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Abstract  

The complex nature of disasters has required communities and governments to 

implement plans to reduce the disturbing effects of these disasters. With the 

breakdown and destruction of road infrastructure in times of disaster, the need to 

use an Unmanned Aerial Vehicle (UAV) fleet under the concept of humanitarian 

logistics has become increasingly essential. Therefore, we present a Multi-Visit 

Drone Routing Problem in this paper. The relief goods are delivered to disaster-

affected areas by using heterogeneous drones. We use a linear approximation 

function to calculate energy consumption. We formulated the proposed bi-objective 

Mixed Integer Linear Programming (MILP) model by a compromise programming 

method. To validate the proposed model and to show the model’s efficiency, we 

generate several test problems with the data extracted by experts. The 

computational results show the satisfactory performance of the model for the 

delivery of relief items to the damaged nodes by humanitarian drones in the shortest 

possible time. 
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Introduction 
 

According to the information presented by the Emergency Events Database (EM-DAT), as a 

Center for Research on the Epidemiology of Disasters (CRED), it has claimed by the end of the 

second decade of the 21st century that natural disasters have been the reason for 1232000 deaths 

on Earth. Natural disasters, in addition to high mortality rates, have caused enormous financial 

losses to nations and governments. Natural catastrophes cause millions of injuries and 

homelessness each year. In 2004, 2008, 2010, 242765, 235226, and 297140 people lost their 

lives due to natural disasters, respectively. This data represents the highest death rate due to 

natural disasters in the last twenty years. For example, the 2004 Indian Ocean earthquake and 

the 2010 Haiti earthquake are the deadliest natural disasters of the present century [1]. 

As mentioned earlier, in recent decades, the increase in the population of human societies 

and the extent of natural disasters has led to a significant increase in casualties and financial 

losses around the world (Tricoire et al. [2]). To reduce these losses, the need for attention to 

relief logistics management has increased. The crisis management cycle consists of 4 phases. It 

includes mitigation, preparedness, response, and recovery or rehabilitation, shown in Fig. 1. 

Immediate response in the post-disaster can have a significant impact on reducing costs and 

Casualties (Abounacer et al. [3]). A rapid and effective response is not possible except 

concerning the management of the flow of relief goods. Goods flow management is possible 

by applying humanitarian logistics rules Humanitarian logistics means storing, transporting, 
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and delivering relief items from the depot to the damaged nodes in the disaster (Rabta et al. 

[4]). 

 

 
Fig. 1. Crisis management cycle†. 

 

In the post-disaster situation, damage to health centers, disruption of the infrastructure of 

medical networks, and the possibility of water pollution create demand among the people in the 

disaster-affected areas for urgent medical supplies, water, and medicine (Kouadio et al. [5]). 

Therefore, the need to pay attention to the humanitarian logistics and quick delivery of relief 

goods is more important than ever. On the other hand, after crises, governments, and aid 

organizations face challenges such as the breakdown of roads and transportation infrastructure. 

For this reason, as well as due to the non-applicability of heavy vehicles to deliver light relief 

goods such as water and medicine, the use of a humanitarian unmanned aerial vehicle is 

recommended (Hirschinger [6]). 

Using UAVs or drones in commercial businesses became an experiment in the use of drones 

in disaster. Before using drones in disasters, large companies worldwide have used drones to 

serve customers and increase their satisfaction by saving time. In 2013, Amazon announced for 

the first time that it would soon use drones to deliver products to its customers in a short time. 

Subsequently, in 2017, Amazon announced that the company wants to use a drone delivery 

system under the Prime Air project (Sudbury and Glaser [7,8]). In the same year, Google, with 

the awareness of the need to pay attention to disaster logistics, provided a relief delivery system 

to send water and medicine to the damaged nodes under the Project Wing in disaster (Vincent 

[9]). Fig. 2 shows an image of the drones used in the Prime Air and Wing projects. 

 

 
Fig. 2. A) The drone used in Prime Air project‡, B) The drone used in Wing project§. 

                                                 
†
 https://www.bu.edu/emd/emergency-management/emergency-management-principles/  
‡
  https://www.theverge.com 
§
  https://www.wsj.com  
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According to Agatz et al. [10], several significant features of drones have made them more 

widely used today in disaster situations. These features include easy application and use, 

relatively high service speed, and no need for road infrastructure. These characteristics make 

the use of drones critical in the immediate aftermath of a disaster for the matters such as 

mapping, photography, and the delivery of relief goods to damaged nodes (Chowdhury et al. 

[11]). The use of drones in disaster situations reduces road traffic and speeds up the transfer, 

according to Mishra et al. [12]. 

In addition to the positive features, drones have limited battery power, limited flight range, 

and a limit on the amount of carried load. On average, each humanitarian drone, both multi-

rotor, and hybrid can hold about 2.5 kg of relief goods (Flamini et al. [13]). For this reason, and 

limited battery capacity, there is a need for facilities for recharging drones to serve disaster-

affected areas by drones, which can be used from existing or pre-built centers to recharge drones 

in the relief delivery network in the disaster response phase. 

To realize the high importance of establishing recharge stations, two similar networks for 

the delivery of relief goods in the disaster have been shown in Fig. 3. In each network, three 

humanitarian drones are used to deliver relief goods to the affected areas. In both networks, 

there are seven damaged nodes and three potential points for establishing a recharge station. 

Due to the limited flight range of the drone, which is due to the limited energy of the batteries, 

the drones need to recharge their batteries to create a long trip. Therefore, the routes of drones 

1, 2, and 3 without activating the recharge stations in the network (A) have been shown. As 

observed, the damaged nodes 3 and 4 are deprived of receiving relief goods by the drone. The 

lack of maximum coverage of damaged nodes in this network is due to the non-activation of 

recharge stations and little battery power. In the network (B), we can perceive that by activating 

the recharge stations, the demand of all the damaged nodes will be met by the drones. By 

comparing both networks, the importance of establishing a recharge station can be understood. 

 

 
Fig. 3. Relief delivery networks. 
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It is necessary to use mathematical programming models to locate the recharge stations, and 

to determine the visit sequence and route of the drones to meet the damaged nodes. 

In this research, we consider a drone routing problem to assist in a disaster. In this problem, 

drones with different characteristics in load carriage rate, battery energy, and speed have been 

used. Each of these drones starts its trip from the depot and must end this trip in the depot. We 

develop a mathematical model called Multi-Visit Drone Routing Problem (MVDRP). The 

multi-visit refers that each drone can meet more than one damaged node in each trip. In this 

model, the drones’ constraints, including battery capacity and the weight of portable relief 

goods, have been considered. In addition to these constraints, factors such as the arrival time of 

drones to reach the points, and the requirement to establish facilities for recharging the drones 

have been considered. It should be noted that the drones considered in this model are of the 

multi-rotor type with a load-carrying limitation. Given the lack of papers in this field, several 

test problems have been used to validate the model in the following text. 

The rest of this paper is organized as follows. Section 2 reviews relief routing problems and 

drone routing problems and states the contributions of our developed model. Section 3 describes 

the MVDRP. Section 4 states the assumptions and introduces the mathematical model. Section 

5 presents the solution method. Numerical examples and results of software outputs are 

presented in Section 6. Section 7 states the sensitivity analysis and its results. The conclusion 

and recommendations for future researches are declared in Section 8.  

 

Literature Review 
 

In this section, we review the literature of the existing papers under the titles of relief routing 

problems and drone routing problems. 

 

Relief Routing Problems 

 

The relief routing literature is generally divided into three main categories: 1. Relief 

distribution, 2. Problems related to evacuation of corpses and injured people, and 3. Problems 

associated with clearing debris-covered pathways due to disaster (Bayram and Yaman, and 

Oladi et al. [14,15]). The purpose of the relief distribution planning is to find a suitable solution 

to manage the flow of relief goods from depots to the damaged areas so that the time of 

operations and related costs are minimized (Camacho-Vallejo et al. and Tzeng et al. [16,17]). 

In some papers, such as Ozdamar [18], the problems of combining the evacuation and relief 

distribution with the air transport fleet have been presented. The clearing of roads and the re-

opening of roads to access warehouses, medical centers, and temporary hospitals is done with 

land vehicles that, Sahin et al. [19] and Berktas et al. [20] have addressed this issue in their 

papers. 

In addition to the classic problems of vehicle location and vehicle routing, many studies have 

used hybrid location-routing problems. For example, Ebrahimnejad et al. [21], have presented 

the possible disruptions in the road transport network and a mixed-integer programming model 

to choose the optimal location of suppliers and the routes of vehicles.  

Considering uncertainty is one of the critical points in developing a location-routing model. 

So that Caunhye et al. [22] introduced a two-stage location-routing problem for integrating the 

preparation, and response phase in uncertainty conditions. They made the decisions related to 

the warehouses’ location in the first stage. Decisions associated with the paths leading to the 

damaged nodes were taken in the second stage. Nedjati et al. [23] developed a location-routing 

problem under service time constraints and final destination uncertainty in post-earthquake 

conditions. Their model objective was to minimize the unmet damaged nodes, which used the 
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 -constraint method to solve their linear programming model. They presented a solution 

method by introducing a genetic algorithm. 

 

Drone routing problems 

 

Drone delivery problems focus on covering the demand of one or more nodes in a network 

using one or more homogeneous or heterogeneous drones (Macrina et al. [24]). In some 

researches, such as Choi and Schonfeld [25], they tried to design a homogeneous aerial fleet to 

serve the demand nodes with the same request. San et al. [26], introduced a delivery system 

based on heterogeneous drones, in which the UAVs can return to the depot to load new goods 

to meet the needs of various nodes. The need for reloading is due to the inherent constraints of 

drones, such as energy and load constraints. Dorling et al. [27] Tried to minimize the delivery 

costs and the final delivery time of the parcels according to a vehicle routing problem (VRP) 

by considering the time and financial constraints. In that research, a linear function has been 

used to estimate the amount of energy consumption, and they have solved their proposed 

problem using a Simulated Annealing (SA). Troudi et al. [28] designed an air freight delivery 

system using drones by presenting a multi-objective optimization model considering the time 

window. 

In recent years, papers have been published on drone delivery systems, taking into account 

environmental considerations about reducing carbon dioxide emissions. Figliozzi [29] has 

studied the effect of using drones on reducing carbon dioxide emissions and has compared the 

aerial fleet with the fleets of delivery of goods using diesel vehicles in terms of environmental 

impact. 

Researches have been done with more emphasis on energy models. For example, Liu et al. 

[30] developed a model to examine the energy consumption of multi-rotor drones and tested 

their studies in practical terms, and published the results. Zhang et al. [31] provided a valuable 

review of drone delivery models emphasizing energy consumption calculation. 

Drone systems are used for monitoring, object detection, motion tracking, and support 

operation (Chmaj and Selvaraj [32]). Garapati et al. [33] examined the timing of a surveillance 

operation by a drone fleet. In this research, game theory has been used to plan drones’ allocation 

to the desired points. Alfeo et al. [34] presented a model for planning search operations by 

drones without having information on target points and reported the optimal response by a meta-

heuristic solution method. Zema et al. [35] proposed a method for preparing architectural plans 

using the ability to photography drones. 

Most of the researches and models proposed for drones are for regular service and 

commercial use. The use of drone fleets for non-commercial purposes, especially in the post-

disaster situation, seems critical. For this reason, researches have been conducted in recent years 

on the use of capacitated drone in the aftermath of natural and unnatural crises. For example, 

Molina et al. [36] considered drones to plan the search and rescue operation for the missing. 

Scott and Scott [37] have introduced a mathematical model to optimize the visit of damaged 

nodes by drones in a healthcare system. Many papers emphasize the importance of product 

delivery at all stages of the crisis management cycle, including the response phase. Focusing 

on a routing problem, Huang et al. [38] emphasized the use of drones in crisis management. 

They point to the ability to remotely control drones without users’ physical presence at the 

demand point. 

Choi et al. [39] described and examined how humans used drones for civilian and 

humanitarian purposes from 2009 to 2015. Rabta et al. and Mosterman et al. [4,40] investigated 

the use of humanitarian drones in disaster and disruption situations to reduce the impact of 

damage to medical and health infrastructure. They presented two models to deliver light relief 

packages to affected areas to minimize costs and the final delivery time. Chowdhury [41] 
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developed a mixed-integer programming model to inspect disaster-affected points and used two 

heuristic algorithms to solve their problem. Rottondi et al. [42], in a new study, they have 

introduced a multi-objective programming model for multitasking missions and reported results 

for their large-scale problem by presenting two heuristic solution methods. 

According to the literature review, several papers in the field of drone routing problems were 

selected due to their similarity to the present study and are classified and presented in Table 1 

based on significant features. 

 
Table 1. Summary of researches on drone routing problem. 

Drone 

energy 

Drone 

recharge 

Multiple-

visit 

Multiple/single 

drone 
Objective function Researches 

yes no yes multiple total time and operation costs Dorling et al. (2017) 

yes no yes multiple completion time 

Yadav and 

Narasimhamurthy [43], 

(2017) 

no yes yes multiple operation costs 
Choi and Schonfeld, 

(2018) 

yes yes yes multiple energy costs Chowdhury, (2020) 

no no no Single operations costs Agatz et al. (2018) 

yes no yes multiple distance and number of drones Troudi et al. (2018) 

no no yes multiple ensure safety and efficiency Liu [44], (2019) 

yes no yes multiple weightdelivery time 
Poikonen and Golden 

[45], (2020) 

yes yes yes multiple delivery time and total costs This study 

 

By studying various researches, it was found that no research has been done on the relief 

delivery by drone considering all the following features. 

These features, which in a way indicate research gaps, are: 

• Use of heterogeneous drones 

• Use of batteries with various capacities to supply drone power 

• Considering the service time to the damaged nodes and the recharge time 

• Establishing recharge stations 

• Optimization of drone flight speed 

• Calculation of the energy and approximation of the energy consumption 

We observed a model with a number of the above features in the Chowdhury [41]. This paper 

is produced outside the delivery literature to inspect the damaged areas after the disaster. We 

used a linear approximation function is introduced by Dorling et al. [27] for calculating the 

energy consumption of a multi-rotor drone based on the drone’s weight. The main contributions 

of this paper are as follows: 

• In our model, the drone battery energy level, drone load weight, and drone arrival time of 

reaching any point are considered decision variables. 

• In this model, unlike most papers where the load of the drone used consists of only one 

package, we considered drones with the ability to carry several relief packages to reach the 

affected areas. This means that each drone can meet more than one demand point, which 

indicates that the model is Multi-Visit one. 

• Our model provides two significant possibilities for drone users in disaster situations, as 

follows: 

 A) Using various speed levels for flying drones  
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B) Considering the batteries with various drones’ capacities. 

Given that limited researches have been done in the field of relief logistics considering 

integrated decisions. In this paper, we presented a novel model for drone delivery by 

considering the basic features of the vehicle routing problem (such as visit each point only once, 

the need not to form the sub-tour, etc.). 

 

Problem Description 
 

The objective of this paper is to develop a mixed-integer linear programming model for a 

location-routing problem called MVDRP. The multi-rotor drones are used in delivery 

operations after a natural disaster under the relief logistics literature. The transportation network 

studied in this paper includes the mentioned components: 1) a depot where the drones are 

located and storage of relief goods, 2) damaged nodes affected by natural disasters, and 3) drone 

recharge stations. In this model, by activating some potential recharge stations located in the 

available or prefabricated locations, it is possible to determine the drones’ route from the depot 

to the damaged points and then return the drones from the damaged points or recharge station 

to the depot point. The major decisions to be made in the mathematical model are: 1) first to 

establish the recharge stations 2) to make decisions about the determination of the drones’ route. 

Next, 3) the decision about the weight of the drone to be assigned to the injured people by the 

drone at each damaged node, 4) decision about the drone's battery energy level, 5) arrival time 

for the drone to reach each point, and 6) decision about the speed level and type of the selected 

battery are made. 

In the post-disaster immediate response, government and non-governmental aid 

organizations and local agents send a team of assessment experts to the affected arias shortly 

after the disaster. They provide valuable information about the extent and level of the 

catastrophe and notify relief centers, by receiving the information about the demand for various 

relief goods in the affected areas. At this stage, to meet the demand of the affected areas, light 

relief items such as medicine and water, are sent by drones from the depot to the damaged 

nodes. The humanitarian drones in our model are heterogeneous multi-rotor drones so that the 

battery of each drone has its unique energy capacity. The drones can also fly at different speed 

levels. In the proposed mathematical model, details such as the amount of energy consumption 

of drones and the time required for each drone to serve the points of demand and recharging 

have been considered. Before deciding on the drone's trajectory, our model first established 

points among potential recharge stations. It should be noted that each drone must return to the 

depot after delivering relief packages to one or more damaged points without creating a sub-

tour. In determining the delivery quantities, it is necessary to pay attention to capacity and 

energy constraints. All relief goods delivered by a drone cannot exceed the capacity of the 

drone. 

 

Mathematical Programming Model 
 

A new mathematical model has been presented in this paper to formulate the MVDRP. This 

model has been developed for the delivery of post-disaster relief items by a fleet of 

heterogeneous drones. The energy source of these drones is a battery that can be recharged in 

the drones’ route. This represents a well-integrated MILP model introduced to minimize total 

delivery time. By studying the literature in the previous section, it was found that despite the 

rich research in commercial goods delivery systems, we face a severe shortage of papers on 

drone delivery problems in the disaster. 

Before formulating the model, in this section, we state the following assumptions that have 

been considered in the problem: 
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1. Only one depot has been intended for the drone delivery network. 

2. Drones leave depots and recharge stations with a full charge. 

3. Each damaged point is serviced with only one drone. 

4. It is not possible to reuse the drones after returning to the depot. 

5. Each drone can deliver relief items to more than one damaged point. 

6. The maximum number of damaged nodes is equal to the number of drones in the depot. 

7. For each drone, there is exactly one direct route from the depot to a recharge station and a 

return route from a recharge station to the depot. 

8. To create a route, a drone cannot travel directly from one recharge station to another recharge 

station. 

In the following tables, sets, indices, parameters, and variables used in mathematical 

modeling are defined in the form of tables. Then a MILP mathematical model is presented for 

the proposed problem. 

 
Table 2. Sets and indices. 

Symbol Description 

DV  damaged nodes indexed by i  and j  

RV
 

potential drone recharging stations indexed by i  and j  

oV
 

Depot 

V  
all nodes including: depot, damaged nodes, and potential drone recharging stations: 

o R DV V V  

K  drones indexed by k  

S  drone speed levels indexed by s  

B  drone battery levels indexed by b  

 
Table 3. Parameters. 

Symbol Description 

ik
 

drone k K  service time at node Di V / recharge time at node Ri V  

  
average time for UAV to take off 

bwei
 

weight of battery type b B  in kg 

bcap
 

drone energy capacity with battery type b B  in J 

M  A great number 

,i DD i V  amount of customer demand in demand node 

F  cost of using a drone 

,r DCR r V  cost of establishing a recharge station 

, ,ijd i j V
 time distance between node i  and j  

  energy consumed per kg in /Watt kg  

  energy required to keep the multi-rotor drone in the air in /J s  

ksV
 

average drone k K  speed under speed level s S  
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Table 4. Decision variables. 

Symbol Description 

j
U

 
1: if the recharge station Rj V

is established 

0: o.w 

ijkX
 

1: if the path between i  and j V  traversed by drone k K  

0: o.w 

ijkW
 the payload weight carried by drone k K  in the path between i  and j V  

kE
 

1: if drone k K  is selected 

0: o.w 

ijksZ
 

1: if drone k K  travels through the path i  to j V  under s S  speed level 

0: o.w 

bkQ
 

1: if drone k K  with a battery b B  is selected 

0: o.w 

jkY
 drone k K

  battery energy level at arrival time on node i V  

ikT
 

arrival time of drone k K  at node i V  

ilkT
 arrival time of drone k K  at node o Rl V V

 after leaving node i V  

ijkm
 total weight of drone 

k K
 travels from node i  to node j  

( )ijkp m
 linear function of energy consumption in term of drone k K

  weight 

 

According to the assumptions, indices, parameters, and variables defined, the mathematical 

model of optimization of the two proposed objectives for the design of the humanitarian 

distribution network of relief goods is presented as follows: 

 

ⅰ  1

R

k k k ij ijk r r

k i j k r V

Minz F E c d X CR U


    
 

ⅱ  2 jk

j VD k

Minz T


 
 

                     Subject to: 

(1) Dj V 
 

1ijk

k i V

X


 
 

(2) ,j V k  
 

, ,

ijk jik

i V i j i V i j

X X
   

 
 

(3) Rj V 
 .ijk j

i V k

X M U



 

(4) Ri V 
 

.ijk i

j V k

X M U



 

(5) , ,i j V k   
 ijks ijk

s

Z X
 

(6) , , R Dj V k i V V     
 

(1 ) (1 )
ijks

jk ik ik ij ijk k

s ks

Z
T T d M X M E

V
        

 

(7) , , Oj V k i V    
 

(1 ) (1 )
ijks

jk ik ij ijk k

s ks

Z
T d M X M E

V
       
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(8) ,Rj V k  
 

1ijk

i V

X



 

(9) ,oi V k  
 

ijk k

j V

X E



 

(10) , ,i j V k   
 ijk kX E

 

(11) , ,i j V k   
 ijk b bk ijk

b

m wei Q w 
 

(12) k  1bk

b

Q 
 

(13) , ,Di V j V k    
 

( ) (1 )
ijks

jk ik ijk ij ijk

s ks

Z
Y Y m d M X

V
  

 
       

 


 

(14) , ,i V j V k    
 

( ) (1 )
ijks

ik ij ijk ijk

s ks

Z
Y d m M X

V
  

 
      
 


 

(15) ,o Ri V V k  
 

.ik b bk

b

Y cap Q
 

(16) , ,i j V k  
 

.ijk ijkw M X
 

(17) ,Dj V k  
 

(i j) (i j) (i j)

ijk jik j ijk

i V i V i V

w w D X
     

   
 

(18) ,Rj V k  
 

(i j) (i j)

ijk jik

i V i V

w w
   

 
 

(19) , Ok j V 
 

0
D

ijk

i V

w



 

(20) , , /i jO Rk i j V V    
 

1ijkX 
 

(21) , Ok i V  
 

0
o

ijk

j V

X



 

(22) , Rk i V  
 

0
R

ijk

j V

X



 

 

The first objective function (ⅰ) attempts to minimize the operation costs such as the cost of 

using drones, the cost of transporting drones over the network, and the cost of using recharge 

stations. The second objective function (ⅱ) has been introduced to minimize the delivery time 

of service operations to the damaged points. 

Constraint (1) states that each damaged node is serviced by only one drone. Constraint (2) 

is known as a flow constraint, which ensures that at each node of a complete directed path, an 

incoming arc of a drone must be followed by an outgoing arc of that drone. Constraints (3) and 

(4) control the entry and exit of each drone in the recharge stations and the need of establishing 

a recharge station. Constraint (5) has been considered to determine the speed level of each drone 

in the considered path. Constraints (6) and (7) determine the arrival time for each drone to reach 

the points along the route. Constraint (8) ensures that each drone meets a recharge station once. 
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Constraint (9) states that each drone has exactly one exit route from the depot. Constraint (10) 

controls that a path is established between two points only when a drone is assigned to it. 

Constraint (11) calculates the total weight of the drone, including battery and load, in each path. 

Constraint (12) ensures that each drone uses only one type of battery. Constraint (13) calculates 

the energy level of the drone k∈K when it reaches each node. Constraint (14) ensures that the 

drone k has enough energy to reach the next point. Constraint (15) states that the drone energy 

is full before leaving the depot, and the recharge station. Constraint (16) States that the 

movement of load by drone in an arc is possible if the arc is active. Constraint (17) examine 

that if the drone moves from i to j, the difference between the load (at arrival and departure) is 

equal to the demand at location i. Constraint (18) ensures that the weight of the drone load when 

leaving the recharge station does not change from the moment the drone enters that station. 

Constraint (19) states that each drone returns to the depot without load. Constraint (20) is 

defined to create logical solutions. It states that each drone is allowed to travel from the depot 

to a recharge station only once and vice versa. Constraints (21) and (22) ensure that each drone 

is not allowed to travel from the depot to depot and from the recharge station to another recharge 

station. 

To linearize our model, we define a new variable as follows: 

 

, , ,i j V k s     
.ijks ijk ijksMZ m Z

 

 

 In this case, nonlinear constraints (14) and (15) are replaced by linear constraints (23) and 

(24): 

 

(23) , ,Di V j V k    
 

. (1 )
ij ijks

jk ik ijks ijk ij ijk

s sks ks

d Z
y y MZ m d M X

V V
    

 
       

 
 

 

(24) , ,Di V j V k    
 (1 )

ij ij

ik ijks ijk ijks ijk

s sks ks

d d
y MZ m Z M X

V V
    
   

        
   
 

 
 

Also, constraints (25) to (28) are additional constraints for linearization: 

 

(25) , , ,i j V k s     .ijks ijksMZ M Z
 

(26) , , ,i j V k s     ijks ijkMZ m
 

(27) , , ,i j V k s     
(1 )ijks ijk ijksMZ m M Z  

 

(28) , , ,i j V k s     
0ijksMZ 

 

 

Solution Method 
 

The model presented in this paper is a bi-objective model that has been solved using one of the 

conventional methods of solving multi-objective models. In this research, a compromise 

programming approach has been used to solve this problem. In some papers, this method is 

referred to as the weighted sum method. The weighted sum method puts the available objective 

functions in the range [0, 1], which is possible by normalizing the functions. 
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To solve the model, we first scale the two available objective functions. The formed 

objective function consists of two criteria. To normalize the obtained objective function, we 

proceed according to the following equation: 

 

(29) 1 1 2 2
1 2

1 1 2 2

z z z z
MinZ w w

z z z z

 

   

    
    

      
 

Where, 1w  and 2w  are the weights intended for the objectives 1z  and 2z . Experts have been 

consulted to obtain the mentioned weights, and we set 1w  equal to 0.2 and 2w  equal to 0.8. 

The presented term, z
 represents the worst value of the objective function and z

 denotes 

the best value of the objective function for the criterion. 

 

Numerical examples and results 
 

To solve the MVDRP problem in this paper, we needed to solve the MILP model using the 

exact solution method of GAMS (General Algebraic Modeling System) software. To generate 

several test problems to solve the proposed mathematical model, we generated the value of 

parameters based on the uniform distribution function in logical intervals. Table 5 shows the 

range of generated data. 

 
Table 5. Generated data. 

Symbol Description Value 

ik
 

drone k service time / recharge time at node 

D Ri V V  
Uniform (300, 360) 

  average time for UAV to take off Uniform (100, 300) 

bwei
 weight of battery type b in kg    Uniform (1.5, 2.5) 

bcap
 drone energy capacity with battery type b in joule Uniform (300000, 400000) 

M  A great number 100000 

,i DD i V
 amount of demand in damaged nodes Uniform (2, 4) 

kF
 cost of using a drone Uniform (100000, 200000) 

,r DCR r V
 cost of establishing a recharge station Uniform (10000, 15000) 

, ,ijd i j V
 

time distance between node i and j Uniform (8000, 13000) 

  energy consumed per kg Uniform (40, 50) 

  energy required to keep the rotor-drone in the air Uniform (20, 30) 

ksV
 

average drone k speed under speed level s Uniform (100,300) 

 

We solved the existing model according to the generated data and using GAMS software 

version 24.1.2 on a personal computer with a 2.8 GHz CPU and 16 GB of RAM. To validate 

the model and to receive logical solutions from the software, we generated seven numerical 

examples in various problem sizes. According to the model’s assumptions, the number of 

depots in all generated instances is considered one. The information of the generated test 

problems is shown in Table 6. 
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Table 6. Generated test problems. 

B  S  K  DV
 RV

 oV  V  
Test problem 

number 

1 2 2 2 1 1 4 1 

3 3 3 3 2 1 6 2 

3 3 3 4 2 1 7 3 

3 3 3 5 2 1 8 4 

3 3 3 6 2 1 9 5 

3 3 3 7 2 1 10 6 

3 4 4 7 3 1 11 7 

 

We solved the existing model using the generated data in GAMS software, the general results 

of which can be seen in Table 7. GAMS software provided feasible solutions for the test 

problems 1 to 5 in the run time shown. However, for test problems 5 and 6, the software could 

not find a feasible solution during 4 hours of code execution, which indicates the need to find 

an efficient solution method to solve the problem on a large scale. 

 
Table 7. Result of solving the test problems 1. 

 Solution with GAMS  

Test 

problem 

number 

Objective function value CPU time (s) 

1 2552.3 0.22 

2 4121.7 1.42 

3 6334.5 20.4 

4 9591.4 106 

5 12148.7 750.5 

6 - 14400 

7 - 14400 

 

We now examine the output of the problem in test problems 3 and 5. According to Fig. 4, in 

test problem 3, among the existing drones k1, k2, and k3, all drones were activated for service, 

and of the two potential recharge stations 2 and 3, both were recharged. From b1, b2, b3 

batteries with various energy capacities, the b3 battery has been selected for all three drones. 

The visit sequence of the damaged nodes by heterogeneous drones is evident in the Fig. 4. Table 

8 has presented the other important software output that is the arrival time for each drone to 

reach the nodes. 

 
Table 8. Test problem 3 drones’ routes information. 

   Node    
Drone arrival 

time 

Depot 7 6 5 4 3 2  

3617  2524  865.8 1730  
K1 arrival 

time(s) 

1733   912.1    
K2 arrival 

time(s) 

 1816.4 838.2      
K3 arrival 

time(s) 
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Fig. 4. Test problem 3 network. 

 

As shown in Fig. 5, in test problem 5, drones k1, k2 and, k3 have been activated for service. 

Among the two potential recharge stations 2 and 3, both recharge stations have been established. 

Among batteries b1, b2, b3 with various energy capacities, b3 battery has been activated for k1 

and k2 drones and b2 battery for k3 drone. The visit sequence of the nodes damaged by 

heterogeneous drones is evident in Fig. 5. Table 9 presents the other important software output 

that is the arrival time for each drone to reach the nodes. 

 

 
Fig. 5. Test problem 5 network. 

 

 

 



Advances in Industrial Engineering, Winter 2020, 54(1): 53-73 

 67 

 

 
Table 9. Test problem 5 drones’ routes information. 

     node    
Drone arrival 

time 

Depot 9 8 7 6 5 4 3 2  

3663.57 868.6    2672.5  1750  K1 arrival time(s) 

3664.3  2776.5  902    1797.3 K2 arrival time(s) 

 

3591.89 
  2622.6   894.2  1723.8 K3 arrival time(s) 

 

As previously discussed in the model output, the use of recharge stations and the activation 

of sufficient drones in operation, save time. To find the effect of having a recharge station, we 

can look at the process from the point of view of an observer at the depot point. If there were 

no recharge stations, more drones would probably have been used to service the nodes, and the 

weight delivery time would have increased dramatically. However, we face a limited number 

of drones and time in natural conditions. We can prove the presented claim by looking at Fig. 

6, which is taken from test problem 5. It is observed that by establishing sufficient recharge 

stations, while sending humanitarian drones and covering all damaged nodes simultaneously, 

drones 2, 1 and, 3 returned to the depot almost simultaneously and with time intervals in a 

relatively short time after completing the operation. 

 

 
Fig. 6. Depot, from the point of view of an observer. 

 

Sensitivity analysis 
 

To analyze the problem and find the effect of changing the parameters’ values on the model’s 

output, we applied changes to the amount of data in test problem 4. The results of this analysis 

can be observed in Tables 11 and 12. 

 
Table 10. The sensitivity of the objective function to the drone speed. 

40 35 30 25 20 Drone speed 

6141 8180 8586 9212 10110 Objective function value 

 
Table 11. The sensitivity of the objective function to (α). 

60 50 40 30 20 (α) Energy consumed per kg 

10892 10321 9591 8561 7044 Objective function value 

 

According to Fig. 7 and sensitivity analysis, the higher the speed level of the humanitarian 

drone, the lower the value of the objective function. This means that increasing the speed of 

drones and using newer multi-rotor drones providing a higher level of speed to the users can 

save time and decrease costs. 
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Fig. 7. Diagram of the sensitivity of the objective function to the drone speed. 

 

According to Fig. 8 and the sensitivity analysis performed, the higher the α value, which 

confirms the drone energy consumption per kilogram, the higher the value of the objective 

function. This means that increasing the weight delivery time weight delivery time and 

operation costs are directly related to expanding the α value. 

 

 
Fig. 8. Diagram of the sensitivity of the objective function to (α). 

 

In this section, we intend to examine the performance of the MVDRP model using test 

problem 4 and making changes to influential parameters value. For this purpose, we first 

introduce the key parameters and indices of the problem. The four critical parameters of the 

model for sensitivity analysis include: 1) V , representing the number of damaged points and 

somehow determining the problem size, 2) bcap  representing the energy capacity of the drone 

battery, 3) ijd  determines the time interval between damaged nodes, and 3) kF  determines the 

cost of using a drone in a disaster logistics network. 

To test the performance of the mathematical model, and to find the sensitivity of the 

objective functions to the key parameters introduced, we used the generated test problems to 

produce many scenarios. For each of the key parameters, we set 2 specific high and low values, 

which can be observed in Table 12. There are 16 scenarios are resulting from 4 key parameters. 

To get the value of the first objective function, which is a cost function, the second objective 

function, which is a time function, and the total objective function, which is the result of a single 

objective mathematical model, we needed to run the software 48 times (3*16) to execute the 
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problem code. A summary of the generated scenarios with the parameters’ values and objective 

functions has been reported in Table 13. 

 
Table 12. The value of key parameters. 

Parameters and indices Name Level Value 

Number of damaged nodes V  2 3, 5 

Drone battery energy capacity bcap  2 300000, 500000 

Time distance between nodes ijd
 

2 
U (8000, 12000) 

U (13000, 17000) 

Cost of using a drone kF  2 100000, 200000 

 
Table 13. The value objective functions for 16 scenarios. 

Scenario V  bcap
 ijd

 kF
 

z1 

(total cost) 

z2 

(delivery 

time) 

Z 

 

1 3 300000 u(8000,12000) 100000 608504.1 2842.7 3451.2 

2 3 300000 u(8000,12000) 200000 908504.1 2842.7 3751.2 

3 3 300000 u(13000,17000) 100000 766985.8 3473.9 4240.8 

4 3 300000 u(13000,17000) 200000 1066985.8 3473.9 4540.8 

5 3 500000 u(8000,12000) 100000 608504.1 2842.7 3451.2 

6 3 500000 u(8000,12000) 200000 908504.1 2842.7 3751.2 

7 3 500000 u(13000,17000) 100000 766985.8 3473.9 4240.8 

8 3 500000 u(13000,17000) 200000 1066985.8 3473.9 4540.8 

9 5 300000 u(8000,12000) 100000 838361.9 8024.715 8863 

10 5 300000 u(8000,12000) 200000 1126551.5 8055.9 9182.5 

11 5 300000 u(13000,17000) 100000 1110781.5 9787.4 10898.2 

12 5 300000 u(13000,17000) 200000 1410781.5 9787.4 11198.2 

13 5 500000 u(8000,12000) 100000 831142.3 7979.9 8811.1 

14 5 500000 u(8000,12000) 200000 1131142.2 7979.9 9111 

15 5 500000 u(13000,17000) 100000 1103561.9 9742.6 10846.1 

16 5 500000 u(13000,17000) 200000 1403561.9 9742.57 11146.1 

 

This sensitivity analysis, with the help of generating multiple scenarios and simultaneous 

change of several parameters’ value together, is much more efficient than conventional methods 

of sensitivity analysis. In the following, according to Table 13, we will analyze the effect of 

parameters’ value changes on the model output. 

 

• Damaged points 

It is clear that increasing the number of damaged nodes increases the problem’s size and 

leads to an increase in the amount of cost and weight delivery time of the operation. But as 

shown in Table 13, when the rise in the number of demand nodes is accompanied by the rise in 

the distance between points and the cost of using the drone and reducing the battery capacity of 

the drone, a significant increase is observed in the financial and time costs for delivering relief 

goods in disaster. For example, by comparing two scenarios 2 and 9 where the value of ijd
,
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bcap
 and kF

 are unchanged in both, by increasing the number of nodes from 3 to 5, the total 

objective function value increases by 155.3%. As you can see, in scenario 9, by selecting 

another level of all parameter’s value, the total objective value increases by 224.5% compared 

to scenario 1. This argument confirms the claim. 

 

• Battery capacity 

Increasing the capacity of the selected battery for drones will facilitate service operations 

and reduce costs. However, in some scenarios, with a fixed number of damaged nodes and the 

value of other parameters, despite the increase in the selected battery capacity, there is no 

significant change in the value of the total objective function value. Comparing the two 

scenarios 1 and 5 in Table 13, in which all parameters’ values are fixed except the bcap  value 

changes from 300,000 to 500,000, the objective function value remains unchanged. 

 

• Distance between nodes 

Increasing the distance between damaged points prolongs the weight delivery time of the 

operation. However, in the scenarios discussed in Table 13, increasing the number of demand 

nodes has a more significant effect than increasing the range of points’ distance on the value of 

the total objective function. For example, by comparing two scenarios 1 and 9 in which the size 

of the problem increases from 3 to 5 by changing the value of V  , the total objective function 

value increases 156.8% While by comparing two scenarios 1 and 3, only the range of distances 

increases, the total objective function value increases 22.8%. Of course, by an excessive growth 

in the range of distances between nodes, the problem may provide a feasible solution. By an 

excessive increase in the number of damaged nodes, we should make the operation possible by 

increasing the number of available drones.  

 

• The cost of using a drone 
The higher the cost of using the drone, the higher the value of our objective function, and 

vice versa. But the cost of using a drone, when combined with changes in other parameters, has 

a more significant effect on the output of the model. Considering the greater weight for the cost 

objective function, we will see a more significant impact of changes in cost-related parameters 

on the value of the final objective function. 

 

Conclusions and future researches 
 

In this research, we developed a new MILP model for solving an aerial relief delivery problem 

called Multi-Visit Drone Routing Problem (MVDRP). This model was developed to deliver 

light relief goods such as water and medicine in the disaster response phase by a heterogeneous 

drone fleet. The energy source for the drones is the battery, which made the drones to be 

recharged during the trip. The aim of the presented multi-objective model is to minimize service 

delivery time and minimizing operation costs. The major contributions of the model were to 

describe the energy level of the drones, the arrival time of the drones to damaged points, and 

the weight of the drones at the damaged nodes as decision variables. The multi-visit nature of 

each drone was one of the important points considered in the model. Providing two significant 

possibilities for using different speed levels for flying, and considering batteries with various 

drones’ capacities were presented in this paper. Besides, we used a linear approximation 

function to calculate the energy consumption of the multi-rotor drone based on its weight. The 

model intended to locate recharge stations at the candidate points and determine the sequence 

of visit damaged nodes by drones, and servicing them in the shortest possible time with a cost-

saving approach. Furthermore, the energy constraints, drone flight range, and load limitation 
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have been considered. The time of taking off the drones and the time of their service to the 

damaged nodes were considered. To show the efficiency of the model, we generated several 

test problems under the extracted value of parameters from the point of view of experts. We 

solved these test problems under the exact solution method using GAMS software According 

to the sensitivity analysis performed, the model is much more sensitive to increasing the number 

of damaged nodes, and the distance between them. This is due to the essential consideration of 

the time factor throughout the modeling process. Providing a dynamic model for such a problem 

in a disaster situation where information changes dynamically over time can be an interesting 

proposition for future research. Besides, the application of inventory control issues and 

considering uncertainties in the demands, and providing appropriate approaches to dealing with 

uncertainties such as fuzzy, robust programming, etc., can be other recommendations for future 

research. Also, we can pay attention to the multitasking feature of the air delivery operations 

by humanitarian drones in the new problems. 
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