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Abstract  

Nowadays, the majority of international trade in goods is carried by sea, and 

especially by ships deployed in the industrial and tramp segments. This paper 

addresses routing the tramp ships and determining the schedules including the 

arrival times to the ports, berthing times at the ports, and the departure times at an 

operational planning level. At the operational planning level, the weather can be 

almost exactly forecasted, however in some routes some uncertainties may remain. 

In this paper, the voyaging times between some of the ports are considered to be 

uncertain. To that end, a two-stage stochastic mathematical model is proposed. In 

order to find near to optimum solutions in a limited amount of time, a new hybrid 

heuristic algorithm is proposed to solve large-size examples. Moreover, a case 

study is defined and tested with the presented model. The computational results 

show that this mathematical model is promising and can represent acceptable 

solutions. Specifically, the value of the stochastic solution, VSS, is computed, and 

the results show that using two-stage stochastic with recourse improves 1.1% the 

objective value. 
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Introduction 
 

Team The  Ship Routing Problem (SRP) varies with  the carrier’s  operation  type, and is divided 

into three categories known as 1) Liner shipping, 2) Industrial shipping, and 3) Tramp shipping. 

The liner shipping is a tactical problem, where the routings, as well as the schedules, are planned 

some months before transshipments. In Industrial shipping the berthing sequences and 

schedules are not tactically planned, but yet there are fixed berthing ports. Tramp shipping 

belongs to the operational planning level, where it acts similar to taxis which follow any 

possible shipments. This paper addresses the tram shipping under weather uncertainties. It is 

assumed that in some routes, the weather forecasts are not exact, and the voyaging times are 

not fixed values.  

 A cargo is considered as the set of containers transported to the specified destination.  

 Routing is the sequencing of ports for ships transporting the cargoes. 

 Scheduling is assigning the times to each ship arriving, berthing, and departing the ports. 

 A voyage is considered as one section of a specific route between two ports. 
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Previous Works 

 

The Tramp Ship Routing Problem (TSRP), has many similarities with the open vehicle routing 

problem, with time windows, pickup, and delivery. The reader’s attention is drawn to the  

excellent reviews on this subject by Toth and Vigo [1] and Berbeglia et al. [2]. Grandinetti et 

al. [3], Wassan and Nagy [4] recently studied this problem as well. Ronen [5] presented a review 

of ship routing, and scheduling, and discussed briefly the differences between vehicle and ship 

routing and scheduling problems. He indicated that SRP is less structural, and its operational 

environment is more complicated. Christiansen et al. [6] reviewed the recent researches on ship 

routing and scheduling and related problems and provided four basic models in this domain. 

The results show that liner shipping, marine inventory routing, and optimal speed have come 

to the forefront, while complex critical problems remain wide open and provide challenging 

opportunities. Kjeldsen [7], Cho et al. [8], Fagerholt and Christiansen [9], and Fagerholt [10] 

studied the liner shipping or industrial shipping routing problem. Cho et al. [8] proposed a 

modified nonlinear model for bulk cargo ship scheduling, and then reformulate it into a linear 

mixed-integer programming problem. Fagerholt and Christianson [9], and Fagerholt [10] 

studied the pickup and  delivery SRP with  time windows and assumed certain loading ports 

and discharging ports. Liu and Chen [11] studied TSRP. Since this problem consists of time 

and space aspects, they used a multi-commodity time-space network to formulate the 

optimization model. Romero et al. [12] discussed aspects related to data gathering and updating 

and presented a GRASP algorithm to solve this problem. The proposed solution approach is 

applied to a salmon feed supplier based in southern Chile. De et al. [13] proposed a mixed 

integer non-linear programming model for ship routing and scheduling problems and employed 

particle swarm optimization-composite particle (PSO-CP) to solve the problem. Dithmer et al. 

[14] studied liner shipping routing and scheduling problem and investigated the impact of 

emission control areas in the routing and scheduling of liner vessels. Alhamd et al. [21] 

proposed the Tabu Search heuristic for the ship routing and scheduling to minimize the overall 

cost of shipping operation without any violations. Fan et al. [15] addressed the tramp ship 

routing and scheduling with speed optimization considering carbon emissions, and proposed a 

genetic simulated annealing algorithm based on a variable neighborhood search to solve the 

problem. Kim et al. [16] considered the problem of ship routing and fleet sizing problem and 

suggested a simulated annealing algorithm with some analytic methods. Homsi et al. [17] 

studied industrial and tramp ship routing problems and proposed an exact branch-and-price 

algorithm and a hybrid genetic base search.  

Considering the above literature review, it can be found that the uncertainty in running times 

affected by the weather condition is not addressed. Meanwhile, among the metaheuristic 

algorithms, the PSO algorithm is not applied. Table 1, shows the position of this paper amongst 

the studied literature considering the applied algorithm. 

 
Table 1. The position of the current paper amongs the studied literature considering the proposed solving 

algorithm 

 GRASP PSO 
Tabu 

Search 

Genetic 

algorithm 

Simulated 

annealing 

algorithm 

Branch-

and-price 

algorithm 

Liu and Chen (2013) ×      

De et al. (2016)  ×     

Alhamd et al. (2019)   ×    

Fan et al. (2019)    × ×  

Kim et al. (2019)     ×  

Homsi et al. (2020)    ×  × 

Current study  ×   ×  
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Contribution of the Paper  

 

The novelty of this paper is listed as follows: 

1) Proposing a new mathematical model for the TSRP. 

2) Applying a two-stage stochastic model for considering the uncertainty of the weather 

condition. Moreover, it is concluded that by the applied stochastic model, more 

applicable solutions are achieved. 

3) Proposing a new hybrid algorithm based on the PSO algorithm. 

 

Outline 

 

In the next section, the problem is described in detail. Section 3 represents a new mathematical 

model. In Section 4, the two-stage stochastic model is proposed. In Section 5, a new hybrid 

heuristic algorithm is proposed. Section 6 deals with the case study. Finally, the concluding 

remarks are given at the end to summarize the contribution of this paper.  

 

Problem Description 
 

Tram shipping problem can be considered as a network, where the nodes in the network 

represent the demand points at ports, and the arcs in the network represent the flow directions 

of ships. Tram shipping is mainly conceived as a short-term problem. The tramp ship routing 

and scheduling problem consist of creating routes for a heterogeneous fleet of ships that ensure 

that all demands between the ports are delivered at the lowest possible cost. Each demand is 

known by the port pair that stipulates the origin and destination. Splitting demand on different 

routes is not allowed.  

The ports can function as transshipment hubs. A ship is assigned to one route which it sails 

continuously. It is assumed that the required compatibility between ships and ports exists. In 

other words, the ports can accommodate the ships calling and required cranes are available 

either in the ports or on the ships. The fleet consists of several ships that can be divided into 

different types. Ships of the same type will have similar characteristics such as speed 

capabilities, and capacity. The major shipping lines have a number of ships of each type, and 

there seems to be a strong preference for similar ships on a route. The speeds of the ships are 

previously known and are considered as the input parameters. The tramp shipping business 

covers cargoes by less-than-shipload. This feature makes the studied problem more complicated 

because a ship may have several cargoes with various origin or destination ports. A cargo can 

be carried unless arcs exist in ship sub-networks. For example, if a ship sails from Port 2 to Port 

3, then to Port 1, then cargoes can be carried from Port 2 to Port 1 or from Port 3 to Port 1. A 

ship cannot load cargoes beyond its capacity/deadweight limitations. Each cargo is carried by 

the meeting its pickup/delivery time windows and loading/discharging operation times. The 

total transit time for each cargo includes the time to be carried on the ship as well as 

loaded/discharged at ports. The loading/discharging operation times in the origin and 

destination of the cargoes should be considered. If several cargoes are being picked up or 

delivered at the same time, the longest operation time, but not the total time, is taken as the 

loading or discharging operation time. To maintain service quality and to prevent cargoes from 

incurring damage, each cargo should not be carried by different ships (non-split load) and 

should not be transferred to another ship on the way to the destination port (direct transport).  

The problem is to maximize the profit considering the gross weight of ships in ports based 

on the loaded and discharged  cargoes in ports which should be always less than the maximum 

capacity. The arrival times to the ports should be computed so that the ships can service the 
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loaded and unloaded cargoes. For each cargo, a specific time window is considered. The 

problem is formulated in the following section. 

  

The Proposed Tramp Ship Routing Mathematical Model 
 

This section is to propose the mathematical model for the described problem. The employed 

notations are shown below: 
 

Table 2. The employed notations 

Description Symbol 

Set of ports A 

Set of ships S 

Set of  cargoes H 

Shipping cost of arc (i,j) by ship k  𝐶𝑖𝑗𝑘 

Income of shipping cargo l from its origin, i.e. 𝑜𝑙 , by ship k 𝐼𝑂𝑙𝑘𝑙 

A binary variable equal 1, if ship k move from i to j 𝑥𝑖𝑗𝑘 

A binary variable equal 1, if ship k loads cargo l in port i 𝑦𝑖𝑘𝑙  

A binary variable equal 1, if ship k discharges cargo l in port i 𝑧𝑖𝑘𝑙  

The gross weight of ship k in port i 𝑞𝑖𝑘 

The maximum capacity of ship k  𝑐𝑘 

Arrival time of ship k to port i 𝑝𝑖𝑘  

Berthing time of ship k in port i 𝑏𝑖𝑘 

Voyaging time of ship k between ports i and j 𝑡𝑖𝑗𝑘 

Release time of ship k from its origin i 𝑟𝑖𝑘 

The earliest time for loading cargo l 𝑢𝑙
𝑙 

The latest time for loading cargo l 𝑢𝑙
𝑢 

The earliest time for unloading cargo l 𝑣𝑙
𝑙  

The latest time for unloading cargo l 𝑣𝑙
𝑢  

The loading time of cargo l 𝑓𝑙 

The unloading time of cargo l 𝑔𝑙 

Origin of cargo l 𝑜𝑙  

Destination of cargo l 𝑑𝑙 

 

 (1) 𝑍 = 𝑚𝑎𝑥 ∑ ∑ 𝐼𝑂𝑙𝑘𝑙 × 𝑦𝑂𝑙𝑘𝑙

𝑙∈𝐻𝑘∈𝑆

− ∑ ∑ ∑ 𝑐𝑖𝑗𝑘 × 𝑥𝑖𝑗𝑘

𝑘∈𝑆𝑗∈𝐴𝑖∈𝐴

 

 

Eq. 1 indicates the objective function which maximizes the profit which equals the incomes 

minus costs. 

 

∑ 𝑥𝑖𝑗𝑘𝑖 − ∑ 𝑥𝑗𝑚𝑘𝑚 = {
−1,                          if 𝑗 is the origin port of ship 𝑘
1,          if 𝑗 is the last port considered for ship 𝑘
0,                                                                  otherwise

 , 

 ∀𝑗 ∈ 𝐴, 𝑘 ∈ 𝑆 

(2) 

 

Constraints (2) guarantee the continuity of ship movements. 

 

(3) 𝑞𝑖𝑘 + ∑ 𝑦𝑗𝑘𝑙

𝑙

− ∑ 𝑧𝑗𝑘𝑙

𝑙

≤ 𝑞𝑗𝑘 + 𝑀 × (1 − 𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑆 

 

Constraints (3) indicate the gross weight of ships in ports based on the loaded and discharged  

cargoes in ports. 
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(4) 𝑞𝑖𝑘 ≤ 𝑐𝑘, ∀𝑖 ∈ 𝐴, 𝑘 ∈ 𝑆 
 

Constraints (4) specify that the gross weight of ships should be less than the maximum 

capacity. 

 

(5) 𝑦𝑜𝑙𝑘𝑙 = 𝑧𝑑𝑙𝑘𝑙, ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 

 

Eq. 5 ensures that if a cargo is loaded by a ship, it should be discharged by the same ship in 

the destination port. 

 

𝑦𝑜𝑙𝑘𝑙 ≤ ∑ 𝑥𝑜𝑙𝑗𝑘

𝑗

, ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 (6) 

 

Constrains (6) guarantee that any cargo can be loaded on those ships which are berthed in 

the origin ports of the cargoes. 

 

𝑧𝑑𝑙𝑘𝑙 ≤ ∑ 𝑥𝑖𝑑𝑙𝑘

𝑖

, ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 (7) 

 

Constrains (7) guarantee that any cargo can be discharged from those ships which are berthed 

in the destination ports of the cargoes. 

 

𝑝𝑖𝑘 + 𝑡𝑖𝑗𝑘 + 𝑏𝑖𝑘 ≤ 𝑝𝑗𝑘 + 𝑀 × (1 − 𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑆 (8) 

 

Constraints (8) indicates that the arriving time of a ship to a port is more than the summation 

of arriving time to the previous port, the berthing time in the previous port, and the voyaging 

time between the ports. 

 

𝑝𝑖´𝑘 = 𝑟𝑖´𝑘, ∀𝑘 ∈ 𝑆 (9) 

 

Eq. 9 specifies that the arriving time of any ships to their origins equal the release time. Note 

that 𝑖´ is the original port of ship k. 

 

𝑢𝑙
𝑙 − 𝑀 × (1 − 𝑦𝑜𝑙𝑘𝑙) ≤ 𝑝𝑜𝑙𝑘 ≤ 𝑢𝑙

𝑢 + 𝑀 × (1 − 𝑦𝑜𝑙𝑘𝑙), ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 (10) 

 

Constraints (10) ensure that any cargoes can be loaded on a ship whenever its arriving time 

to the origin port of the  cargoes are between the earliest and latest loading time of the cargoes. 

 

𝑣𝑙
𝑙 − 𝑀 × (1 − 𝑧𝑑𝑙𝑘𝑙) ≤ 𝑝𝑑𝑙𝑘 ≤ 𝑣𝑙

𝑢 + 𝑀 × (1 − 𝑧𝑑𝑙𝑘𝑙), ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 (11) 

 

Constraints (11) ensure that any cargoes can be discharged from a ship whenever its arriving 

time to the destination port of the cargoes are between the earliest and latest discharging time 

of the cargoes. 

 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑆 

𝑦𝑖𝑘𝑙 ∈ {0,1}, ∀𝑖 ∈ 𝐴, 𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 

𝑧𝑖𝑘𝑙 ∈ {0,1}, ∀𝑖 ∈ 𝐴, 𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆 

𝑝𝑖𝑘 ≥ 0,                  ∀𝑖 ∈ 𝐴, 𝑘 ∈ 𝑆 
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Solution methodology 
 

Since the weather condition cannot be forecasted exactly, the voyaging time between ports, i.e. 

parameter 𝑡𝑖𝑗𝑘, should be considered uncertain in real application.  

The form of so-called two-stage stochastic programming with recourse is shown in Eq. 12: 

 

min 𝑐(𝑥) + 𝐸𝜔𝑄(𝑥, 𝜔) 

𝑠. 𝑡.  𝐴𝑥 = 𝑏 

        𝑥 ≥ 0 

        𝑄(𝑥, 𝜔) = 𝑚𝑖𝑛{𝑞(𝑦)|𝑊𝑦 = ℎ − 𝑇𝑥, 𝑦 ≥ 0} 

(12) 

 

Where, 𝜔 is the vector containing q, h, and T, and 𝐸𝜔denotes mathematical expectation 

considering 𝜔. It is supposed that W is constant. 

𝑐(𝑥) is a function that indicates the profit in the first stage. The last part of the objective 

function specifies the expected penalty costs caused by late delivery. The first, and second stage 

variables are x, and y, respectively. 

In this problem, it is supposed that there is only one path (𝑖∗, 𝑗∗) that might be faced by bad 

weather conditions. Therefore, in the stochastic model, the uncertain parameter 𝑡𝑖𝑗𝑘, should be 

replaced by 𝑡𝑖𝑗𝑘𝑠, where, index s represents the s-th scenario, and 𝑠 ∈ 𝑊 = {1,2}. By the same 

reason 𝑝𝑖𝑘 ← 𝑝𝑖𝑘𝑠. Therefore, the constraints (8) are replaced by constraints (13). 

 

𝑝𝑖𝑘 + 𝑡𝑖𝑗𝑘𝑠 + 𝑏𝑖𝑘 ≤ 𝑝𝑗𝑘𝑠 + 𝑀 × (1 − 𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑆, 𝑠 ∈ 𝑊 (13) 

 

In addition, by defining the new variable 𝑦𝑑𝑙𝑘𝑠 which indicates the lateness of ship k in 

arriving to the destination port of cargo l under scenario s, the constraints (11) is replaced by 

(14). 

 

𝑣𝑙
𝑙 − 𝑀 × 𝑧𝑑𝑙𝑘𝑙 ≤ 𝑝𝑑𝑙𝑘𝑠 ≤ 𝑣𝑙

𝑢 + 𝑀 × 𝑧𝑑𝑙𝑘𝑙 + 𝑦𝑑𝑙𝑘𝑠, ∀𝑙 ∈ 𝐻, 𝑘 ∈ 𝑆, 𝑠 ∈ 𝑊 (14) 

 

Moreover, the stochastic objective function is represented by Eq. 15. 

 

𝑍 = 𝑚𝑎𝑥 ∑ ∑ ∑ 𝐼𝑖𝑘𝑙 × 𝑦𝑖𝑘𝑙

𝑙∈𝐻𝑘∈𝑆𝑖∈𝐴

− ∑ ∑ ∑ 𝑐𝑖𝑗𝑘 × 𝑥𝑖𝑗𝑘

𝑘∈𝑆𝑗∈𝐴𝑖∈𝐴

− ∑ ∑ ∑ 𝑝𝑠 × 𝑐𝑐𝑙 × 𝑦𝑑𝑙𝑘𝑠

𝑠∈𝑊𝑘∈𝑆𝑙∈𝐻

 
(15) 

 

Where, 𝑐𝑐𝑙 is the penalty cost for late delivery of cargo l, and 𝑦𝑑𝑙𝑘𝑠 is a variable indicates the 

lateness of ship k in arriving to the destination port of cargo l under scenario s. 𝑝𝑠 is the 

probability of occurring scenario s. Note that 𝑝𝑠 has discrete distribution, and therefore, the 

generated stochastic program is just an ordinary linear program. 

It is necessary to note that if two/three of the paths are subject to uncertainty, then four/eight 

different scenarios should be considered, and the Eq. 15 should be changed accordingly. 

 

 

 

The Hybrid Heuristic Algorithm 
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Kennedy and Eberhart [20] firstly introduced the Particle Swarm Optimization (PSO). This 

algorithm is known as an evolutionary one which is based on improving a population of random 

candidate solutions called particles. During following the steps of this algorithm, each particle 

moves to a better position with a velocity which is dynamically computed based on achieved 

learning by all particles. Eq. 16 specifies the formula to update the velocity of each particle: 

 

𝑣𝑡 = 𝑤 × 𝑣𝑡 + 𝑐1 × 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1] × (𝑃𝑙
𝑡 − 𝑠𝑡) + 𝑐2 × 𝑅𝑎𝑛𝑑𝑜𝑚[0, 1]

× (𝑃𝑔 − 𝑠𝑡) 
(16) 

𝑠𝑡 = 𝑠𝑡 + 𝑣𝑡 (17) 

 

Where, 𝑣𝑡 is the velocity related to 𝑥𝑡. 𝑠𝑡 is the t-th particle. 𝑃𝑙
𝑡 shows the current best local 

solution obtained by the t-th particle. 𝑃𝑔 is the best achieved solution. W is the weight of 

previous velocity. c1 and c2, are to define the weight of the stochastic acceleration terms which 

push each particle to 𝑃𝑙
𝑡 and 𝑃𝑔, respectively.  

Simulated annealing (SA) is a well-known metaheuristic algorithm that tries to escape the 

local optimum by considering the chance of accepting moves which even worsen the objective 

function value. In this algorithm, the chance of accepting a worse solution, called temperature, 

reduces as the algorithm proceeds. This leads to seeking the bottom of the local optimum at the 

final iterations of the algorithm. The computational time can be adjusted by slowing down the 

trend of reducing the temperature. More details about this algorithm are specified by Eglese, 

R.W [19]. The proposed Simulated Annealing (SA) algorithm is as follows:  

Step 1. k←0, k´←|𝑇| 
Step 2. k←k+1, Tempk= α ×Tempk-1  

Step 3. Select k´ of random ships and considering their associated origin, assign a set of 

random ports to visit.  

Step 4. For each set of random ports, considering all required input data defined in previous 

sections, compute the related travelling sales man problem with time windows.  

Step 5. Find the objective function value, i.e. Z(k).  

Step 6. If Z(k)≥ Z(k-1), or Pacceptk>Random [0. 1], Consider this solution as the base 

solution. If Z(k) is  the  best  found  solution,  save  it  as  the  best solution.  

Step 7. If the termination criterion is satisfied, terminate the algorithm, otherwise, k´←1, 

and Go to Step 2. 

Step 1 is to assign the initial values to k as the iteration counter. Step 2, is to define the 

cooling system, where, Tempk is the temperature in the k-th iteration and α is the cooling factor. 

Steps 3 and 4 generate a complete solution. Step 5, compute the objective function value in the 

k-th iteration, Z(k). In Step 6, considering the probability function to accept non-improving 

solution in the k-th iteration, Pacceptk, the solutions with worse Z(k) is accepted. Step 7, 

indicate the termination criterion. 

Dumas et al. [18] proposed an algorithm the Travelling Salesman Problem (TSP) with time 

windows. Moreover, Pacceptk specified in Step 6 of the proposed algorithm, is calculated based 

on the Metropolis Function shown as below: 

 

       (18) 

 

In addition to the SA algorithm proposed in the above section, a new hybrid PSO-SA 

algorithm is proposed as follows:  
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On one hand, PSO combines local search through self-experience as well as global search 

through neighboring experience which results in more efficiency in searching the optimal 

solutions. On the other hand, SA is an algorithm designed to find a good solution as specified 

as before which is enriched by a cooling system that escapes the local optimum. As a result, a 

combination of PSO and SA algorithms can omit the hard and firm velocity updating 

mechanism that exists in the PSO algorithm.  

By the above explanations, the novel hybrid PSO-SA algorithm contains the following two 

phases: 

1) at the first phase some initial solutions are generated in random, and  

2) the PSO-SA algorithm is run based on the general outline specified as follows.  

Step 1) Generate "pop" initial random solutions, using Steps 3-5 of the SA algorithm. If any 

of the constructed schedules is infeasible, regenerate them until we reach the pop number of 

feasible initial solutions. Set 𝑃𝑙
𝑡 ← 𝑠𝑡 and update 𝑃𝑔. 

Step 2) Considering each solution, known as particles, the SA algorithm is run. In the case 

that the new particle is not feasible set 𝑠𝑡←𝑃𝑙
𝑡. Update 𝑃𝑙

𝑡 and 𝑃𝑔.  

Step 3) Considering equations 16 and 17, update the position and velocity of all generated 

particles in Step 2. 

Step 4) In the case that each of the updated particles is not feasible set 𝑠𝑡←𝑃𝑙
𝑡. 

Step 5) Considering each particle, compute the objective function value, and update 𝑃𝑙
𝑡 and 

𝑃𝑔. If termination criterion is passed return 𝑃𝑔 and stop, otherwise go to Step 2. 

11 different |𝑁| − |𝑇| instances are constructed randomly to compare the results of the 

proposed algorithms, Fig. 1, shows the results. 

 

 
Fig. 1. The comparison of the results 

 

As is shown in Fig. 1, 8 examples are solved by the Lingo software and the optimum solution 

is achieved. In 5 examples out of these 8 examples the optimum solutions are also achieved by 

the proposed heuristic algorithms. 

Considering the achieved results, the PSO-SA algorithm can outperform the SA, and PSO 

algorithms. In general, one can say that the results of the PSO-SA algorithm are considerably 

better than the others as the size of the problems raises. 

 

 

Case Study 
 

The studied shipping network is depicted in Fig. 2. As can be seen, there exists 9 active ports. 
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Fig. 2. The case study 

 

The cargoes’ data including the weights, the origins and destinations, the pickup time 

windows, and berthing times are represented in Table 3. 

 
Table 3. The cargoes’ data 

 1 2 3 4 5 6 7 8 9 10 11 12 

O AN AN BA BA BA BA AK AQ AQ AK BA AQ 

D AS BA TU SU MA AK AT MA BA AQ MA AT 

W 5 12 15 6 12 16 8 1 19 12 10 12 

P-T (4-5) (3-4) (3-6) (1,2) (1,2) (1,2) (1,1) (1,2) (1,2) (2,2) (3,4) (4,6) 

B-P 1 2 2 1 2 2 1 1 1 1 2 1 

 

The O-D matrix including the voyaging times, and shipping costs is not presented here. By 

the above explanations, the optimum solution for ship routings and schedules are shown in  

Fig. 3. 
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Fig. 3. The optimum solution 

 

In Fig. 3, the ports number are defined as shown in Table 4. 

 
Table 4. Ports’ numbers definitions 

Ports Abbreviations AN AS BA SU MA AK AT AQ TU 

Ports No. 1 2 3 4 5 6 7 8 9 

 

Now suppose that the weather forecasts shows that there might be stormy condition in the 

area between ports SU to MA, and therefore, the voyaging times for this arc has the following 

probability function: 

 

𝑡𝑆𝑈−𝑀𝐴 = {
4,    25%
6,    75%

          (19) 

 

Considering this uncertainty, and based on the proposed two-stage stochastic model, the 

optimum solution will be as depicted in Fig. 4. 

 

 
Fig. 4. The optimum solution in uncertainty condition 

 

As is shown in Fig. 4, the optimum solution in uncertain conditions contains no direct 

connection between ports 4 and 5, and therefore, all the risks related to the bad weather 
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condition are eliminated. Finally, considering the proposed stochastic solution, the expected 

value of perfect information, EVPI, is computed equal to 7.1% of the objective value, and the 

value of the stochastic solution, VSS, equals 1.1% of the objective value, which shows the 

importance of using two-stage stochastic with recourse to consider the uncertainty. 

 

Conclusion  
 

In this paper, the tramp ship routing with time windows was studied. To that extent, a new 

mathematical model was proposed. In practical conditions, the weather changes may result in 

violating the constraints. To that end, the two-stage stochastic optimization approach was 

utilized. The new mathematical models were tested through a case study. In the studied case, it 

was concluded that the objective function value of the optimum solution of the stochastic model 

does not differ from the deterministic one, while the affected routes which were located in the 

bad weather forecasted areas disregarded the optimum solution. In the end in order to solve 

large-scale examples, a new hybrid heuristic algorithm was proposed. In the studied case study, 

the optimum solution in uncertain conditions is defined so that no risk threatens the ships by 

losing less than 0.15% in the objective function. For future works, the author proposes working 

on more complicated uncertainty structures and studying new heuristic approaches to find good 

solutions for the studied problem. 
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