

journal homepage: http://jac.ut.ac.ir

4-total mean cordial labeling of special graphs

R. Ponraj^{*1}, S.Subbulakshmi^{†2} and S.Somasundaram^{‡3}

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.

²Research Scholar, Reg. No: 19124012092011, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
³Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti,

Tirunelveli-627012, Tamilnadu, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called ktotal mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, ..., k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. ARTICLE INFO

Article history: Research Paper Received 20, July 2020 Received in revised form 8, April 2021 Accepted 4, May 2021

 $Keyword: {\rm armed\ crown,\ dumbbell\ graph,\ dragon\ graph\ and\ shadow\ graph.}$

AMS subject Classification: 05C78.

1 Introduction

Graphs in this paper are finite, simple and undirected. Ponraj et al. [3] have been introduced the concept of k-total mean cordial labeling and invesigate the 4-total mean cordial labeling of certain graphs path, cycle,star, bistar, comb, crown, square of path, double

^{*}Corresponding author:R. Ponraj. Email: ponrajmaths@gmail.com

[†]ssubbulakshmis@gmail.com

[‡]somutvl@gmail.com

comb, double crown, double fan, subdivision of star, subdivision of comb, subdivision of ladder, helm, flower graph, gear graph and web graph in [3, 4, 5, 6, 7]. In this paper we investigate the 4-total mean cordial labeling behaviour of dumbbell graph, dragon graph, armed crown etc. Let x be any real number. Then $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary [2] and Gallian [1].

2 k-total mean cordial graph

Definition 2.1. Let G be a graph. Let $f : V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, ..., k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 Preliminary

Definition 3.1. The complement \overline{G} of a graph G also has V(G) as its vertex set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 3.2. The *Cartesian product* of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$.

Definition 3.3. Let $C_n^{(t)}$ denote the one point union of t cycles of length n.

Definition 3.4. The armed crown AC_n is obtained from the cycle $C_n : u_1u_2 \ldots u_nu_1$ with $V(AC_n) = V(C_n) \cup \{v_i, w_i : 1 \le i \le n\}$ and $E(AC_n) = E(C_n) \cup \{u_iv_i, v_iw_i : 1 \le i \le n\}$.

Definition 3.5. The graph obtained by joining two disjoint cycles $u_1 u_2 \ldots u_n u_1$ and $v_1 v_2 \ldots v_n v_1$ of same length with an edge u_1v_1 is called dumbbell graph Db_n .

Definition 3.6. The graph obtained by joining cycle $C_n : u_1 u_2 \dots u_n u_1$ and path $P_n : v_1 v_2 \dots v_n$ of same length with $u_1 = v_1$ is called dragon graph $C_n @P_n$.

Definition 3.7. The shadow graph $D_2(G)$ of a connected graph G is obtained by taking two copies of G, say G_1 and G_2 . Join each vertex u_1 in G_1 to the the neighbours of corresponding vertex u_2 in G_2 .

Definition 3.8. The graph $C_n \odot S_n$ is obtained from the cycle $C_n : u_1u_2 \ldots u_nu_1$ with the vertex set $V(C_n \odot S_n) = V(C_n) \cup \{v_i : 1 \le i \le n\}$ and $E(C_n \odot S_n) = E(C_n) \cup \{u_1v_i : 1 \le i \le n\}$.

Definition 3.9. The graph $C_n \otimes S_n$ is obtained from the cycle $C_n : u_1 u_2 \dots u_n u_1$ with the vertex set $V(C_n \otimes S_n) = V(C_n) \cup \{v, v_i : 1 \le i \le n\}$, where $u_1 = v_1$ and $E(C_n \otimes S_n) = E(C_n) \cup \{v v_i : 2 \le i \le n\}$.

4 Main results

Theorem 4.1. The book with rectangular pages $K_{1,n} \times K_2$ is 4-total mean cordial for all n.

Proof. Let
$$V(K_{1,n} \times K_2) = \{u, v, u_i, v_i : 1 \le i \le n\}$$
 and
 $E(K_{1,n} \times K_2) = \{uv, uu_i, vv_i, u_iv_i : 1 \le i \le n\}$

Clearly $|V(K_{1,n} \times K_2)| + |E(K_{1,n} \times K_2)| = 5n + 3$. Assign the labels 0 and 3 respectively to the vertices u and v.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in N$. Assign the label 0 to the r vertices u_1, u_2, \ldots, u_r . Then we assign the label 1 to the 2r vertices $u_{r+1}, u_{r+2}, \ldots, u_{3r}$. Next we assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$. Now we assign the label 0 to the 2r vertices v_1, v_2, \ldots, v_{2r} . Next we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$. Finally we assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \ge 1$. Assign the label to the vertices u_i $(1 \le i \le 4r)$ as in Case 1. We now assign the label 0 to the vertex u_{4r+1} . Now we assign the label 0 to the 2r - 1 vertices $v_1, v_2, \ldots, v_{2r-1}$. Next we assign the label 1 to the vertex v_{2r} . Now we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$. Then we assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$. Finally we assign the label 2 to the vertex v_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$. Let n = 4r + 2, $r \geq 1$. Label the vertices u_i, v_i $(1 \leq i \leq 4r + 1)$ as in Case 2. Now we assign the labels 0,2 to the vertices u_{4r+2}, v_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$. Let n = 4r + 3, $r \geq 1$. As in Case 3, assign the label the vertices u_i, v_i $(1 \leq i \leq 4r + 2)$. Finally we assign the labels 1,3 to the vertices u_{4r+3}, v_{4r+3} .

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 1

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n = 4r	5r + 1	5r	5r + 1	5r + 1
n = 4r + 1	5r+2	5r + 2	5r + 2	5r + 2
n = 4r + 2	5r + 4	5r + 3	5r + 3	5r + 3
n = 4r + 3	5r + 4	5r + 5	5r + 4	5r + 5

Table 1:

Case 5. n = 2, 3. A 4-total mean cordial labeling is given in Tabel 2

n	u	v	u_1	u_2	u_3	v_1	v_2	v_3
2	0	3	0	1		2	2	
3	0	3	0	1	2	0	1	3

Table 2:

Theorem 4.2. The armed crown AC_n is 4-total mean cordial for all $n \ge 3$.

Proof. Take the vertex set and edge set of AC_n as in definition 3. Clearly $|V(AC_n)| + |E(AC_n)| = 6n$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in N$. Assign the label 2 to the 2r vertices u_1, u_2, \ldots, u_{2r} . Then we assign the label 3 to the 2r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{4r}$. Next we assign the label 0 to the 2rvertices v_1, v_2, \ldots, v_{2r} . Now we assign the label 1 to the r vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$. Then we assign the label 2 to the vertex v_{3r+1} . Next we assign the label 3 to the r-1 vertices $v_{3r+2}, v_{3r+3}, \ldots, v_{4r}$. Assign the label 0 to the 2r vertices w_1, w_2, \ldots, w_{2r} . Then we assign the label 1 to the 2r vertices $w_{2r+1}, w_{2r+2}, \ldots, w_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$. Let n = 4r + 1, $r \geq 1$. Assign the label to the vertices $u_i, v_i, w_i \pmod{1 \leq i \leq 4r}$ as in Case 1. We now assign the labels 3,1,0 to the vertices $u_{4r+1}, v_{4r+1}, w_{4r+1}$.

Case 3. $n \equiv 2 \pmod{4}$. Let $n \equiv 4r + 2, r \geq 1$. Assign the label 3 to the 3r + 1 vertices $u_1, u_2, \ldots, u_{3r+1}$. Next we assign the label 2 to the r + 1 vertices $u_{3r+2}, u_{3r+3}, \ldots, u_{4r+2}$. Then we assign the label 0 to the 2r + 1 vertices $v_1, v_2, \ldots, v_{2r+1}$. Now we assign the label 1 to the 2r + 1 vertices $v_{2r+2}, v_{2r+3}, \ldots, v_{4r+2}$. Now we assign the label 0 to the 2r + 1 vertices $w_1, w_2, \ldots, w_{2r+1}$. Then we assign the label 1 to the 2r+1 vertices $w_{2r+2}, w_{2r+3}, \ldots, w_{4r+2}$.

Case 4. $n \equiv 3 \pmod{4}$. Let $n = 4r+3, r \ge 1$. As in Case 3, assign the label the vertices $u_i, v_i, w_i \ (1 \le i \le 4r+2)$.

Finally we assign the labels 3, 1, 0 to the vertices u_{4r+3} , v_{4r+3} , w_{4r+3} .

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n = 4r	6r	6r	6r	6r
n = 4r + 1	6r + 1	6r + 2	6r + 1	6r + 2
n = 4r + 2	6r + 3	6r + 3	6r + 3	6r + 3
n = 4r + 3	6r + 4	6r + 5	6r + 4	6r + 5

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 3

Table 3	3:
---------	----

Case 5. n = 2, 3.

A 4-total mean cordial labeling is given in Tabel 4

n	u_1	u_2	u_3	v_1	v_2	v_3	w_1	w_2	w_3
3	3	2	3	0	1	1	0	1	0

Theorem 4.3. The graph $P_n \odot \overline{K_3}$ is 4-total mean cordial for all n.

Proof. Let P_n be the path $u_1 u_2 \ldots u_n$. Let x_i, y_i, z_i be the pendent vertices adjacent with u_i where $1 \le i \le n$. Clearly $|V(P_n \odot \overline{K_3})| + |E(P_n \odot \overline{K_3})| = 8n - 1$.

Consider the vertices u_1, u_2, \ldots, u_n . Assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . Next we assign the label 1 to the *n* vertices x_1, x_2, \ldots, x_n . Assign the label 3 to the 2*n* vertices $y_1, y_2, \ldots, y_n, z_1, z_2, \ldots, z_n$.

Clearly $t_{mf}(0) = 2n - 1$, $t_{mf}(1) = 2n$, $t_{mf}(2) = 2n$ and $t_{mf}(3) = 2n$.

Corollary 4.3.1. The graph $C_n \odot \overline{K_3}$ is 4-total mean cordial for all $n \ge 3$.

Proof. Obviously the vertex labeling of Theorem 4 is also a 4-total mean cordial labeling of $C_n \odot \overline{K_3}$.

Theorem 4.4. The dumbbell graph Db_n is 4-total mean cordial for all $n \ge 3$.

Proof. Take the vertex set and edge set of dumbbell graph as in definition 3. Note that $|V(Db_n)| + |E(Db_n)| = 4n + 1$.

Case 1. *n* is odd. Consider the vertices u_1, u_2, \ldots, u_n . Assign the label 0 to the $\frac{n+1}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n+1}{2}}$.

Next we assign the label 1 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \ldots, u_n$. Now we consider the vertices v_1, v_2, \ldots, v_n . Next we assign the label 2 to the $\frac{n+1}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{n+1}{2}}$. Finally we assign the label 3 to the $\frac{n-1}{2}$ vertices $v_{\frac{n+3}{2}}, v_{\frac{n+5}{2}}, \ldots, v_n$.

Case 2. n is even.

Assign the label 1 to the $\frac{n-2}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n-2}{2}}$. Then we assign the label 0 to the $\frac{n+2}{2}$ vertices $u_{\frac{n}{2}}, u_{\frac{n+2}{2}}, \ldots, u_n$. Next we assign the label 2 to the $\frac{n-2}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{n-2}{2}}$. Now we assign the label 1 to the vertex $v_{\frac{n}{2}}$. Finally we assign the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}, \ldots, v_n$.

The Table 5 shows that this vertex labeling f is a 4-total mean cordial labeling

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n is odd	n	n+1	n	n
n is even	n+1	n	n	n

Tal	hl	e	5	•
Ta	U.	LC.	\mathbf{O}	٠

Theorem 4.5. The dragon graph $C_n @P_n$ is 4-total mean cordial for $n \ge 3$.

Proof. Let C_n be the cycle $u_1 u_2 \ldots u_n u_1$ and path $v_1 v_2 \ldots v_n$. Note that $|V(C_n@P_n)| + |E(C_n@P_n)| = 4n - 2$.

Case 1. n is odd.

Assign the label 1 to the vertex $u_1 = v_1$. Then we assign the label 0 to the $\frac{n+1}{2}$ vertices $u_2, u_3, \ldots, u_{\frac{n+3}{2}}$. Next we assign the label 1 to the $\frac{n-3}{2}$ vertices $u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}, \ldots, u_n$. Now we assign the label 2 to the $\frac{n+1}{2}$ vertices $v_2, v_3, \ldots, v_{\frac{n+1}{2}}$. Finally we assign the label 3 to the $\frac{n-1}{2}$ vertices $v_{\frac{n+3}{2}}, v_{\frac{n+5}{2}}, \ldots, v_n$.

Case 2. n is even.

Assign the label 2 to the vertex $u_1 = v_1$. Next we asign the label 0 to the $\frac{n}{2}$ vertices $u_2, u_3, \ldots, u_{\frac{n+2}{2}}$. Then we assign the label 1 to the $\frac{n-2}{2}$ vertices $u_{\frac{n+4}{2}}, u_{\frac{n+6}{2}}, \ldots, u_n$. Now we assign the label 2 to the $\frac{n-2}{2}$ vertices $v_2, v_3, \ldots, v_{\frac{n}{2}}$. Finally we assign the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}, \ldots, v_n$.

The Table 6 shows that this vertex labeling f is a 4-total mean cordial labeling \Box

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
$n ext{ is odd}$	n	n	n-1	n-1
n is even	n-1	n-1	n	n

Table 6:

Theorem 4.6. The graph G obtained by subdividing the pendent edges of the bistar $B_{n,n}$ is 4-total mean cordial for all n.

Proof. Let $V(G) = \{u, v, u_i, v_i, x_i, y_i : 1 \le i \le n\}$ and

 $E(G) = \{uv, ux_i, x_iu_i, vy_i, y_iv_i : 1 \le i \le n\}.$ Clearly |V(G)| + |E(G)| = 8n + 3.

Assign the labels 0,2 to the vertices u,v respectively. Now we assign the label 2 to the n vertices x_1, x_2, \ldots, x_n . Next we assign the label 0 to the n vertices u_1, u_2, \ldots, u_n . We now assign the label 3 to the n vertices y_1, y_2, \ldots, y_n . Finally we assign the label 0 to the n vertices v_1, v_2, \ldots, v_n .

Obviously $t_{mf}(0) = 2n + 1$, $t_{mf}(1) = 2n + 1$, $t_{mf}(2) = 2n + 1$ and $t_{mf}(3) = 2n$.

Theorem 4.7 The graph $B_{n,n} \odot K_1$ is 4-total mean cordial for all n.

Proof. Let $V(B_{n,n} \odot K_1) = \{u, v, x, y, u_i, v_i, x_i, y_i : 1 \le i \le n\}$ and $E(B_{n,n} \odot K_1) = \{uv, xu, yv, uu_i, u_ix_i, vv_i, v_iy_i : 1 \le i \le n\}.$ Clearly $|V(B_{n,n} \odot K_1)| + |E(B_{n,n} \odot K_1)| = 8n + 7.$

Assign the labels 0,2,2,3 to the vertices u, v, x, y respectively. Now we assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . Next we assign the label 1 to the *n* vertices x_1, x_2, \ldots, x_n . We now assign the label 2 to the *n* vertices x_1, x_2, \ldots, x_n . Finally we assign the label 3 to the *n* vertices y_1, y_2, \ldots, y_n .

Clearly $t_{mf}(0) = 2n + 1, t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 2n + 2.$

Theorem 4.8. The graph $C_n^{(2)}$ is 4-total mean cordial for all $n \ge 3$.

Proof. Let $u_1 u_2 \ldots u_n u_1$ and $v_1 v_2 \ldots v_n v_1$ be the two cycles and $u_1 = v_1$. Clearly $\left| V\left(C_n^{(2)}\right) \right| + \left| E\left(C_n^{(2)}\right) \right| = 4n - 1.$

Case 1. n is odd.

Consider the vertices u_1, u_2, \ldots, u_n . Assign the label 2 to the vertex $u_1 = v_1$. Now we assign label 0 to the $\frac{n+1}{2}$ vertices $u_2, u_3, \ldots, u_{\frac{n+3}{2}}$. Next we assign the label 1 to the $\frac{n-3}{2}$ vertices $u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}, \ldots, u_n$. Assign the label 1 to the vertex v_2 . Now we assign the label 2 to the $\frac{n-3}{2}$ vertices $v_3, v_4, \ldots, v_{\frac{n+1}{2}}$. Finally we assign the label 3 to the $\frac{n-1}{2}$ vertices $v_{\frac{n+3}{2}}, v_{\frac{n+5}{2}}, \ldots, v_n$.

Case 2. n is even.

Assign the label 2 to the vertex u_1 . Now we assign the label 0 to the $\frac{n}{2}$ vertices $u_2, u_3, \ldots, u_{\frac{n+2}{2}}$. Then we assign the label 1 to the $\frac{n-2}{2}$ vertices $u_{\frac{n+4}{2}}, u_{\frac{n+6}{2}}, \ldots, u_n$. Now we assign the label 0 to the vertex v_2 . We now assign the label 3 to the $\frac{n}{2}$ vertices $v_3, v_4, \ldots, v_{\frac{n+4}{2}}$. Finally we assign the label 2 to the $\frac{n-4}{2}$ vertices $v_{\frac{n+6}{2}}, \ldots, v_n$.

The Table 7 shows that this vertex labeling f is a 4-total mean cordial labeling

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n is odd	n	n-1	n	n
n is even	n	n	n-1	n

Table 7:

Theorem 4.9. The graph $C_n \odot S_n$ is 4-total mean cordial for all $n \ge 3$.

Proof. Take the vertex set and edge set of $C_n \odot S_n$ as in definition 3.8. Note that $|V(C_n \odot S_n)| + |E(C_n \odot S_n)| = 4n$.

Case 1. n is odd.

Consider the vertices u_1, u_2, \ldots, u_n . Assign the label 2 to the $\frac{n+1}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n+1}{2}}$. Next we assign the label 3 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \ldots, u_n$. Now we move the vertices v_1, v_2, \ldots, v_n . Next we assign the label 0 to the *n* vertices v_1, v_2, \ldots, v_n .

Case 2. n is even.

Assign the label 2 to the vertex u_1 . Now we assign the label 1 to the $\frac{n-2}{2}$ vertices $u_2, u_3, \ldots, u_{\frac{n}{2}}$. Then we assign the label 0 to the $\frac{n}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \ldots, u_n$. Next we assign the label 0 to the vertex v_1 . We now assign the label 2 to the $\frac{n-2}{2}$ vertices $v_2, v_3, \ldots, v_{\frac{n}{2}}$. Finally we assign the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}, \ldots, v_n$.

The Table 8 shows that this vertex labeling f is a 4-total mean cordial labeling \Box

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
$n ext{ is odd}$	n	n	n	n
n is even	n	n	n	n

Theorem 4.10. The graph $C_n \otimes S_n$ is 4-total mean cordial for all $n \geq 3$.

Proof. Take the vertex set and edge set of $C_n \otimes S_n$ as in definition 3. Clearly $|V(C_n \otimes S_n)| + |E(C_n \otimes S_n)| = 4n$.

Case 1. n is odd.

Assign the label 0 to the $\frac{n+1}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n+1}{2}}$. Next we assign the label 1 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \ldots, u_n$. Now we assign the label 3 to the vertex v. Finally we assign the label 2 to the n-1 vertices v_2, v_3, \ldots, v_n .

Case 2. *n* is even. Now we asign the label 2 to the $\frac{n-2}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n-2}{2}}$. Then we assign the label 3 to the $\frac{n}{2}$ vertices $u_{\frac{n}{2}}, u_{\frac{n+2}{2}}, \dots, u_{n-1}$. We now assign the label 2 to the vertex u_n . Now we assign the label 2 to the vertex v. Finally we assign the label 0 to the n-1 vertices v_2, v_3, \dots, v_n .

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 9 \Box

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
$n ext{ is odd}$	n	n	n	n
n is even	n	n	n	n

Table 9:

Theorem 4.11. The graph $D_2(P_n)$ is 4-total mean cordial for all $n \ge 3$.

Proof. Let $V(D_2(P_n)) = \{u_i, v_i : 1 \le i \le n\}$ and $E(D_2(P_n)) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_{i+1}, v_i u_{i+1} : 1 \le i \le n-1\}.$ Clearly $|V(D_2(P_n))| + |E(D_2(P_n))| = 6n - 4.$

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in N$. Assign the label 1 to the r vertices u_1, u_2, \ldots, u_r . Then we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Next we assign the label 3 to the 2r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{4r}$. Now we assign the label 0 to the 3r vertices v_1, v_2, \ldots, v_{3r} . We assign the label 2 to the r vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \ge 1$. Now assign the label 1 to the r vertices u_1, u_2, \ldots, u_r . Next we assign the label 2 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Then we assign the label 3 to the 2r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{4r}$. We assign the label 1 to the vertex u_{4r+1} . Now we assign the label 0 to the 3r + 1 vertices $v_1, v_2, \ldots, v_{3r+1}$. We assign the label 2 to the r - 1 vertices $v_{3r+2}, v_{3r+3}, \ldots, v_{4r}$. Now we assign the label 3 to the vertex v_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \ge 1$. Assign the label 3 to the r vertices u_1, u_2, \ldots, u_r . Next we assign the label 2 to the r + 1 vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r+1}$. Then we assign the label 3 to the 2r + 1 vertices $u_{2r+2}, u_{2r+3}, \ldots, u_{4r+2}$. Now we assign the label 0 to the 3r + 1 vertices $v_1, v_2, \ldots, v_{3r+1}$. Now we assign the label 2 to the r vertices $v_{3r+2}, v_{3r+3}, \ldots, v_{4r+1}$. Next we assign the label 0 to the vertex v_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r + 3, $r \ge 3$. Assign the label 3 to the r vertices u_1, u_2, \ldots, u_r . Next we assign the label 2 to the r + 2 vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r+2}$. Then we assign the label 3 to the 2r + 1 vertices $u_{2r+3}, u_{2r+4}, \ldots, u_{4r+3}$. Now we assign the label 0 to the 3r + 2 vertices $v_1, v_2, \ldots, v_{3r+2}$. Now we assign the label 2 to the r-1 vertices $v_{3r+3}, v_{3r+4}, \ldots, v_{4r+1}$. Next we assign the labels 3,0 to the vertices v_{4r+2}, v_{4r+3} .

$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
6r - 1	6r - 1	6r - 1	6r - 1
6r + 1	6r	6r + 1	6r
6r + 2	6r + 2	6r + 2	6r + 2
6r + 4	6r + 3	6r + 3	6r + 4
	$ t_{mf}(0) 6r - 1 6r + 1 6r + 2 6r + 4 $	$\begin{array}{c ccc} t_{mf}\left(0\right) & t_{mf}\left(1\right) \\ \hline 6r - 1 & 6r - 1 \\ \hline 6r + 1 & 6r \\ \hline 6r + 2 & 6r + 2 \\ \hline 6r + 4 & 6r + 3 \end{array}$	$\begin{array}{c cccc} t_{mf}\left(0\right) & t_{mf}\left(1\right) & t_{mf}\left(2\right) \\ \hline 6r-1 & 6r-1 & 6r-1 \\ \hline 6r+1 & 6r & 6r+1 \\ \hline 6r+2 & 6r+2 & 6r+2 \\ \hline 6r+4 & 6r+3 & 6r+3 \\ \end{array}$

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 10

	1 1	-1	0
' L'O I	hlo	- 11	11.
$\mathbf{T}a$	DIC	_ L	υ.

Case 5. n = 2, 3. A 4-total mean cordial labeling is given in Tabel 11

n	u_1	u_2	u_3	u_4	u_5	u_6	u_7	v_1	v_2	v_3	v_4	v_5	v_6	v_7
3	1	3	3					0	0	1				
7	1	1	2	2	3	3	3	0	0	0	0	0	3	0

Table 11:

References

- Gallian, J.A. A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) #Ds6.
- [2] Harary, F. Graph theory, Addision wesley, New Delhi (1969).
- [3] Ponraj, R., Subbulakshmi, S., Somasundaram, S., k-total mean cordial graphs, J.Math.Comput.Sci. 10(2020), No.5, 1697-1711.
- [4] Ponraj, R., Subbulakshmi, S., Somasundaram, S., 4-total mean cordial graphs derived from paths, *J.Appl and Pure Math.* Vol 2(2020),319-329.
- [5] Ponraj, R., Subbulakshmi, S., Somasundaram, S.Somasundaram, 4-total mean cordial labeling in subdivision graphs, *Journal of Algorithms and Computation* 52(2020),1-11.
- [6] Ponraj, R., Subbulakshmi, S., Somasundaram, S., Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci. 11(2021),467-476.
- [7] Ponraj, R., Subbulakshmi, S., Somasundaram, S., 4-Total Mean Cordial Labeling Of Union Of Graphs with Star and Bistar, *Turkish Journal of Computer and Mathematics Education* Vol.12 No.9(2021),951-956.