parameter changes from each iteration of the
main loop. Diversity is the first parameter that is used. If in the i − th iteration, the
number of grasshopper around the best grasshopper is increased then the parameter c
will be more in the i + 1 − th iteration. The same scenario applies to ps parameter.
Conversely, by reducing these two parameters, we will see a decrease in c parameter for
the next iteration. Figures 11 , 12, and 13 describe this process.
According to Fig.13, as the comfort zone expands, it covers more grasshoppers. In this
situation, the repulsive force to remove the grasshoppers prevails and on the opposite side,
the grasshoppers that are outside the comfort zone are attracted to the best grasshopper
with more gravity. This process causes the grasshoppers that are farther from the best
grasshopper to be attracted to the best grasshopper and may better answers to be found.
The opposite of this process is also possible. When the comfort zone becomes smaller, it
reduces the movements of grasshoppers around the target.

6.2 The implementation of scheduling problem

Consider an environment with N tasks and M machines where tasks are independent.
Each machine also has specific processing power. Assuming that the number of tasks is 4
and the number of machines is 3, a mapping of tasks and machines can be considered as
follows:

x = {2, 1, 2, 3} (37)

This means that the first task on the number 2 machine, the second task is performed
on the number 1 machine, the third task is performed on the number 2 machine and the
fourth task is performed on the number 3 machine (Fig. 14).

80 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 11: Comfort zone in the first itera-
tion (47).

Figure 12: comfort zone in the i− th iter-
ation.

Figure 13: Comfort zone in the i + 1 −
th iteration (Provided that parameters
diversity and ps increase in the i − th it-
eration) .

Figure 14: An example of assigning tasks to machines.

First, we determine the number of tasks and the number of machines, and then we deter-
mine the size and time of execution of the tasks, as well as the processing power of the
machines. To use meta-heuristic algorithms, we need to create random solutions and so

81 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

as the x vector described earlier. We create examples and give it to meta-heuristic algo-
rithms as a preliminary solution. Then, we try to improve these solutions and optimize
the desired parameters. The general objective function is in the form of Eq. 38.

MinF (x) = w1Z1 + w2Z2 + w3Z3 (38)

Z1 −→Minf1(x) = Max{CTMj} (39)

Z2 −→Minf2(x) = Max{stdj} (40)

Z3 −→Minf3(x) = Max{Ti} (41)

The parameters that are used are described in Table 3.

Table 3: Symbols and definitions.
Symbol Definition
N Number of tasks
M Number of machines
sti The size of the i− th task
latenessi The lateness of the i− th task
di The due date of the i− th task
Ti The Tardiness of the i− th task
ptj processing rate of the j − th machine
S0 Initial preparation time for each task
ptti The processing time of the i− th task
CTTi The completion time of the i− th task
CTMj The completion time on the j − th machine
Sab Preparation time between tasks (N N matrix)
stdj The standard deviation of completion time on the j − th machine
etij The size of the i− th task / the processing power of the j − th machine

Fig. 15 shows the scheduling system architecture. In this architecture, users send their
requests to the cloud environment and wait for the results to be announced. In the cloud
environment, the scheduler is obliged to select the appropriate machine based on the
indicators considered in the objective function and send the tasks to the machines.
The proposed algorithm can be interpreted as Fig. 16.

7 Implementation of SGOA and Performance evalu-

ation

In this paper, we use PSO (29), SA (30), TS (21), NSGA-II (13), and NRGA for compar-
ison. MATLAB software has been used for simulation. First, we create several models,
the number of machines is 20, and the number of tasks is 30, 50, 100 and 200. Each of the

82 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 15: An Architecture of scheduling system.

Figure 16: Pseudo codes of the signature GOA.

algorithms is executed 10 times and the average results are taken and in these 10 times,
the worst result and the best result are given in the Tables 9 to 12.

83 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

7.1 Comparison metric and parameter setting

The performance comparisons of the algorithms are based on speedup (64) and efficiency
(23). The speedup value for a given schedule is computed by dividing the sequential
execution time based on the makespan of parallel execution. It is in the form of Eq. 42.

speedup =
serial − length
makespan

(42)

In Eq. 42, serial-length is computed by assigning all tasks to a single machine that
minimizes execution time

Efficiency =
speedup

Numberofmachines
(43)

Table 4: Symbols and definitions.
D 0.3
P P1+P2
P1 2.05
P2 2.05
Inertia weight c
Number of particles 50
Max number of iteration 100
Velocity of the particles Range of VMs
Social learning factor c1 C P1
Personal learning factor c2 C P2
Inertia Weight Damping Ratio 0.1

Table 5: Adjustable parameters of SA.
T0 10
TF 0.01
Max pre temp 10
Number of particles 50
Max number of iteration 100

Table 6: Adjustable parameters of TS.
Number of swap N*(N-1)/2
Number of action nSwap+ nReversion+ nInsertion
Number of insertion N*(N-1)
Number of reversion N*(N-1)/2
Max number of iteration 100

In Fig. 17 to 19, the average results of the algorithms are considered. Fig. 17 compares
the algorithms in terms of makespan. When the size of tasks increased the makespan value
also is increased. In a small number of tasks, the algorithms performe almost similarly.

84 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Table 7: Adjustable parameters of NSGA-II.
Mutation rate 0.3
Crossover rate 0.8
Number of particles 50
Max number of iteration 100

As the number of tasks is increased, NRGA and then NSGA-II are able to complete tasks
in less time. The nature of multi-objective algorithms requires that in the search space
to obtain more optimal point for objective functions and individually. But among single-
objective algorithms, SGOA has the best performance. SGOA in 100 tasks shows the
best behaviour among all algorithms and in 200 tasks has a suitable result. It is easy to
see that by using a fuzzy signature comfort zone parameter the performance of GOA can
be improved and has similar or better results than the other algorithms.

Figure 17: The comparison between the algorithms based on makespan.

In Fig. 18 and almost all of the results, the tabu search algorithm perform poorly and
cannot find the appropriate points in the search space. The nature of this algorithm is
similar to precise methods and so it is somewhat time consuming and cannot find the
desired answer in a small number of iterations. SGOA has the best performance in load
balancing between machines and creates the best balance regardless of the number of
tasks.
The tardiness is a parameter that is added to the objective function in this paper. Nat-
urally, a small amount of this parameter makes the response time shorter and thus in-
creases the satisfaction of cloud users. Among the single-objective algorithms and for a
small number of tasks (for example, 50 tasks), SGOA with the lowest latency is able to

85 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 18: The comparison between the algorithms based on load balancing.

Figure 19: The comparison between the algorithms based on tardiness.

have better results than the rest of the algorithms (Fig. 19). One of the important factors
of SGOA is its speed and simplicity, which has appeared in this result. However, in a
large number of tasks, NSGA-II and NRGA have been able to perform scheduling with
less delay.

86 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

Figure 20: The comparison between the algorithms based on iteration and makespan (30
tasks and 20 machines).

The number of iterations is an effective parameter for all algorithms and is effective as a
result. Fig. 20 shows the proper performance of the TS algorithm (for 30 tasks). In 20
iterations, this algorithm has a completion time of 52, but in 700 iterations, it reduces this
time to 27. In this respect, it has the largest reduction compared to other algorithms. SA
can achieve better makespan than the TS, PSO, and GOA. SA principally is a discrete
optimization algorithm. Due to the task scheduling is a discrete problem, as expected
SA has a good result. But the important point in Fig. 20 is not to change the result for
SGOA. This algorithm does not change with an increasing number of iterations. In fact,
the convergence speed of this algorithm has appeared with very good results in a small
number of iterations, and increasing the number of iterations does not change the result.

Table 8: Comparison of algorithms based on number of particles (30 tasks - 20 machines
- 20 iterations).

Number of particles 50 100 200
Objective functions Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3
SA 25.3 7.05 6.25 25.80 5.95 1.00 21.55 5.00 0
PSO 41.95 11.95 82.30 39.90 11.77 55.55 39.70 10.72 64.70
GOA 45.00 11.69 34.80 31.20 10.02 13.45 20.28 5.05 2.2
SGOA 15.70 5.15 0.7 15.70 4.48 0.7 14.50 4.47 0
NRGA 21.80 5.72 5.50 22.65 4.55 5.50 21.00 4.39 5.50
NSGA-II 40.62 9.64 16.83 23.95 5.03 5.50 20.15 4.67 5.50

When the population size changes, it can be seen from Table 8 that the performance

87 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

of SGOA does not change significantly. Using this feature, it determined that SGOA is
suitable for doing real-time problems.

Table 9: Comparison of algorithms for scheduling 30 tasks on 20 machines based on three
objective functions.

Z1 Z2 Z3
Worst Best Mean Worst Best Mean Worst Best Mean

SA 36.22 23.15 29.40 9.95 6.17 7.78 18.60 3.75 10.90
TS 50.70 28.05 35.24 12.99 7.26 9.02 33.50 2.40 12.89
PSO 35.95 19.70 26.27 9.66 5.90 7.05 19.55 0 5.33
GOA 57.00 22.35 4046 14.82 7.60 10.75 53.05 7.40 27.95
SGOA 28.70 8.60 16.79 6.49 2.28 4.38 5.95 0 0.93
NRGA 37.30 16.25 21.22 7.94 3.38 5.87 56.65 5.05 17.88
NSGA-II 64.96 19.07 34.05 12.15 4.21 7.00 61.15 5.55 19.32

Table 9 shows the results of the algorithms for scheduling 30 tasks. In this number of
tasks, SGOA for Z1 objective function with an average of 16.79, for Z2 objective function
with an average of 4.38, and Z3 objective function with an average of 0.93 is able to
answer in 41 seconds. With these interpretations, SGOA has better results than others
have and can be a good option for instant and priority requests. PSO algorithm is better
in terms of run-time, but because SGOA achieves the optimal answer in fewer iterations,
it can be concluded that it is better. Moreover, the improvement of SGOA over others
algorithm is illustrated in Table 9. When the size of tasks is 30, the performance gap
between SGOA and SA, TS, PSO, GOA, NRGA, and NSGA-II is around 54.03%, 61.32%,
42.82%, 72.08%, 50.85%, and 63.39%, respectively.

Table 10: Comparison of algorithms for scheduling 50 tasks on 20 machines based on
three objective functions.

Z1 Z2 Z3
Worst Best Mean Worst Best Mean Worst Best Mean

SA 55.90 45.05 51.21 13.34 10.44 12.11 15.75 0.60 8.04
TS 122.74 55.40 74.57 27.19 13.80 18.07 57.55 2.75 30.12
PSO 96.70 42.10 67.50 21.32 11.30 15.98 40.55 5.80 19.37
GOA 122.45 71.70 83.55 23.76 12.56 19.11 149.50 14.80 57.97
SGOA 59.00 23.75 41.65 13.19 5.02 8.18 7.95 0 1.71
NRGA 42.85 33.01 36.74 8.84 7.39 8.09 9.04 9.04 9.04
NSGA-II 43.20 35.05 39.05 9.46 7.58 8.51 9.04 9.04 9.04

Table 10 shows the results of the algorithms for scheduling 50 tasks. In this number of
tasks, the NRGA for Z1 objective function with an average of 36.74, for Z2 objective
function with an average of 8.09, and SGOA for Z3 objective function with an average of
1.71, have better results. With this interpretation, the NRGA has a 20% improvement
in results compared to the TS algorithm and can be a good option for this number of
tasks. Among single-objective algorithms, the SGOA has better results and is very close
to the NRGA. The high run-time of SGOA is compensated by reaching the answer in

88 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

a low number of iteration. When the size of tasks is 50, the performance gap between
SGOA and NRGA is around 4.32%, and NSGA-II is around 9.16%.

Table 11: Comparison of algorithms for scheduling 100 tasks on 20 machines based on
three objective functions.

Z1 Z2 Z3
Worst Best Mean Worst Best Mean Worst Best Mean

SA 209.33 97.13 199.98 35.43 22.28 31.5 2264.65 2055.10 2145.60
TS 335.91 152.60 250.66 51.65 29.37 42.97 2680.85 2341.20 2436.21
PSO 349.86 153.05 217.68 46.71 32.16 36.85 974.70 524.20 807.78
GOA 359.39 158.15 218.66 61.41 31.76 44.27 2869.10 972.35 1575.00
SGOA 244.16 40.02 124.68 33.57 7.74 17.44 445.30 35.05 187.79
NRGA 103.41 81.40 88.99 24.51 20.23 22.09 14.53 14.51 14.51
NSGA-II 102.62 82.95 93.15 24.71 21.15 22.97 14.53 14.51 14.52

Table 11 shows the results of the algorithms for scheduling 100 tasks. In this number
of tasks, the NRGA for Z1 objective function with an average of 88.99, for Z3 objective
function with an average of 14.52, and SGOA for Z2 objective function with an average
of 17.44, has better results. Among single-objective algorithms, SGOA has better results
and is very close to the NRGA. In the three objective functions, SGOA has improved
by 86.11%, 87.91%, 68.94%, 82.04% compared to algorithms SA, TS, PSO, and GOA,
respectively. The poor performance of the TS algorithm can be explained by the fact
that as the problem becomes more complex, this algorithm needs more time to reach
the optimal solution. According to Fig. 20, TS algorithm obtains better results in more
iterations.

Table 12: Comparison of algorithms for scheduling 200 tasks on 20 machines based on
three objective functions.

Z1 Z2 Z3
Worst Best Mean Worst Best Mean Worst Best Mean

SA 809.45 348.81 559.15 127.02 51.80 86.42 6258.30 5733.20 5881.58
TS 826.95 467.32 609.21 125.89 48.59 73.89 6860.70 5982.10 6007.36
PSO 879.89 402.51 561.95 96.81 70.64 82.43 3410.50 2482.75 3071.44
GOA 859.10 447.70 598.51 126.38 42.69 82.34 3404.70 278.30 1950.59
SGOA 425.30 125.53 231.65 40.53 11.01 21.49 297.20 0.25 105.82
NRGA 233.05 146.75 189.68 55.82 40.22 48.54 31.44 31.44 31.44
NSGA-II 213.46 153.53 182.77 51.73 41.11 47.11 31.44 31.44 31.44

Tables 11 and 12 are similar in terms of the performance of the algorithms, and the only
noteworthy point is the poor performance of the PSO algorithm in 200 tasks compared to
100 tasks. When the problem became complex, PSO requires a larger initial population
to achieve the desired answer. Multi-objective algorithms, both in terms of execution
time and in terms of objective function optimization, still perform better than other
algorithms. Among single-objective algorithms, SGOA has better results and is very
close to the NRGA. In this paper, we consider 9 parameters for comparison. SGOA has

89 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

good results in 5 cases of these parameters. As the model becomes more complex, the
performance of SGOA does not change much.

Table 13: Comparison of algorithms for scheduling 200 tasks on 20 machines based on
three objective functions.

30 Tasks 50 Tasks 100 Tasks
Speedup Efficiency Speedup Efficiency Speedup Efficiency

SA 34.86 1.74 33.74 1.68 16.11 0.80
TS 28.85 1.44 22.86 1.14 12.51 0.62
PSO 17.79 0.88 18.37 0.91 15.96 0.79
GOA 11.19 0.55 12.05 0.60 15.80 0.79
SGOA 26.98 1.34 27.25 1.36 27.90 1.39
NRGA 32.61 1.63 20.33 1.01 24.07 1.20
NSGA-II 24.87 1.24 22.91 1.14 25.19 1.25

To identify the quality of distribution of tasks among machines, the speedup and efficiency
values are estimated. Therefore, a higher value represents a more reliable result. Table
13 represents the speedup and efficiency of SA, TS, PSO, GOA, SGOA, NRGA, and
NSGA-II algorithms using 20 machines. According to the experimental result, when the
number of tasks is 100 the efficiency of SGOA is better than those of SA, TS, PSO,
GOA, NRGA, and NSGA-II by 73.754%, 124.19%, 75.95%, 75.95%, 15.83%, and 11.20%,
respectively. SA algorithm has better results in 30 and 50 tasks. When the problem
becomes more complicated, the SGOA is more efficient. SGOA has better efficiency
because this algorithm uses an adaptive comfort zone parameter and considers the load
of tasks in machines.

8 Conclusion and future work

One of the major challenges in cloud technology is the optimal allocation of resources
to tasks. Optimal scheduling has a direct effect on user satisfaction because it leads to
receiving service at the proper time and at high speed. But the task scheduling problem
is one of the most NP-hard problems. Due to the nature of the cloud and the number
of users, the search space to find the optimal solution is very large and the allocation of
resources to tasks is very time-consuming. As a result, we model the objective function
based on three parameters (i.e., makespan, tardiness, and load balancing). To optimize
the objective function, various optimization algorithms such as PSO (swarm-based), GA
(based on evolution), SA (based on the laws of physics) and TS (based on human), are
used and simulation is performed by MATLAB software environment. Multi-objective
algorithms (NSGA-II and NRGA), in terms of optimization of objective functions (for
example, the NSGA-II estimated the objective function to be 4% less than the SA algo-
rithm and 5% less than the TS algorithm), has better results than the single-objective
algorithms. But among single-objective algorithms, SGOA has the best performance and
can optimize the objective function with a slight difference compared to multi-objective
algorithms. The high execution time of SGOA is compensated by reaching the answer

90 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

in a low number of iteration. In 30 to 200 tasks, SGOA can provide acceptable per-
formance.Since in optimization algorithms, the starting point and comprehensive search
space is very effective in the result, it is suggested to use chaos theory to create diversity
in the population. Adjustable parameters of the algorithm used can also be optimized
with the help of tools or other algorithms to increase efficiency. In our future studies,
we plan to apply machine learning techniques or artificial neural networks. In addition,
the proposed method should be consider important parameters in the cloud environment
such as energy, resource utilization, and reliability.

References

[1] Adhikari, M., Amgoth, T., Srirama, S. N., Multi-objective scheduling strategy for
scientific workflows in cloud environment: A Firefly-based approach, Applied Soft
Computing Journal, 93 (2020).

[2] Agarwal, M., Saran Srivastava, G. M., A cuckoo search algorithm-based task
scheduling in cloud computing, advances in intelligent systems and computing,
(2018).

[3] Ajeena Beegom, A. S., Rajasree, M. S., Integer PSO: a discrete PSO algorithm for
task scheduling in cloud computing systems, Evolutionary Intelligence, (2019).

[4] Akturk, M.S., Yildirim, M.B., A new lower bounding scheme for the total weighted
tardiness problem, Computers and Operations Research, 25 (1998) 265278.

[5] Akyol, D. E., Bayhan, G. M., Multi-machine earliness and tardiness scheduling
problem: an interconnected neural network approach, The International Journal of
Advanced Manufacturing Technology, 37 (2008) 576-588.

[6] Al-Zoubi, H., Efficient Task Scheduling for Applications on Clouds, Cyber Security
and Cloud Computing (CSCloud), 6th IEEE International Conference on, IEEE,
(2019).

[7] Arora, S., Anand, P., Chaotic grasshopper optimization algorithm for global opti-
mization, Neural Comput Appl, 31 (2018) 121.

[8] Arumugam, M.S., Rao, M.V.C., On the improved performances of the particle
swarm optimization algorithms with adaptive parameters, cross-over opera tors and
root mean square (RMS) variants for computing optimal control of a class of hybrid
systems, Applied Soft Computing (2008) 324336.

[9] Bozejko, W., Grabowski, J., Wodecki, M., Block approach-tabu search algorithm
for single machine total weighted tardiness problem, Computers & Industrial Engi-
neering, 50 (2006) 114.

91 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

[10] Buanga Mapetu, J. P., Chen, Zh., Kong, L., Low-time complexity and low-cost
binary particle swarm optimization algorithm for task scheduling and load balancing
in cloud computing, Applied Intelligence, (2019).

[11] Chatterjee, A., Siarry, P., Nonlinear inertia weight variation for dynamic adaption in
particle swarm optimization, Computer and Operations Research, 33 (2006) 859871.

[12] Chen, X., Long, D., Task scheduling of cloud computing using integrated particle
swarm algorithm and ant colony algorithm, Cluster Comput, (2017).

[13] Deb, K., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE trans-
actions on evelutionary computation, 6 (2002) 182-197.

[14] Dwivedi, Sh., Vardhan, M., Tripathi, S., An effect of chaos grasshopper optimization
algorithm for protection of network infrastructure, Computer Networks, (2020).

[15] Eberhart, R.C., Shi, Y.H., Tracking and optimizing dynamic systems with particle
swarms, Congress on Evolutionary Computation, Korea, (2001).

[16] Edelstein-Keshet, L., Watmough, J., Grunbaum, D., Do travelling band solutions
describe cohesive swarms? An investigation for migratory locusts, Journal of Math-
ematical Biology, 36 (1998) 515-549.

[17] Elaziz, M. A., Xiong, Sh., Jayasena, K.P.N., Li, L., Task scheduling in cloud comput-
ing based on hybrid moth search algorithm and differential evolution, Knowledge-
Based Systems, 169 (2019) 3952.

[18] Ewees, A. A., Elaziz, M.A., Houssein, E.H., Improved grasshopper optimization
algorithm using opposition-based learning. Expert Syst Appl, 112 (2018) 156172.

[19] Fan, S., Chiu, Y., A decreasing inertia weight particle swarm optimizer, Engineering
Optimization, 39 (2007) 203228.

[20] Fisher, M.L., A dual algorithm for the one machine scheduling problem, Mathemat-
ical Programming, 11 (1976) 229252.

[21] Glover, F., future paths for integer programming and links to artificial inteligence,
Computers and Operations Research, 13 (1986) 533549.

[22] Gu, Y., Budati, Ch., Energy-aware workflow scheduling and optimization in clouds
using bat algorithm, Future Generation Computer Systems, 113 (2020) 106-112.

[23] Hamad, S. A., Omara, F. A., Genetic-Based Task Scheduling Algorithm in Cloud
Computing Environment, (IJACSA) International Journal of Advanced Computer
Science and Applications, 7 (2016).

[24] Helo, P., Hao, Y., Toshev, R., Boldosova, V., Cloud manufacturing ecosystem anal-
ysis and design, Robotics and Computer Integrated Manufacturing, (2021).

92 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

[25] Hemasian Etefagh, F., Safi Esfahani, F., Dynamic scheduling applying new popula-
tion grouping of whales meta heuristic in cloud computing, The Journal of Super-
computing, (2019).

[26] Jiao, B., Lian, Z., Gu, X., A dynamic inertia weight particle swarm optimization
algorithm, Chaos, Solitons & Fractals, 37 (2008) 698705.

[27] Kamrul Hasan, S.M., Sarker, R., Cornforth, D., Hybrid genetic algorithm for solving
iob-shop scheduling problem, 6th IEEE/ACIS International Conference on Com-
puter and Information Science (IEEE ICIS), (2007).

[28] Kellegoz, T., Toklu, B., Wilson, J., Comparing efficiencies of genetic crossover op-
erators for one machine total weighted tardiness problem, Elsesier Applied Mathe-
matics and Computation, 199 (2008) 590598.

[29] Kennedy, J., Eberhart, R. C., Particle Swarm Optimization, IEEE International
Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscat-
away, NJ, 5 (1995) 1942-1948.

[30] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., Optimization by Simulated Annealing,
Science, New Series, 220 (1983) 671-680.

[31] Kczy, L. T., Vmos, T., Bir, G., Fuzzy signatures, Proc. Eurofuse-SIC, 99 (1999)
2528.

[32] Kumar, M., Sharma, S. C., PSO-based novel resource scheduling technique to im-
prove QoS parameters in cloud computing, Neural Computing and Applications,
(2019).

[33] Lawler, E.L., Efficient implementation of dynamic programming algorithms for se-
quencing problems, Report BW 106, Mathematisch Centrum, Amsterdam, (1979).

[34] Lei, K., Qiu, Y., He, Y., A new adaptive well-chosen inertia weight strategy to auto-
matically harmonize global and local search ability in particle swarm optimization,
ISSCAA, (2006).

[35] Li, J., Han, Y., A hybrid multi-objective artificial bee colony algorithm for flexible
task scheduling problems in cloud computing system, Cluster Computing, (2019).

[36] Mafarja, M., Aljarah, I., Faris, H., AI. Hammouri, AlaM A-Z, S. Mirjalili, Binary
grasshopper optimisation algorithm approaches for feature selection problems, Ex-
pert Syst Appl 117 (2019) 267286.

[37] Mirjalili, SZ., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I., Grasshopper optimiza-
tion algorithm for multi-objective optimization problems, Appl Intell, 48 (2018)
805820.

93 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

[38] Mrozek, D., A review of cloud computing technologies for comprehensive microRNA
analyses, Computational Biology and Chemistry, (2020).

[39] Natesan, G., Chokkalingam, A., Task scheduling in heterogeneous cloud environ-
ment using mean grey wolf optimization algorithm, ICT Express 5 (2019) 110114.

[40] Nickabadi, A., Ebadzadeh, M. M., Safabakhsh, R., A novel particle swarm optimiza-
tion algorithm with adaptive inertia weight, Applied Soft Computing, 11 (2011)
36583670.

[41] Nirmala, S. J., Bhanu, S. M. S., Catfish-PSO based scheduling of scientific workflows
in IaaS cloud, Computing, (2016).

[42] Olivas, F., Valdez, F., Castillo, O., Melin, P., Dynamic parameter adaptation in par-
ticle swarm optimization using interval type-2 fuzzy logic, Soft Comput, 20 (2016)
10571070.

[43] Panigrahi, B.K., Pandi, V.R., Das, S., Adaptive particle swarm optimization ap-
proach for static and dynamic economic load dispatch, Energy Conversion and Man-
agement, 49 (2008) 14071415.

[44] Potts, C.N., Van Wassenhove, L.N., A branch and bound algorithm for the total
weighted tardiness problem, Operations Research, 33 (1985) 177181.

[45] Qin, Z., Yu, F., Shi, Z., Wang, Y., Adaptive inertia weight particle swarm optimiza-
tion, ICAISC, (2006) 450459.

[46] Saber, A.Y., Senjyu, T., Urasaki, N., Funabashi, T., Okinawa unit commitment
computationa novel fuzzy adaptive particle swarm optimization approach, Power
Systems Conference and Exposition, (2006) 18201828.

[47] Saremi, Sh., Mirjalili, S., Lewis, A., Grasshopper Optimisation Algorithm: Theory
and application, Adv. Eng. Softw. 105 (2017) 3047.

[48] Senthil Kumar, A. M., Venkatesan, M., Task scheduling in a cloud computing en-
vironment using HGPSO algorithm, Cluster Computing, (2018).

[49] Sheng, G., Zhang, Y., Li, Y., Improved Scheduling Algorithm for Instance-Intensive
Cloud Workflow, Safety Produce Informatization (IICSPI), 2nd International Con-
ference, IEEE, (2019).

[50] Shi, Y.H., Eberhart, R.C., A modified particle swarm optimizer, IEEE International
Conference on Evolutionary Computation, Anchorage Alaska, (1998) 6973.

[51] Shi, Y.H., Eberhart, R.C., Empirical study of particle swarm optimization, Congress
on Evolutionary Computation, Washington DC, USA, (1999).

94 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

[52] Shi, Y.H., Eberhart, R.C., Experimental study of particle swarm optimization,
SCI2000 Conference, Orlando, 2000.

[53] Shi, Y.H., Eberhart, R.C., Fuzzy adaptive particle swarm optimization, Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546),
Seoul, South Korea, 1 (2001) 101-106.

[54] Srinivas, M., Patnaik, L.M., Genetic algorithms: a survay, computer, 27 (1994)
17-26.

[55] Su, Sh., Yu, H., Authors Info & Affiliations Minimizing tardiness in data aggrega-
tion scheduling with due date consideration for single-hop wireless sensor networks,
Wireless Networks, 21 (2015) 1259-1273.

[56] Sun, W., Zhang, N., Wang, H., Yin, W., Qiu, T., PACO: A Period ACO-based
Scheduling Algorithm in Cloud Computing, International Conference on Cloud
Computing and Big Data, Fuzhou, China, (2013).

[57] Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., Abraham, A., Inertia-adaptive
particle swarm optimizer for improved global search, Eighth International Confer-
ence on Intelligent Systems Design and ApplicationsISDA, 2008.

[58] Tariq, A., Hussain, I., Ghafoor, A., A hybrid genetic akgorithm for job shop schedul-
ing, Proceedings of the 37th International Conference on Computers and Industrial
Engineering October (2007) 20-23.

[59] Thirumalaiselvan1, C., Venkatachalam, V., A strategic performance of virtual task
scheduling in multi cloud environment, Cluster Comput, 22 (2019) 9589-9597.

[60] Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W., A model for rolling swarms of
locusts, Eur. Phys. J. Special Topics 157 (2008) 93109.

[61] Torabi, Sh., Safi-Esfahani, F., A dynamic task scheduling framework based on
chicken swarm and improved raven roosting optimization methods in cloud com-
puting, J Supercomput, (2018).

[62] Tsujimura, Y., Mafune, Y., Gen, M., Effects of symbiotic evolution in genetic algo-
rithms for job-shop scheduling, Proceedings of the 34th Hawaii International Con-
ference on System Sciences IEEE, (2001).

[63] Uvarov, B., Grasshoppers and Locusts, Cambridge University Press, London, UK,
2 (1977).

[64] Verma, A., Kaushal, S., Bi-Criteria Priority Based Particle Swarm Optimization
Workflow Scheduling Algorithm for Cloud, Recent Advances in Engineering and
Computational Sciences (RAECS), (2014).

95 A. Zandvakili / JAC 53 issue 1, June 2021, PP. 61 - 95

[65] Wen, Y., Xu, H., Yang, J., A heuristic-based hybrid genetic-variable neighborhood
search algorithm for task scheduling in heterogeneous multiprocessor system, Infor-
mation Sciences 181 (2011) 567581.

[66] Xing, Y., Chen, Zh., Sun, J., An improved adaptive genetic algorithm for job-shop
scheduling problem, Third International Conference on Natural Computation (IEEE
ICNC), (2007).

[67] Xing, Y., Wang, Zh., An improved genetic algorithm with recurrent Search for the
job-shop scheduling problem, The 6th World Congress on Intelligent Control and
Automation IEEE, (2006).

[68] Yang, X., Yuan, J., Mao, H., A modified particle swarm optimizer with dynamic
adaptation, Applied Mathematics and Computation 189 (2007) 12051213.

[69] Zadeh, L.A, Fuzzy sets, Information and Control. 8 (1965) 338353.

[70] Zhang, L., Tong, W., Lu, Sh., Task scheduling of cloud computing based on Im-
proved CHC algorithm, International Conference on Audio, Language and Image
Processing, Shanghai, China, (2014).

[71] Zhao, R., Ni, H., Feng, H., Song, Y., Zhu, X., An improved grasshopper optimiza-
tion algorithm for task scheduling problems, International Journal of Innovative
Computing, Information and Control, 15 (2019) 1967-1987.

[72] Zheng, Y., Ma, L., Zhang, L., Qian, J., Empirical study of particle swarm optimiz-
erwith an increasing inertia weight, IEEE Congress on Evolutionary Computation,
(2003).

[73] Zheng, Y., Ma, L., Zhang, L., Qian, J., On the convergence analysis and parameter
selection in particle swarm optimization, Proceedings of the Second International
Conference on Machine Learning and Cybernetics, (2003).

[74] Zhou, Zh., Li, F., Zhu, H., Xie, H., Abawajy, J. H., Chowdhury, M. U., An improved
genetic algorithm using greedy strategy toward task scheduling optimization in cloud
environments, Neural Computing and Applications, (2020).

[75] Ziyath, S. P. M., Senthilkumar, S., MHO: meta heuristic optimization applied task
scheduling with load balancing technique for cloud infrastructure services, Journal
of Ambient Intelligence and Humanized Computing, (2020).

