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Abstract 
Urmia Lake is one of the largest hypersaline lakes in the world and the largest inland body of salt 
water in northwest of Iran, which has been in a critical situation over the last few years. In this paper, 
Urmia lake and its basin variations were monitored, then the ability of artificial neural network for 
predicting the lake's area was evaluated. For observing environmental variations, monthly 
precipitation was computed using TRMM satellite dataset. Terrestrial Water Storage (TWS) and TWS 
Anomaly (TWSA) were estimated from GLDAS hydrological dataset and GRACE mission 
respectively. To monitor lake itself Jason-1, Jason-2/OSTM, Jason-3, and MODIS satellite altimetry 
and MODIS data were used to compute lake's Water Level (WL) and area. These five parameters were 
estimated over 183 months from April 2002 to June 2017. Moreover, variation of the lake during that 
period was modeled, using two ANN methods of MLP and LSTM. The LSTM model reached RMSE 
(for normalized data) of 0.0511 which demonstrates its reliability. To predict Urmia lake's further 
changes, 4 model were constructed to predict lake area in next 3, 6, 9, and 12 months. Hence, the 
LSTM network modeled next 3 and 6 month with a suitable RMSE (0.0882) and also with an 
appropriate ability to predict area fluctuation caused by seasonal changes. 
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Expanded Abstract 
Introduction 
Due to increase of water exploitation and drought, the need for water resources has been risen in past 
decades. Numerous regions around the world are under threat of environmental crisis, as a result of 
climate change. Declination in the amount of precipitation can be led to various subsequences, such as 
significant reduction in the level of ground and surface water, e.g., lakes. Through the development of 
satellite imagery systems, it is possible to monitor and evaluate changes in rainfall, groundwater level, 
surface water area, and level. 
Urmia Lake is one of the largest hypersaline lakes in the world and the largest inland body of salt water in 
northwest of Iran. The lake and its corresponding basin were in a catastrophic situation and under threat of 
drying up. The lake�s area and WL were decreasing from 1995 due to climatic change and anthropogenic 
activities. Irrigation expansion after 2000 was indicated as the dominant human driver of the Lake Urmia 
desiccation. 
Remote sensing provides certain tools for monitoring lakes and their basin over time and space. 
Numerous studies have been conducted to observe and evaluate climate change after the launch of 
Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE dataset has been used 
widely to determine water storage variations over the world as well as Iran. This satellite data has been 
used for various purposes including ground and surface water monitoring. Employing this dataset 
beside precipitation and satellite altimetry data have been used for observing changes in watersheds 
and lakes in numerous studies. Modelling and predicting environmental and climate changes are 
always an important task. Gathering several remote sensing data and predicting them would be helpful 
mostly for disaster management and also decision making. 
Therefore, it is possible to observe and evaluate variation in rainfall, groundwater level, surface water 
area, and level. In this study, Urmia Lake and its watershed changes were monitored using various 
satellite data such as TRMM, GLDAS, GRACE, MODIS. Moreover, machine-learning based methods 
were developed to predict the lake surface changes. 
 
Materials and Methods 
To monitor Urmia Lake changes, several data were used to survey variation in precipitation, ground 
and surface water storage, lake water level, and area in 183 months from April 2002 to June 2017. 
Sufficient temporal resolution of the data is an essential factor in monitoring of changes through the 
time. Accordingly, for monitoring the overall change of the Urmia lake, we prefer a satellite data with 
at least monthly temporal resolution. Therefore, overall variations of the lake and its corresponding 
basin were modeled using these data with adequate temporal resolution.  
Tropical Rainfall Measuring Mission (TRMM) is an international collaboration which aims to observe 
rainfall for environmental studies. TRMM data provides precipitation in various temporal and spatial 
resolutions. In this study, TRMM-3b43 level 3 monthly data, with 0.25 degree spatial resolution 
estimates rainfall in Urmia lake basin, including 83 pixels in each time step.  
The GLDAS hydrological model consists of various variables (e.g., soil temperature, soil moisture, 
precipitation, etc.). In this study, the GLDAS data with 1 degree spatial resolution provides terrestrial 
water storage (TWS) by integrating soil moisture (kg m-2), snow water equivalent (kg m-2), and canopy 
water storage (kg m-2). Three types of monthly GLDAS model data (MOS, VIC, and NOAH) were 
hired for this purpose.  
GRACE is a joint mission between Germany and the USA, giving information about mass changes 
within Earth. The level 2 (RL05) data was of GRACE used to monitor TWSA, which was computed 
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from spherical harmonics using methods developed by Wahr and Swanson. In addition, a 300 km 
Gaussian filter was applied to reduce high frequency noises.  
The investigated Global Reservoirs and Lakes Monitor (G-REALM) dataset including Jason-1, Jason-
2/OSTM, and Jason-3 altimeters were employed to survey Water Level (WL) variation of Urmia lake.  
In order to monitor lake extent changes during the 17 years, MODIS atmospheric corrected product 
MOD09Q1 version 6 data, with 250 m spatial and 8-day temporal resolution was used through Google 
Earth Engine. The product provides surface spectral reflectance of bands 1 and 2, which is the 
composite of 8 products with the absence of clouds, cloud shadow, and aerosol loading. Although, the 
Normalized Difference Water Index (NDWI) is a common method to separate water from land and it 
also had the best result on Landsat data, Normalized Difference Vegetation Index (NDVI) performs 
transcendent distinguishing between water and land while using MODIS data and also in the specific 
case of Urmia Lake. Therefore, in this study, the NDVI index was chosen as an appropriate index to 
separate water and non-water. To determine lake area, first, water region was detected. Then, area of 
water extent was computed as lake area. 
For modeling the lake's area variation, machine learning based methods were investigated. As a time-
series prediction problem, a Multilayer Perceptron (MLP) and a Long Short-Term Memory (LSTM) 
networks were constructed using TRMM rainfall, GLDAS, GRACE TWS, and altimeter WL as inputs 
(predictors) of the models, and lake's area as Target. About 80% of data was assigned to training, 10% 
to validation, and the same portion to test. A feedforward MLP including one hidden layer and 5 
neurons and a Recurrent LSTM network with same hidden layer and 10 neurons, were obtained. In 
order to evaluate network's performance, Root Mean Square Error (RMSE) was used. In addition, the 
delay parameter of 12 months or one year was chosen for estimating future variations.  
 
Discussion of Results 
Except seasonal changes, amount of monthly rainfall during the mentioned period experienced a 
significant decrease from 2004 to 2008, and then it fluctuates to 2017. The changes in precipitation 
rate can affect other parameters considerably. As a result, water mass variation obtained from GLDAS 
data, falls from 2003 to 2008, and after that, similarly to rainfall variation, it fluctuates. However, 
TWSA computed by GRACE data, after reduction to 2008 and rise to 2010, behaved otherwise, and it 
went down steadily to 2017. Urmia Lake WL declined during the whole period. This decrement was 
intensified from 2006 to 2010, after that it halted gradually to 2017 as consequence of increase in 
rainfall rate. Area of the lake decreased from 2004 to 2015, also it faced an extreme fall in 2008. Next, 
to 2017, the area increased slightly.  
Due to a decade drought of Urmia Lake, it was in critical circumstance. Consequently, estimating 
future variation of the lake is necessary. Instead of using physical models or assessing the impact of 
each parameter on the surface of the lake directly and indirectly, which are complicated tasks, a 
machine-learning based method is hired. Disregarding the exact relation between factors, this learning-
based method can determine and model changes. By using two of the most common ANN based 
methods including MLP and LSTM, variation of the lake during that period was modeled.  
MLP and LSTM models reached overall RMSE (for normalized data) of 0.0586 and 0.0511, 
respectively, which indicates reliability of both models for predicting lake area changes; however, 
LSTM network performed superior specially over test data (RMSE of 0.0487). In addition, to predict 
Urmia Lake's further changes and assess LSTM model capabilities comprehensively, four networks 
were constructed to predict lake area of next 3, 6, 9, and 12 months. Accordingly, result demonstrates 
LSTM abilities for predicting upcoming year variation of the lake with RMSE of 0.0882 (better than 
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prediction for 6 and 9 months). 
 
Conclusions 
Variation in each part of environment and climate (such as rainfall, TWS, WL and area of lakes) 
affects others. Therefore, it is possible to monitor and model these relations between the parameters. In 
this study, two ANN methods of MLP and LSTM were investigated to model Urmia Lake surface area 
which the LSTM model performed transcendent. Moreover, LSTM method provides a model which is 
able to predict the lake area of next 12 months with a high accuracy.  
In order to improve the network�s accuracy, it is suggested to increase the number of data and 
parameters, which are used as network input. It would help the network to implement the training 
stage with a higher capability to recognize diverse situations properly. 
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