تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,890 |
تعداد دریافت فایل اصل مقاله | 97,237,138 |
بررسی پاسخهای فیزیولوژیکی و بیوشیمیایی پایههای هستهدار کادامن و GF677 به تنش خشکی | ||
به زراعی کشاورزی | ||
مقاله 18، دوره 23، شماره 4، دی 1400، صفحه 966-953 اصل مقاله (1.72 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2021.299252.2360 | ||
نویسندگان | ||
سمیه امرایی تبار1؛ احمد ارشادی* 2 | ||
1دانشجوی دکتری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران. | ||
2دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران. | ||
چکیده | ||
در این پژوهش آستانه تحمل به خشکی و رابطه بین برخی پاسخهای بیوشیمیایی و فیزیولوژیکی دو پایه هستهدار کادامن و GF677 بررسی گردید. به همین منظور آزمایشی گلدانی در گلخانه بهصورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. نهالهای ریشهدارشده یکساله این دو پایه با افزودن مقادیر متفاوتی از پلیاتیلن گلیکول-6000 به محلول غذایی هوگلند در معرض تنش خشکی (1/0- (شاهد)، 6/0-، 1/1- و 6/1- مگاپاسکال) قرار گرفت. افزایش معنیدار نشت یونی و کاهش محتوای نسبی آب برگ در پایههای کادامن و GF677 بهترتیب در تنش خشکی 6/0- و 1/1- مگاپاسکال اتفاق افتاد. غلظت رنگیزههای فتوسنتزی و عملکرد کوانتومی فتوسیستمII (FV/FM) حساسیت کمتری به تنش داشته و در پایههای کادامن و GF677 بهترتیب در تنش خشکی 1/1- و 6/1- مگاپاسکال دچار کاهش معنیدار شد. کاهش در فتوسنتز، تعرق، CO2 زیر روزنهای و هدایت روزنهای در تنش خشکی شدید در پایه کادامن بسیار چشمگیرتر از GF677 بود. در تنش 6/1- مگاپاسکال، پایه GF677 با وجود کاهش قابلتوجه در تعرق، فتوسنتز خود را چندان کاهش نداد، درحالیکه در پایه کادامن کاهش نسبی در فتوسنتز در تنش 6/1- مگاپاسکال بهمراتب بیشتر از کاهش نسبی تعرق و CO2 زیر روزنهای بود و همین منجر به کاهش کارایی نسبی مصرف آب و هدایت مزوفیلی کادامن در مقایسه با GF677 شد. بهنظر میرسد کاهش شدید فتوسنتز در پایه کادامن در کنار محدودیتهای روزنهای تا حد زیادی ناشی از محدودیتهای غیر روزنهای مانند آسیب به غشای سلولی و کاهش کلروفیل، کاروتنوئیدها و فلورسانس کلروفیل در این پایه است. یافتههای این پژوهش نشان داد که پایه GF677 تحمل بالاتری به تنش خشکی شدید نسبت به کادامن دارد. | ||
کلیدواژهها | ||
تعرق؛ فتوسنتز؛ فلورسانس کلروفیل؛ محتوای نسبی آب؛ نشت یونی | ||
مراجع | ||
Angelopoulos, K., Dichio, B., & Xiloyannis, C. (1996). Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. Journal of Experimental Botany, 47 (301), 1093-110. https://doi.org/10.1093/jxb/47.8.1093 Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W.) 2011(. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. https://doi.org/10.5897/AJAR10.027 Atkinson, C. J., Policarpo, M., Webster, A. D., & Kingswell, G. (2000). Drought tolerance of clonal Malus determined from measurements of stomatal conductance and leaf water potential. Tree Physiology, 20, 557-563. https://doi.org/10.1093/treephys/20.8.557 Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15 (3),413-428. https://doi.org/10.1071/BI9620413 Bertamini, M., Zulini, L., Muthuchelian, K., & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling). plants Photosynthetica, 44(1), 151-154. https://doi.org/10.1007/s11099-005-0173-0 Boughalleb, F., & Hajlaoui, H. (2011). Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Journal of Acta Physiologia Plantarum, 33, 53-65. https://doi.org/10.1007/s11738-010-0516-8 Carole, L. B. (2013). Abiotic stress-plant responses and applications in agriculture. Water Use and Drought Response in Cultivated and Wild Apples, pp, 249-275. Colom, M. R., & Vazzana, C. (2001). Drought stress effects on three cultivars of Eragrostis curvula Photosynthesis and water relations. Journal of Plant Growth Regulation, 34, 195-20S2. https://doi.org/10.1023/A:1013392421117 Farooq, M., Wahid, A., & Lee, D.J. (2009). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Journal of Acta Physiologiae Plantarum, 31,937-945. https://doi.org/10.1007/s11738-009-0307-2 Ghaderi, N., Sioseh Mardeh, A., & Shahoei, S. S. (2006). A study of the effect of water stress on some physiological characteristics in two grape cultivars. Iranian Journal of Agricultural Sciences, 37(1), 45-55. (In Persian) Ghaderi, N., Talaie, A. R., Ebadi, A., & Lessani, H. (2011). The physiological response of three Iranian grape cultivars to progressive drought stress. Journal of Agricultural Science and Technology, 13, 601-610. Hasheminasab, H., Aliakbari, A., & Baniasadi, R. (2014). Optimizing the relative waterprotection (RWP) as novel approach for monitoring drought tolerance in Iranian pistachio cultivars using graphical analysis. International Journal of Biosciences, 4, 194-203. Isaakidis, A., Sotiropoulos, T., Almaliotis, D., Therios, I., & Stylianidis, D. (2004). Response to severe water stress of the almond (Prunus amygdalus) ’Ferragnès’ grafted on eight rootstocks. New Zealand Journal of Crop and Horticultural Science, 32, 355-362. https://doi.org/10.1080/01140671.2004.9514316 Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J. J., Moreno1, M. A., & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33, 1061-1075. https://doi.org/10.1093/treephys/tpt074 Joshi, S. C., Chandra, S., & Palni, L. M. S. (2007). Differences in photosynthetic characteristics and accumulation of osmoprotectants in saplings of evergreen plants grown inside and outside a glasshouse during the winter season. Journal of Photosynthetica, 45(4), 594-600. https://doi.org/10.1007/s11099-007-0102-5 Khattab, M. M., & Shaban, A. E.) 2011). Growth and productivity of pomegranate trees under different irrigation levels. III: leaf pigments, proline and mineral content. Journal of Horticultural Science and Ornamental Plants, 3(3), 265-269. Kiani, S. P., Maury, P., Sarrafi, A., & Grieu, P. (2008). QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Journal of Plant Science, 175, 565–573. https://doi.org/10.1016/j.plantsci.2008.06.002 Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., & Karabaliev, M. (2004). Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Journal of Bioelectrochemistry, 63, 121-124. https://doi.org/10.1016/j.bioelechem.2003.09.020 Liu, B., Li, M., Cheg, L., Liang, D,. Zou, Y., & Ma, F. (2012). Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Journal of Plant Growth Regulation, 67, 247-256. https://doi.org/10.1007/s10725-012-9683-5 Lutts, S., Kinet, J., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843-1852. https://doi.org/10.1093/jxb/46.12.1843 Mashayekhi, M., Habibi, F. & Amiri, E. (2014). Mechanism of drought stress tolerance of GF677 rootstock (peach and almond hybrid) under in vitro condition. Journal of Crops Improvement, 16, 707-716. https://doi.org/10.22059/jci.2014.53269 Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659 Munne-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Journal of Functional Plant Biology, 31, 203-216. https://doi.org/10.1071/FP03236 Nawaz, F., Ahmad, R. W., araich, E. A., Naeem, M. S., & Shabbir, R. N. (2012). Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. Journal of plant nutrition, 35(6), 961-974. https://doi.org/ 10.1080/01904167.2012.663637 Percival, G.C., & Henderson, A.) 2003(. An assessment of freezing tolerance of urban trees using chlorophyll fluorescence. Journal of Horticultural Scince and Biotechnology, 78, 254-60. https://doi.org/10.1080/14620316.2003.11511614 Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Journal of Photosynthesis Research, 73(1-3), 149-156. https://doi.org/10.1023/A:1020470224740 Premachandra, G. S., Saneoka, H., Kanaya, M., & Ogata, S. (1991). Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. Journal Express of Botanical, 42, 167-171. https://doi.org/10.1093/jxb/42.2.167 Ramanjulus, S., Sreenivasulu, N., & Sudhakar, C. (1998). Effect of water stress on photosynthesis in two mulberry genotypes with different drought tolerance. Journal of Photosynthetica, 35, 279-283. https://doi.org/10.1023/A:1006979327921 Ranjbar, A., Imani, A., Piri Piraivt lou, S., & Abdoosi, V. (2019). Effects of Drought Stress on Almond Cultivar's Responses Grafted on Different Rootstocks. Journal of Nuts, 10, 9-24. . https://doi.org/10.22034/jon.2019.664206 Rezaee, T., Gholami, M., Eeshadi, A., & Mosaddeghi, M. R. (2008). The effect of water deficit stress on some growth and physiological characteristics of five grapevine cultivars (Vitts vinifera L.). Agricultural Research, 7(4), 199-210. (In Persian). Romero, P., Navarro, J. M., Garcia, F., & Ordaz, P. B. (2004). Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiology, 24, 303-312. DOI: 10.1093/treephys/24.3.303 Rouhi, V., Samson, R., Lemeur, R., &Van Damme, P. (2007). Photosynthetic Gas Exchange Characteristics in Three Different Almond Species during Drought Stress and Subsequent Recovery. Environmental and Experimental Botany, 59, 117-129. https://doi.org/10.1016/j.envexpbot.2005.10.001 Sayar, R., Khemira, H., Kameli, A., & Mosbahi, M. (2008). Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Journal of Agronomy Resorse, 6(1), 79-90. Seraa, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20, 1-14. https://doi.org/10.1111/ajgw.12054 Shan, W., Liang, D., & Ma, F. (2014). Leaf micromorphology and suger may contribute to differences in drought tolerance for two apple cultivars. Plant Physiology and Biochemistry, 80, 249-258. https://doi.org/10.1016/j.plaphy.2014.04.012 Shao, H. B., Chu, L.Y., Lu, Z. H., & Kang, C.M. )2008(. Main antioxidants and redox signaling in higher plant cells. Internationa Journal of Biology Sciences, 44, 12-18. Smirnoff, N. (1998). Plant resistance to environmental stress. Journal of Current Opinion Biotechnology, 9, 214-219. https://doi.org/10.1016/S0958-1669(98)80118-3 Smirnoff, N. )1993(. The role active oxygen in the response of plants to water deficit and desiccation. Journal of New Phytologist, 125, 27-28. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x Solari, L. I., Johnson, S., & Dejong, T. M. (2006). Relationship of water status to vegetative growth and leaf gas exchange of peach (Prunus persica) trees on different rootstocks. Tree Physiology, 26, 1333-1341. https://doi.org/10.1093/treephys/26.10.1333 Tognetti, R., Costagli, G., Minnocci, A., & Gucci, R. (2002). Stomatal behaviour and water use efficiency in two cultivars of Olea europaea L. International Journal of Medical Sciences, 132, 90-97. Turner, J., Tanino, K., & Stushnoff, C. (1993). Evaluation of low temperature hardiness of strawberry plants under field and controlled conditions. Canadian Journal of Plant Science, 73(4), 1123-1125. https://doi.org/10.4141/cjps93-151 Wang, Sh., Liang, D., Li, Ch., Hao, Y., Ma, F., & Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought- tolerant and drought-sensitive apple rootstocks. Journal of Plant Physiology and Biochemistry, 51, 81-89. https://doi.org/10.1016/j.plaphy.2011.10.014 Waraich, E. A., Ahmad, R., & Ashra, F. M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764 Yanbao, L., Chunying, Y., & Chunyang, L. (2006). Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting population of Populus przewalskii. Journal of Physiologia Plantarum, 127, 182-191. https://doi.org/10.1111/j.1399-3054.2006.00638 Zrig, A,. Tounekti, T., Vadel, A., Ben Mohamed, H., Valero, D., Serrano, M., Chtara, C., & Khemira, H. (2011). Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 49, 1313-1322. https://doi.org/10.1016/j.plaphy.2011.08.009 | ||
آمار تعداد مشاهده مقاله: 406 تعداد دریافت فایل اصل مقاله: 334 |