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Abstract 

In this paper, we define a spatial skew and heavy-tailed random field by an extended 
version of multivariate generalized skew Laplace distribution. The Bayesian spatial 
regression model is developed to explain the spatial data. A simulation study is then 
carried out to validate and evaluate the performance of the proposed model. The 
application of this model is also demonstrated in an analysis of a geological real data 
set.  
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Introduction 
Regression analysis of spatial data is an important 

statistical method that is frequently used in a number of 
fields such as agriculture, biology, geology, geography 
and etc. Some methods for introducing the spatial 
structure into regression models are presented by [1] 
[2]. For an application of this model to filtering an 
image, see [3]. The maximum likelihood estimation 
procedure to estimate the parameters of these kinds of 
models is applied by [4]. A necessary condition for the 
consistency of the maximum likelihood estimator of 
these models has been investigated by [5]. The Bayesian 
analysis of regression models with spatially correlated 
errors and missing observations are studied by [6]. 

    The usual assumption in the regression analysis of 
spatial data is that data come from a Gaussian Random 
Field (RF). However, this assumption is often based on 
the simplicity of the Gaussian structures and does not 

hold true for the majority of the applications. In real 
situations, data are often non-Gaussian but a suitable 
Normalizing transformation for them exists. But 
Normalizing transformation is usually unknown and 
interpretation of the transformed data is also more 
difficult than the original data as indicated by [8]. [9] 
used Closed Skew-Normal (CSN) RF for spatial 
regression with correlated errors and missing data, 
where the distribution of data has an appropriate number 
of similarities with Normal distribution but is 
asymmetric. Although multivariate Extended Skew t 
(EST) distribution can be used for this circumstance, 
[10] showed both CSN and EST distributions have two 
serious problems for defining an RF. An appropriate 
choice for modeling the skew and heavy-tailed data is 
the multivariate Generalized Asymmetric Laplace 
(GAL) distribution introduced by [11]. [10] have used 
this distribution to define GAL RF for spatial 
prediction. However, GAL distribution is not closed 
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under addition with a constant vector. This weakness 
does not allow us to use the GAL RF for spatial 
regression. So a version of multivariate GAL is defined 
named the multivariate Extended Generalized 
Asymmetric Laplace (EGAL) distribution to determine 
an applicable RF. The problem of working with spatial 
and skew data is not restricted to mentioned models. For 
instance, [12] have been used GAL RF for spatial 
prediction and [13] studied paned data models for skew-
normal data. 

The paper is organized as follows. Section 2 
introduces the multivariate EGAL distribution and 
studies its main properties.  The spatial EGAL RF based 
on the multivariate EGAL distribution is defined in 
Section 3, where a Bayesian spatial regression 
(including missing observations) with correlated errors 
follow from a Spatial Autoregressive and Moving 
Average (SARMA) model is considered. Section 4 is 
devoted to the prediction of missing values by using a 
Bayesian estimation approach including the Monte 
Carlo Markov Chain (MCMC) procedure to generate a 
sample from the posterior distributions. A simulation 
study and application to a real data set are presented in 
Sections 5 and 6, respectively. Discussion and 
conclusion remarks are given in Section 7. 

 
Extended Multivariate Generalized Asymmetric 
Laplace Random Variable 

In this section, we introduce a multivariate skew 
distribution named multivariate EGAL distribution as an 
extension of the multivariate GAL distribution 
introduced by [11]. 

Definition 1. A continuous p-dimensional random 
vector ࢄ has an EGAL distribution, denoted by ࢄ ,ࣆ)ܮܣܩܧ∽ ,ࢳ ,ݍ  if its characteristic function is given ,(࢜
by ߶(࢚) = ࢚݁࢜( ଵଵା భమ ࢚ ି࢚  ࢳ ࢚ࣆ)       ࢚ ∈ ܴ,                   (1) 

where ݍ > 0 is a generalizing parameter, ࣆ ∈ ܴ 
controls both location and skewness, ࢳ is a non-negative 
definite dispersion  ×  is the pure ࢜ matrix and 
location parameter. For ࢜ = 0, we deal with GAL 
distribution, denoted by ࢄ ∼ ,ࣆ)ܮܣܩ ,ࢳ ࢄ  Clearly, if .(ݍ ∼ ,ࣆ)ܮܣܩܧ ,ࢳ ,ݍ ࢄ then (࢜ = ࢅ + ࢅ where ,࢜ ,ࣆ)ܮܣܩ∽ ,ࢳ ࢜ For .(ݍ = 0 and ݍ = 1, it reduces to the 
multivariate Asymmetric Laplace (AL) distribution, 
denoted by ࢄ ∼ ,ࣆ)ܮܣ introduced by [14]. When q ,(ࢳ = 1, we obtain the multivariate Extended Asymmetric 
Laplace (EAL) distribution denoted by ࢄ ,ࣆ)ܮܣܧ∽ ,ࢳ  .(࢜

Similar to GAL distribution, if the matrix ࢳ is 
positive-definite, the EGAL distribution is truly p-

dimensional and has a probability density function (pdf) 
of the form  

(࢞)݂ࢄ = ଶ ࣆࢳషభ(࢞ష࢜)(ଶగ)మ௰()|ࢳ|భమ ቀொ(࢜ି࢞)అ(ࣆ,ࢳ) ቁିమ ࢞)ିమ൫ܳܭ ,࢜− ,ࣆ)ߖ(ࢳ  ൯,                                                              (2)(ࢳ
 
where ܭ௨(∙) is the modified Bessel function of type 

3 with index u, ܳ(࢞, (ࢳ = ,ࣆ)ߖ and ࢞ ଵିࢳ்࢞√ (ࢳ =ඥ2 +  .ࣆଵିࢳ்ࣆ
If ࢄ ∼ ,ࣆ)ܮܣܩܧ ,ࢳ ,ݍ  then the following ,(࢜

representation for EGAL distribution holds 
ࢄ  = ࢜ + ܩ ࣆ  (3)                                            ,ࡺܩ√ +
 
where G has a standard Gamma distribution with 

shape parameter ݍ, is independent of ࡺ~N(0, ), 
which in turn shows that EGAL distributions are 
location-scale mixtures of the Normal distribution. 
Stochastic representation (3) leads to many further 
properties of GAL random vectors, including moments, 
marginal and linear transformations. In the following 
propositions, we study some of them. 

 
Proposition 1. Let ࢄ ∼ ,ࣆ)ܮܣܩܧ ,ࢳ ,ݍ  ,Then .(࢜

the expectation and variance-covariance matrix of ࢄ  
are given by (ࢄ)ܧ = ࢜ + (ࢄ)ݎܸܽ and  ࣆݍ = ࢳ)ݍ  .(்ࣆ ࣆ+

 
Proof: For this end, (3) can be directly used. 

However, it is more convenient to use the relation 
between EGAL and GAL; ࢄ = ࢅ +  The proof is now .࢜
complete by using the same results for GAL random 
vector ࢅ given by [11]. ∎ 

Proposition 2. Let ࢄ = ( ଵܺ, … , ܺ) ∼ ,ࣆ)ܮܣܩܧ ,ࢳ ,ݍ  be a  and let ,(࢜
real matrix ℓ ×  and B be a real vector with dimension ℓ. Then 

ࢄ  + ,ࣆ )ℓܮܣܩܧ~۰ ,்ۯ ࢳ  ,ݍ ࢜  + ۰). 
 
Proof: The characteristic function of ࢄ + ۰ is  
(࢚)ା۰ࢄ߶  = =൯(ା۰ࢄ )൫݁ ௧ܧ  ݁ ௧(்࢚ۯ)ࢄ߶         = ݁ ௧݁൫ۯ࢚൯࢜  ቌ 11 + 12 (்࢚ۯ) ࢳ ்(்࢚ۯ) − ቍࣆ்(்࢚ۯ) ݅

    = ݁௧(࢜ ା۰)( ଵଵାభమ࢚ ۯ ࢳ  ି࢚ ௧ࣆ ). ∎ 

 
Proposition 3. Let ࢄ ∼ ,ࣆ)ܮܣܩܧ ,ࢳ ,ݍ  and (࢜

consider the partition ்ࢄ = ଵ்ࢄ) , (ଵࢄ)݉݅݀ ଶ்) withࢄ (ଶࢄ)ଵ, dim= = ଵ ,ଶ + ଶ =  and the corresponding 
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partition of the parameters (ࣆ, ,ࢳ  Then .(࢜
ଵࢄ  ∼ ,ଵࣆ)భܮܣܩܧ ,ଵଵࢳ ,ݍ  .(࢜
 
Proof: Set  =  and  somehow ࢄ =  ଵ, inࢄ

Proposition 2. ∎ 
Following [12], the conditional mean and variance 

of multivariate EAL distribution are given in the 
following proposition. 

Proposition 4. Let ࢄ ∼ ,ࣆ)ܮܣܧ ,ࢳ  and consider (࢜
the same partition stated in Proposition 2. Then 

(ଵࢄ|ଶࢄ)ܧ  = ଶ࢜ + ଶଵଵଵିଵ(ࢄଵ −  (ଵ࢜
                         +(ૄଶ −ଶଵଵଵିଵૄଵ) ொ(ࢄభି࢜భ,భభ)అ(ૄభ,భభ) ܴଵିభమ ൫ߖ(ૄଵ, ଵଵ) ܳ(ࢄଵ ,ଵ࢜− ଵଵ)൯,              (4) ܸܽݎ(ࢄଶ|ࢄଵ) = ଵࢄ)ܳ − ,ଵ࢜ ଵଵ)ߖ(ૄଵ, ଵଵ)  (ଶଶ − ଶଵଵଵିଵଵଶ)× ܴଵିభଶ ൫ߖ(ૄଵ, ଵଵ) ܳ(ࢄଵ− ,ଵ࢜ ଵଵ)൯ 
                      +(ૄଶ − ଶଵଵଵିଵૄଵ)(ૄଶ −ଶଵଵଵିଵૄଵ)் ቀொ(ࢄభି࢜భ,భభ)అ(ૄభ,భభ) ቁଶ ଵࢄ)ܩ − ,ଵ࢜ ૄଵ, ଵଵ,  ଵ),  (5)

where ܴ(ݔ) = അశభ(௫)അ(௫)  and  ࢞)ܩଵ, ૄଵ, ଵଵ, =(ଵ  ܴଵିభଶ ൫ߖ(ૄଵ, ଵଵ) ܳ(࢞ଵ, ଵଵ)൯ܴଶିభଶ ൫ߖ(ૄଵ, ଵଵ) ܳ(࢞ଵ, ଵଵ)൯ 
                                          − ቆܴଵିభమ ൫ߖ(ૄଵ, ଵଵ) ܳ(࢞ଵ, ଵଵ)൯ቇଶ. 
Proof: First, note that ࢄ = ࢅ + ࢅ where ,࢜ ,ࣆ)ܮܣ∽  we ,ࢅ By considering the same partition on .(ࢳ

have ࢄଵ = ଵࢅ + ଶࢄ ଵ and࢜ = ଶࢅ + (ଵࢄ|ଶࢄ)ܧ ,ଶ. Therefore࢜ = ଶࢅ)ܧ + ଵࢅ|ଶ࢜ + (ଵ࢜ = (ଵࢅ|ଶࢅ)ܧ +  ,ଶ࢜
and ܸܽݎ(ࢄଶ|ࢄଵ) = ଶࢅ)ݎܸܽ + ଵࢅ|ଶ࢜ + (ଵ࢜  The Proof is now complete by substituting .(ଵࢅ|ଶࢅ)ݎܸܽ=
the corresponding expressions of ܧ(ࢅଶ|ࢅଵ) and ܸܽݎ(ࢅଶ|ࢅଵ) from [14].   

            
Spatial Regression Model 

In the current work, we consider the multivariate 
EGAL distribution in a spatial setting. Therefore, the 
spatial EGAL RF is defined based on the multivariate 
EGAL distribution.  

 
Definition 2. A RF {ܛ :(ܛ)܈ ∈ D ⊆ ܴௗ } is termed a 

EGAL RF if  ܈ =  (Z (࢙ଵ), … , Z(࢙)) ∼ EGAL(ࣆ, , ,ݍ  for all (࢜
configurations (࢙ଵ, … , (࢙ ∈ ܦ × … × ݊ and all ܦ ∈ Ν, 
where ࢜ + ࣆ ݍ = ࢳ and (܈)ܧ = (ࢆ) −   .்ࣆࣆ

    These choices for ࣆ ,࢜ and  are based on 
Proposition 1. These choices lead to ܸܽ(ࢆ)ݎ =  in ,
defined RF. All the RF properties, especially its 
stationarity, are entirely similar for GAL RF, which has 
been proved in [10]. 

    Based on half plan (unilateral) order, [7] studied 
the following spatial regression model  ݕ = ߚ ்ݔ ݅            ݖ + = 1, … , ݉,   ݆ = 1, … , ݊,      (6) 

 
on two dimensional regular lattice {(݅, ݆): ݅ =1, … , ݉,   ݆ = 1, … , ݊}, where ݕ is response variable, ݔ is an r-dimensional vector of explanatory variables, ߚ is the vector of regression coefficients and ݖ s are 

auto-correlated random variables follow a first order 
Spatially Autoregressive and Moving Average 
(SARMA(1,1)) model. Based on the quarter plan order, 
[6] considered the regression model (6), when ݖ s are 
auto-correlated random variables follow a first order 
Multiplicative Spatial Autoregressive (MSAR(1)) 
model. They studied a Bayesian approach to the 
parameter estimation problem of the model for Gaussian 
data. The same issue for CSN RF is considered by [9]. 
Based on the quarter plan order, we consider a 2-
dimensional lattice for ݖ via the following 
SARMA(1,1) model  

= ݖ  + ିଵ,ݖଵߠ + ,ିଵݖଶߠ + ିଵ,ߝିଵ,ିଵ +߮ଵݖ ଷߠ ߮ଶߝ,ିଵ + ߮ଷ ߝିଵ,ିଵ +   ,                    (7)ߝ
 
where |ߠ| < 1, |߮| < 1, ݅ = 1, … , ݉, ݆ = 1, … , ݊, ݇ = 1,2,3. 
    Let ࢅ = ,ଵଵݕ) ,ଵଶݕ … , ࢄ ,்(ݕ = ,ଵଵݔ) ,ଵଶݔ … , ࢠ ,்(ݔ = ,ଵଵݖ) ,ଵଶݖ … , ࢿ ,்(ݖ = ,ଵଵߝ) ,ଵଶߝ … , ࢠ ,்(ߝ = ,ݖ) ,ଵݖ … , ࢿ )் andݖ = ,ߝ) ,ଵߝ … ,  )். Then (3.1) and (7) can beߝ

written as the following matrix form ࢅ = ࢼࢄ + ࢠ (8)                                                            ࢠ = ࢠ ଵ ࢠ ଵ + + ࢿ ଶ ࢿ ଶ + + (9)              ,ࢿ                         
 
where ࢠ is unobserved primal values vector of  ݖ, ଵ is a down triangular ݉݊ × ݉݊ matrix, ଵ is an 

upper triangular ݉݊ × (݉ + ݊ + 1) matrix which their 
components are zero and functions of  ߠଵ, ߠଶ and ߠଷ. 
The matrices ଶ and ଶ are defined similar to ଵ and ଵ with replacing ߠଵ, ߠଶ and ߠଷ by ߮ଵ, ߮ଶ  and ߮ଷ, 
respectively. Note that (9) can be written as (ࡵ − ࢠ (ଵ = ࢠ ଵ + ࡵ) + ࢿ (ଶ .ࢿ ଶ +                                      
(10)                                                                        

Define ࢿ∗ = ,ࢀࢿ) ࢃ and replace ࢀ(ࢀࢿ = ࡵ) −  ଵ)ିଵ
to lead (10) to  ࢠ = ࢠ ଵ ࢃ +  (11)                                       ,∗ࢿ ࡰ ࢃ

where ࡰ = ሾࡵ +  .ଶሿ | ଶ
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    Theorem 1. Consider the regression model (6) 

with autocorrelated errors (7) and let ࢿ∗ ∼ ,ࣆ)∗ேܮܣܩ ,ࢳ ࢅ  Then .(ݍ ∼ ,ࢅࣆ)ܮܣܩܧ ,ࢅࢳ ,ݍ  ,(ࢅ࢜
where ܰ∗ = ݉݊ + ݉ + ݊ + ࢅࣆ ,1 = ࢅࢳ ,ࣆࡰࢃ = ࢅ࢜ and் ࢃࢀࡰࢳࡰࢃ = ࢼࢄ +  .ࢠ ଵ ࢃ
    Proof. From (8) and (11), we have ࢅ = ࢼࢄ ࢠ ଵ ࢃ+ + ࢅ Now we conclude that .∗ࢿ ࡰ ࢃ ,ࣆࡰࢃ)ܮܣܩܧ∽ ,் ࢃࢀࡰࢳࡰࢃ ,ݍ ࢼࢄ +  ) byࢠ ଵ ࢃ

Proposition 2.   
 

Prediction of the Missing Values 
 For predicting of the missing values ࢅ௦ given the 

observed values ࢅ௦, we consider the square loss 
function. Therefore, the best predictor of ࢅ௦ given ࢅ௦ is E(ࢅ௦|ࢅ௦). In order to splitting missing 
values ࢅ௦ from observed values ࢅ௦, suppose ࢅ∗ = ൫ࢅ௦் , ௦்൯்ࢅ =  is an ࡽ where ,ࢅ ࡽ
appropriate orthogonal matrix. By using Proposition 2, 
we have  ࢅ∗ ∼ ,ࢅࣆࡽ)ܮܣܩܧ ,்ࡽࢅࢳࡽ ,ݍ  ,(ࢅ࢜ࡽ

where ࢅࣆࡽ = , ௦்ࣆ) ࢅ࢜ࡽ ,்(௦்ࣆ , ௦்࢜)= ࢅࢳࡽ ௦்)் and࢜ =  ࢳ ࢳࢳ  ൨. In generalࢳ

the conditional expectation E(ࢅ௦|ࢅ௦) has not closed 
form, so we generate samples from the conditional 
distribution ݂ࢅೞ|ࢅ್ೞ(. (௦࢟| = (∗࢟)∗ࢅࢅ್ೞ(್࢟ೞ)  

where by Proposition 3, 
௦ࢅ  ∼ ,௦ࣆ)ே್ೞܮܣܩܧ ,ࢳ ,ݍ  .(௦࢜
    This conditional density has not closed form and 

so the Metropolis-Hastings (MH) algorithm is now 
applied to generate data from this conditional 
distribution, where the proposal distribution ݃࢟ೞ(࢟): ேܰೞ(࢟௦, ݀݅ܽ݃(ܾଶ) ) is used. For every 
missing value, we generate a sample with size ݇. Mean 
and variance of these samples are considered as the 
predicted value and variance of prediction, respectively.  

 For the case of ݍ = 1, we have ࢅ∗ ∼ ,ࢅࣆࡽ)ܮܣܧ ,ࢅࢳࡽ  (12)                           .(ࢅ࢜ࡽ
 
Therefore E(ࢅ௦|ࢅ௦) and ܸܽݎ(ࢅ௦|ࢅ௦) are 

computed by Proposition 4.  In the following theorem, 
the best predictor of ࢅ௦ given ࢅ௦ with its variance is 
given for the special case of ݍ = 1, when we deal with 
EAL distributed errors.  

    Theorem 2. Consider the regression model (6) 
with autocorrelated errors (7) and let ࢿ∗ ∼ ,ࣆ)∗ேܮܣ   .(ࢳ
Let the partition ்ࢅ = ௦்ࢅ) , ௦்ࢅ ) with ݀݅݉(ࢅ௦) =ܰ௦, and the corresponding partition of the parameters 

,ࣆ) ,ࢳ ࢳ where (࢜ =  ࢳ ࢳࢳ  .൨ࢳ

Then  E(ࢅ௦|ࢅ௦) = ௦࢜ + ௦ࢅ) ିଵࢳ ࢳ − +(௦࢜ ௦ࣆ) −  (௦ࣆ ିଵࢳ ࢳ
             ொ(ࢅ್ೞି್࢜ೞ,ࢳ)అ( ࣆ್ೞ,ࢳ) ܴଵିಿ್ೞమ ,௦ࣆ )ߖ) ௦ࢅ)ܳ (ࢳ ,௦࢜−   ,((ࢳ
and         ܸܽݎ(ࢅ௦|ࢅ௦) = ௦ࢅ)ܳ − ,௦࢜ ,௦ࣆ )ߖ(ࢳ (ࢳ −ࢳ) × (ࢳିଵࢳ ࢳ   ܴଵିே್ೞଶ ൫ࣆ )ߖ௦, ௦ࢅ)ܳ(ࢳ − ,௦࢜ +)൯ࢳ ௦ࣆ) − × (௦ࣆ ିଵࢳ ࢳ ௦ࣆ) − ்(௦ࣆ ିଵࢳ ࢳ ቀ ொ(ࢅ್ೞ,ࢳ)అ( ࣆ್ೞ,ࢳ)ቁଶ ௦ࢅ)ܩ ,௦࢜− ,௦ࣆ  ,ࢳ ܰ௦). 
Proof. The theorem is simply proved by Proposition 

4 and Equation (12).  
    In applications, the regression coefficients and 

spatial correlation parameters are unknown and have to 
be estimated. In this work, a Bayesian approach is 
used to estimate model parameters. We assume ࣆ ேభ்ࡶ ଵߙ)= , … , ேೖ்ࡶ ߙ )் for having k different skewness 
where ∑ ܰୀଵ = ܰ௦ and ࡶே  is an N-dimensional unite 
vector. Also, let ࢳ =  is known. By this ݍ and ࡵ ଶߪ
assumption, we have an appropriate reduction in size of 
computations.  Let ࣁ = (ࢀ, ,ଶߪ હ், ,்ࣂ  be vector ்(்࣐
of unknown parameters, where હ் = ,ଵߙ) … , ்ࣂ ,(ߙ = ,ଵߠ) ,ଶߠ ்࣐ ଷ) andߠ = (߮ଵ, ߮ଶ, ߮ଷ). By 
considering independence of parameters, the joint prior 
distribution of ࣁ can be written as (ࣁ)ߨ =      .(࣐)ߨ (ࣂ)ߨ (હ)ߨ (ߪ)ߨ ()ߨ

Choosing the priors ~ ܰ(, ), ߪଶ~ܩܫ(λ, σ),  હ~ ܰ(હ, diag(τଶ )), ߠ~ܶܰ(−1,1, ,ߠ ߰ଶ) and ߮~ܰ(߮, ,ଶ), where ܶܰ(−1,1ߞ ,ߠ ߰ଶ ) is a truncated 
Normal distribution to (−1,1) with mean ߠ and 
variance ߰ଶ, the posterior density of ࣁ is then given by ߨ(࢟|ࣁ௦) ∝  .(ࣁ)ߨ(ࣁ|௦࢟)݂

This posterior density has also a complicated form, 
and so the MCMC method is used to generate a sample 
from the posterior distribution. To use Gibbs sampler, 
the derived full conditional distributions of ࣈ as an 
arbitrary component of ࣁ are given by  ߨ൫ࣈห࢟௦, ൯ࣈିࣁ ∝   ,(ࣈ)ߨ (ࣁ|௦࢟)݂

where ࣈିࣁ is a ࣁ which ࣈ is deleted from it. These 
distributions do not have closed forms. For generating 
data from these densities, MH algorithm in Gibbs 
sampler is applied. The considered proposal 
distributions for ࣈ ∈ {, હ}, ߪଶ and ߜ ∈ ,ଵߠ} ,ଶߠ ,ଷߠ ߮ଵ, ߮ଶ, ߮ଷ} are ݃ࣈ(∙): ܰ(ࣈ,  ,( (ଶࣈܾ)݃ܽ݅݀
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The results show that not only the variances of 
predictions by the EGAL model are less than the 
Gaussian model but also the prediction values by the 
EGAL model are nearer to real values than these values 
for the Gaussian model. The prediction by the EGAL 
model for the case ݍ ≠ 1 cannot be done by Theorem 1, 
as we mentioned in the previous section. Therefore, we 
do simulate with ݍ = 3  and let all other parameters be 
similar to the case of ݍ = 1. The same results hold as 
the case ݍ = 1 for the histogram, Q-Q plot, and 
Bayesian estimation of parameters. Bayesian prediction 
of missing values and standard deviations of predictions 
for two models EGAL when ݍ = 2 and Gaussian have 
shown in Table 3. The results are approximately similar 
to the case of ݍ = 1.  

    As we expected, the estimation in the EGAL 
model for q = 1 has less error than EGAL model for 

q ≠ 1. Indeed, for q = 1, the conditional expectation  E(ࢅ௦|ࢅ௦) has a closed-form but for q ≠ 1 this 
conditional expectation has to be computed by MCMC 
algorithms. We finish this section by noting the 
following immediate consequence of simulation.  

Note 1. The computational time in this case, is 
considerably more than the case ݍ = 1, since the 
prediction by EGAL model for the case ݍ ≠ 1 cannot be 
done by Theorem 1 and have to be done by the MCMC 
method. The results show that for ݍ ∈ (0,1), the 
prediction is even better than of prediction obtained by 
the MCMC and is very exact. For ݍ ∈ (1,5), the results 
are approximately good. Table 4 shows the maximum 
PREMS for prediction by Theorem 1 for some different 
values of ݍ. Simulation has been done 10 times in 9 
locations that had been randomly selected.  

Note 2. In order to have knowledge about sensitivity 

 
Figure 2. The plot of convergence for parameters 

 
 

Table 1. The Gellman-Rubin statistics for convergence test. 
Estimator ࢼ ࢼ ࣌ෝ ࢻෝ ࢻෝ ࣂ ࣂ ࣂ ࣐ෝ ࣐ෝ  ࣐ෝ  
Test’s  statistics 1.18 1.29 1.07 1.02 1.05 1.12 1.12 1.09 1.25 1.14 1.004 
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of prediction with respect to the estimated parameters, 
we predicted ࢅ௦ by assuming parameters which have 
remarkable difference with real parameters. The results, 
not given here for the reason of space, show that this 
prediction has a very weak sensitivity to the values of 
estimated parameters. 

 
Application 

In this section, we briefly describe the analysis of a 
geological real data set. The data consist of 45 chemical 
elements in 110 locations in a region near Darab city of 
Iran which has been shown in Figure 3. The histogram 
and Normal Q-Q plot of all elements show the 
skewness, heavy tail, and non-Gaussian behavior of the 
data. However, due to the limited space, we do not 
include all diagrams. An element that has remarkable 
similarities with EGAL distribution is Barium (Ba) 
which has been measured in ppm. In order to predict 
this element over the whole of the region, we consider a 15 × 15 regular lattice on the region which has been 
shown in Figure 4. The Histogram and Q-Q plot of data 

given in Figures 5, show that the data are really non-
Gaussian. The skewness and kurtosis coefficients are 
1.7 and 0.51, respectively. Also, the small p-values of 
the Kolmogorov-Smirnov test and the Shapiro-Wilk test 
confirm that the data are not Gaussian. Figure 5 shows 
that the EGAL density function has good fitness to data, 
where the parameters are estimated by using the 
maximum likelihood estimation method. The scatter 
plot of data given in Figure 5 also shows the possibility 
of a harmonic trend in data.  

By using regression based on its coordinates, we see 
a trend in data in the form of ܽܤ(௦భ,ୱమ)~L(ݏଵ, sଶ), 
where L(ݏଵ, sଶ) = 5.6e + 14 (sଵି ଶ) + 5.5e + 15(sଶି ଵ.). 
The data are detrended. 

by ܽܤ∗ = ܽܤ − L൫ݏ, s൯. Consider ݍ = 1.3, ݇ =2, ଵܰ = 110 and ଶܰ = 115. Now, (8) is written in the 
modified form ࢅ = ߚ  ଶଶହࡶ +  and other equations  ,ࢠ
will be changed according to (13).  We consider an 
observation on lattice if its distance with lattice is less 
than 0.1 lattice width. Here it is about 440. By this 
assumption, we have 13 observed values on a lattice. 

Table 2. Real values, predictions and variances for two models Gaussian and EGAL for ݍ = 1. 
Real value EGAL Gaussian 

Prediction Variance Prediction Variance 
10.462 10.450 0.009 11.139 1.602 
16.187 16.112 0.008 16.007 3.165 
27.778 27.737 0.004 27.731 3.971 
33.995 33.984 0.009 33.967 4.511 
39.744 39.739 0.008 39.737 4.312 
39.824 39.911 0.009 39.921 4.561 
45.405 45.398 0.001 45.386 3.840 
51.196 51.195 0.011 51.304 2.123 
51.833 51.799 0.011 51.788 4.028 
PREMS 0.00278 0.05747 

 
Table 3. Real values, predictions and prediction error for two models Gaussian and EGAL for ݍ ≠ 1. 

Real value EGAL Gaussian 
Prediction Variance Prediction Variance 

23.512 21.189 2.530 20.517 1.602 
34.066 34.518 2.037 34.191 3.465 
54.683 56.515 1.965 56.349 3.971 
64.802 64.219 2.842 63.319 4.511 
62.923 64.721 2.089 64.413 4.312 
68.105 68.061 2.150 67.774 4.561 
61.452 60.728 2.170 60.672 3.840 
67.394 67.256 3.732 65.830 4.503 
74.030 73.128 2.157 71.867 4.128 
PREMS 1.543  2.670  

 
 

Table 4. PREMS for some values ݍ ≠ 1 by (12) 10 4 0.9 0.5 0.1  
PREMS 0.00014 0.02887 1.75417 4.82543 11.35119 
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