تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,766 |
تعداد دریافت فایل اصل مقاله | 97,230,972 |
پیشفرآوری ازنکافت کاه گندم با هدف بهبود لیگنینزدایی: استفاده از روش سطح پاسخ برای مدلسازی و بهینه-سازی فرآیند | ||
مهندسی بیوسیستم ایران | ||
دوره 52، شماره 1، اردیبهشت 1400، صفحه 37-53 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2021.301150.665299 | ||
نویسندگان | ||
مرضیه قربانی1؛ محمدحسین کیانمهر* 2؛ اکبر عرب حسینی2؛ علی اسدی الموتی3؛ رضا صادقی4 | ||
1گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران | ||
2گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران | ||
3گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، تهران، ایران | ||
4گروه حشره شناسی و بیماری های گیاهی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
کاه گندم بهطور گسترده برای خوراک دام و در پالایشگاههای زیستی برای تولید قند استفاده میشود. با این حال، سلولز بهعنوان منبع اصلی قند، توسط لیگنین محافظت شده است. ازن اکسیدکنندهای قوی است که میتواند لیگنین را تجزیه و سلولز را برای هضم آنزیمی در دسترس قرار دهد. هدف از این پژوهش لیگنینزدایی کاه گندم با فنآوری ازنکافت بهعنوان یک فرآیند سبز، محیطزیست پسند و انرژی کارآمد است. مدلسازی و بهینهسازی با استفاده از روش سطح پاسخ و با بررسی اثرات پنج عامل نرخ تولید ازن (1، 2 و 3 گرم بر ساعت)، زمان ازندهی (15، 30 و 45 دقیقه)، نرخ جریان (0، 3 و 6 لیتر بر دقیقه)، محتوای رطوبت (100، 200 و 300 درصد وزنی) و مقدار اوره (0، 5/1 و 3 درصد وزنی) انجام شد. یافتههای این پژوهش بیشینه لیگنینزدایی (50 درصد) را در بیشترین سطوح عاملهای نرخ تولید ازن، زمان، نرخ جریان، اوره و کمترین سطح رطوبت نشان داد. عاملهای نرخ جریان و محتوای رطوبت بهترتیب با بیشترین تأثیرگذاری (36 و 20 درصد)، مؤثرترین پارامترها در فرآیند لیگنینزدایی بودند. در شرایط بهینه، 8/49 درصد لیگنینزدایی در نرخ تولید ازندهی 3 گرم بر ساعت، زمان 45 دقیقه، نرخ جریان 7/5 لیتر بر دقیقه، رطوبت 100 درصد وزنی و مقدار اوره 3 درصد وزنی با شاخص مطلوبیت 99/0 حاصل شد. روش سطح پاسخ توانست برازش بالایی بین دادههای آزمایشی و پیشبینی شده با ضریب تبیین 90/0 ایجاد کند. یافتهها نشان داد که فرآیند ازنکافت با استفاده از عاملهای پیشنهادی میتواند برای لیگنینزدایی کاه گندم مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
کاه گندم؛ ازنکافت؛ لیگنینزدایی؛ آنالیز مطلوبیت؛ روش سطح پاسخ | ||
مراجع | ||
Ai, P., Zhang, X., Dinamarca, C., Elsayed, M., Yu, L., Xi, J. & Mei, Z. (2019). Different effects of ozone and aqueous ammonia in a combined pretreatment method on rice straw and dairy manure fiber for enhancing biomethane production. Bioresource Technology, 282, 275-284. Al jibouri, A.K.H. (2012). Effect of intermediate washing on ozonolysis delignification and enzymatic hydrolysis of wheat straw. Master Thesis, Ryerson University, Toronto, Canada. Al jibouri, A.K.H., Turcotte, G., Wu, J. & Cheng, C.H. (2015). Ozone pretreatment of humid wheat straw for biofuel production. Energy Science and Engineering, 3(6), 541-548. ASAE Standards: ASAE S319.3. (2006). Method of determining and expressing fineness of feed materials by sieving, (pp, 601-605). ASAE Standards: ASAE S358.2. (2003). Moisture measurement-forages, (pp, 607-608). Baig, K.S., Wu, J., Turcotte, G. & Doan, H.D. (2015). Novel ozonation technique to delignify wheat straw for biofuel production. Energy and Environment, 26(3), 303-318. Barrera-Martínez, I., Guzman, N., Pena, E., Vazquez, T., Ceron-Camacho, R., Folch, J., Salazar, J.A.H. & Aburto, J. (2016). Ozonolysis of alkaline lignin and sugarcane bagasse: Structural changes and their effect on saccharification. Biomass and Bioenergy, 94, 167-172. Ben’ko, E.M., Chukhchin, D.G. & Lunin, V.V. (2017). Ozone pretreatment and fermentative hydrolysis of wheat straw. Zhurnal Fizicheskoi Khimii, 91(11), 1851-1857. Ben’ko, E.M. & Lunin, V.V. (2020). Patterns of the ozone pretreatment of lignocellulosic biomass for subsequent fermentation into sugars. Russian Journal of Physical Chemistry A, 94(9), 1943-1948. Ben’ko, E.M., Chukhchin, D.G. & Lunin, V.V. (2020). Changes in wheat straw cell walls during ozone pretreatment. Holzforschung, 74(12), 1157-1167. Binder, A., Pelloni, L. & Fiechter, A. (1980). Delignification of straw with ozone to enhance biodegradability. European journal of applied microbiology and biotechnology, 11, 1-5. Box, G.E.P. & Hunter, J.S. (1957). Multi-factor experimental design for exploring response surfaces. Annals of Mathematical Statistics, 28, 195-241. Bule, M.V., Gao, A.H., Hiscox, B. & Chen, S. (2013). Structural modification of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 61, 3916-3925. Chen, X., Du, W. & Liu, D. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40, 423-429. Choi, H., Lim, H.N., Kim, J., Hwang, T.M. & Kang, J.W. (2002). Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation. Journal of Contaminant Hydrology, 57, 81-98. Contreras, S. (2002). Degradation and biodegradability enhancement of nitrobenzene and 2,4-dichlorophenol by means of advanced oxidation processes based on ozone. Ph. D Thesis, University of Barcelona. Das, A., Chanchal, M. & Roy, S. (2015). Pretreatment methods of ligno-cellulosic biomass: a review. Journal of Engineering Science and Technology Review, 8(5), 141-165. Derringer, G. & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214-219. Domański, J., Marchut-Mikołajczyk, O., Polewczyk, A. & Januszewicz, B. (2017). Ozonolysis of straw from Secale cereale L. for anaerobic digestion. Bioresource Technology, 245, 394-400. FAO. (2020). Crop Prospects and Food Situation - Quarterly Global Report No. 1, March 2020, Rome. García-Cubero, M.T., Coca, M., Bolado, S. & González-Benito, G. (2010). Chemical oxidation with ozone as pre-treatment of lignocellulosic materials for bioethanol production. Chemical Engineering Transactions, 21, 1273-1278. García-Cubero, M.T., González-Benito, G., Indacoechea, I., Coca, M. & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100, 1608-1613. García-Cubero, M.T., Palacn, L.G., Gonzlez-Benito, G., Bolado, S., Lucas, S. & Coca, M. (2012). An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. Bioresource Technology, 107, 229-234. Ghorbani, M., Aboonajmi, M., Ghorbani Javid, M. & Arabhosseini, A. (2017). Optimization of ultrasound-assisted extraction of ascorbic acid from fennel (Foeniculum vulgare) seeds and evaluation its extracts in free radical scavenging. Agricultural Engineering International: CIGR Journal, 19(4), 209-218. (In Farsi) Ghorbani, M., Kianmehr, M.H., Arabhosseini, A., Sarlaki, E., Asadi Alamouti, A. & Sadeghi, R. (2020a). A review on ozone: properties, effects, reaction mechanisms, environmental and safety aspects in food processing. In: Proceedings of 12th National Congress on Biosystems Engineering and Agricultural Mechanization. 5-7 February, Shahid Chamran University of Ahvaz, Iran. (In Farsi) Ghorbani, M., Kianmehr, M.H., Arabhosseini, A., Sarlaki, E., Asadi Alamouti, A. & Sadeghi, R. (2020b). Fundamental of generating, applying and controlling systems of plasma ozone and its applications in the food industry. In: Proceedings of 12th National Congress on Biosystems Engineering and Agricultural Mechanization. 5-7 February, Shahid Chamran University of Ahvaz, Iran. (In Farsi) Ghorbani, M., Kianmehr, M.H., Arabhosseini, A., Sarlaki, E., Asadi Alamouti, A. & Sadeghi, R. (2020c). Ozonolysis: a novel and effective oxidation technique for lignocellulosic biomass pretreatment. In: Proceedings of 12th National Congress on Biosystems Engineering and Agricultural Mechanization. 5-7 February, Shahid Chamran University of Ahvaz, Iran. (In Farsi) Gitifar, V., Eslamloueyan, R. & Sarshar, M. (2013). Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar. Bioresource Technology, 148, 47-52. Goede, A. & van de Sanden, R. (2016). The need for basic energy research. Europhysics News, 47: 22-26. Graves, C., Ebbesen, S.D., Mogensen, M. & Lackner, K.S. (2011). Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable and Sustainable Energy Reviews, 15(1), 1-23. Harrington, E.C. (1965). The Desirability Function. Industrial Quality Control, 21, 494-498. Heiske, S., Schultz-Jensen, N., Leipold, F. & Schmidt, J.E. (2013). Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment. Journal of Atomic and Molecular Physics, 2013, 7 pages. Huang, H., Wang, Z., Pan, S.C., Shoup, L.M., Felix, T.L., Perkins, J.B., May, O. & Singh, V. (2017). Fungal pretreatment to improve digestibility of corn stover for animal feed. Transactions of the ASABE, 60(3), 973-979. Kádár, Z., Schultz-Jensen, N., Jensen, J.S., Hansen, M.A.T., Leipold, F. & Bjerre, A.B. (2015). Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass and Bioenergy, 81, 26-30. Kaur, U., Oberoi, H.S., Bhargav, V.K., Sharma-Shivappa, R. & Dhaliwal, S.S. (2012). Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. Ind. Industrial Crops and Products, 37, 219-226. Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729. Li, C., Wang, L., Chen, Z., Li, Y.Y., Wang, R., Luo, X., Cai, G., Yu, Q. & Lu, J. (2015). Ozonolysis pretreatment of maize stover: the interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology, 183, 240-247. Maia, E.P. & Colodette, J.L. (2003). Efeito do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio. Revista Árvore, 27, 217-232. Mamleeva, N.A., Autlov, S.A., Bazarnova, N.G. & Lunin, V.V. (2009). Delignification of softwood by ozonation. Pure and Applied Chemistry, 81, 2081-2091. Miura, T., Lee, S.H., Inoue, S. & Endo, T. (2012). Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresource Technology, 126, 182-186. Moore-Landecker. E. (1996). Fundamentals of the fungi. Prentice Hall. Simon and Schuster/Aviacom company, (pp, 376-383). Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M. & Taitai, A. (2017). Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arabian Journal of Chemistry, 10, S3292-S3302. Mussatto, S.I. (2016). Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Publisher: John Fedor. ISBN: 978-0-12-802323-5, 674 Pages. Napier-Munn, T.J. (2000). The central composite rotatable design JKMRC. Brisbane: The University of Queensland. Nayan, N., Sonnenberg, A., Hendriks, W. & Cone, J. (2018). Screening of white‐rot fungi for bioprocessing of wheat straw into ruminant feed. Journal of Applied Microbiology, 125, 468-479. Nayan, N., van Erven, G., Kabel, M.A., Sonnenberg, A.S., Hendriks, W.H. & Cone, J.W. (2019). Improving ruminal digestibility of various wheat straw types by white-rot fungi. Journal of the Science of Food and Agriculture, 99(2), 957-965. Neely, W.C. (1984). Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnology and Bioengineering, 26, 59-65. Osuna-Laveaga, D.R., García-Depraect, O., Vallejo-Rodríguez, R., López-López, A. & León-Becerril, E. (2020). Integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse: Enhancement of sugars released to expended ozone ratio. Processes, 8(10), 1274. Panneerselvam, A., Sharma-Shivappa, R.R., Kolar, P., Ranney, T. & Peretti, S. (2013). Potential of ozonolysis as a pretreatment for energy grasses. Bioresource Technology, 148, 242-248. Pedersen, J.F., Vogel, K.P. & Funnell, D.L. (2005). Impact of reduced lignin on plant fitness. Crop Science, 45, 812-819. Rosen, Y., Mamane, H. & Gerchman, Y. (2019). Short ozonation of lignocellulosic waste as energetically favorable pretreatment. BioEnergy Research, 12, 292-301. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H. & Mirsaeedghazi, H. (2017). Effect of processing temperature on membrane ultrafiltration of lignite coals-derived humic alkaline extracts, membrane performance and humic acid purity. Iranian Journal of Biosystems Engineering, 48, 475-489. (In Farsi) Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H. & Asefpour Vakilian, K. (2019a). Extraction and purification of humic acids from lignite wastes using alkaline treatment and membrane ultrafiltration. Journal of Cleaner Production, 235, 712-723. Sarlaki, E., Sokhandan Toomaj, M., Sharif Paghaleh, A, Kianmehr, M.H. & Nikousefat, O. (2019b). Extraction of humic acid from lignite coals using stirred tank reactors (STRs): Assessment of process parameters and final product charaterization. Iranian Journal of Soil and Water Research, 50, 1111-1125. (In Farsi) Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H. & Asefpour Vakilian, K. (2020). Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite. Chemistry and Chemical Technology, 14(3), 353-361. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H. & Asefpour Vakilian, K. (2021). Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163, 105-122. Schultz-Jensen, N., Kádár, Z., Thomsen, A., Bindslev, H. & Leipold, F. (2011). Plasmaassisted pretreatment of wheat straw for ethanol production. Applied Biochemistry and Biotechnology, 165, 1010-1023. Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S.T., Roslander, C., Lilholt, H. & Bjerre, A.B. (2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol-comparison of five pretreatment technologies. Bioresource Technology, 140, 36-42. Sen, R.K. (1997). Response surface optimization of the critical media components for the production of surfactin. Journal of Chemical Technology and Biotechnology, 68, 263-270. Severe, J. & ZoBell, D.R. (2012). Review: Technical aspects for the utilization of small grain straws as feed energy sources for ruminants: Emphasis on beef cattle. AG/BeefCattle/2012-03, UtahState University Cooperative Extension from www. extension.usu.edu. Shariat Panahi, H.K., Dehhaghi, M., Aghbashlo, M., Karimi, K. & Tabatabaei, M. (2020). Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy, 145, 699-710. Sharif Paghaleh, A., Sarlaki, E., Kianmehr, M.H. & Shakiba, N. (2017). Study of spectral, structural and chemical characteristics of humic acids isolated from coalfield of Iran. Iranian Journal of Soil and Water Research, 48, 1145-1158. (In Farsi) Shaw, M. & Tabil, L. (2006): Mechanical properties of selected biomass grinds. In: ASABE Annual International Meeting. July 9-12, Portland. Shi, F., Xiang, H. & Li, Y. (2015). Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresource Technology, 179, 444-451. Song, S., Xia, M., He, Z., Ying, H., Lü, B. & Chen, J. (2007). Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis. Journal of Hazardous Materials, 144, 532-537. Souza-Correa, J.A., Oliveira, C., Wolf, L.D., Nascimento, V.M., Rocha, J.G.M. & Amorim, J. (2013). Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of moisture in the ozonation process. Applied Biochemistry and Biotechnology, 171, 104-116. Staehelin, J. & Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science and Technology, 19(12), 1206-1213. Sundstol, F., Coxwoth, E. & Mowat, D.N. (1978). Improving the nutritive value of straw and other low-quality roughages by treatment with ammonia. World Animal Review, 26, 13-21. Tajinia, R., Kianmehr, M.H., Sarlaki, E., Sharif Paghaleh A. & Mirsaeedghazi, H. (2020). Extracting humic acids from spend mushroom compost (SMC) by alkaline treatment and membrane ultrafiltration. Iranian Journal of Biosystems Engineering, 50:847-861. (In Farsi) Talebnia, F., Karakashev, D. & Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101, 4744-4753. Travaini, R., Marangon-Jardim, C., Colodette, J.L., Morales-Otero, M.D. & Bolado-Rodríguez, S. (2014). In: Pandey, A., Negi, S., Binod, P. and Larroche, C. (Eds.), Pretreatment of biomass-processes and technologies,(pp, 105-135), Academic Press, USA. Travaini, R., Martín-Juárez, J., Lorenzo-Hernando, A. & Bolado-Rodríguez, S. (2016). Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 199, 2-12. Travaini, R., Otero, M.D.M., Coca, M., Da-Silva, R. & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332-339. Van Kuijk, S.J.A., Sonnenberg, A.S.M., Baars, J.J.P., Hendriks, W.H., del Río, J.C., Rencoret, J., Gutiérrez, A., de Ruijter, N.C.A. & Cone, J.W. (2017). Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass and Bioenergy, 105, 381-391. Van Soest, P.J., Robertson, J.B. & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. Wu, J., Ein-Mozaffari, F. & Upreti, S. (2013). Effect of ozone pretreatment on hydrogen production from barley straw. Bioresource Technology, 144, 344-349. Yang, Z.H., Huang, J., Zeng, G.M., Ruan, M., Zhou, C.S., Li, L. & Rong, Z.G. (2009). Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology. Bioresource Technology, 100(3), 4233-4239. Yokota, S., Iizuka, K., Ishiguri, F., Abe, Z. & Yoshizawa, N. (2006). Ozone-dioxane delignification from the cell walls of Japanese cypress (Chamaecyparis obtuse Endl.). Journal of Material Cycles and Waste Management, 8, 140-144. Yu, Z., Jameel, H., Chang, H.M. & Park, S. (2011). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology, 102, 9083-9089. | ||
آمار تعداد مشاهده مقاله: 614 تعداد دریافت فایل اصل مقاله: 544 |