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Abstract  
The ability to approximate the nanofluid properties such as viscosity, thermal 

conductivity, and specific heat capacity will greatly assist in the modeling and 

design of nanofluidic systems. The purpose of this study was to present an adaptive 

neuro-fuzzy inference system (ANFIS) model for estimating the viscosity of 

Water/Glycerin nanofluid-containing Cu nanoparticles. The model inputs consist 

of two variables of temperature and volume concentration of nanofluids which have 

a great influence on the nanofluid viscosity. The experimental data were divided 

into two categories: training (three-quarters) and testing (a quarter of the data). The 

grid partition and subtractive clustering approaches were employed to determine 

the ANFIS configuration. The mean value of the relative error of 5.18% and the 

root mean square error of 0.0794 were obtained by comparing the target and model 

output values for the testing data. Proper matching of ANFIS prediction results with 

the test data set indicates the validity of the model. In addition, an empirical 

correlation was developed based on the form presented in the literature. The 

constants of the equation were determined by the genetic algorithm (GA) searching 

technique. The comparison of the prediction accuracy of the two models showed 

the complete superiority of the ANFIS. 
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Introduction 

In passive heat transfer enhancement (HTE) techniques, increasing heat transfer rate is 

accomplished by various methods such as surface roughness [1], tube inserts [2], and complex 

geometry [3] to increase turbulence intensity. However, the poor thermal conductivity of liquids 

is always considered a weakness in heat exchangers. In an attempt to overcome this problem, 

an idea was to add some solid particles to the fluid based on the fact that the solids had higher 

thermal conductivity. Using particles in millimeters or micro sizes in the liquids leads to 

channel blockage due to the poor stability of the suspensions. To solve this problem, the size of 

the additives was reduced to the nanometer particles. Nanofluids are mixtures of solids and 

liquids that contain nanoparticles with sizes typically 1 to 100 nm suspended in the liquid. 

Suspended metallic or nonmetallic nanoparticles can improve the heat transfer properties of the 

base fluid [4]. 

The empirical correlations for estimating the physical properties of nanofluids have been 

considered in the literature [5]. Bardool et al. [6] used a viscosity model based on friction theory 

to estimate the viscosity of nanofluids. The friction viscosity model was developed for 
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nanofluids using Peng-Robinson (PR) and Esmaeilzadeh-Roshanfekr (ER) equations of state 

(EoS). The results of the proposed model were compared with correlations developed by 

Einstein [7], Brinkman [8], and Lundgren [9], and the model's superiority was proved. Alawi 

et al. [10] presented a model for estimating the thermal conductivity and viscosity of metallic 

oxides nanofluids. The metallic oxides nanofluids including Al2O3, CuO, SiO2, and ZnO were 

investigated. The effects of nanoparticle concentration, temperature, and nanoparticle shapes 

were investigated. They observed that the nanoparticle's shape has a major effect on the 

thermos-physical properties of the studied nanofluids. Akilu et al. [11] measured the viscosity, 

electrical and thermal conductivity for β-SiC in ethylene glycol and propylene glycol 

nanofluids. The effect of temperature and concentration on each base liquid was investigated. 

Based on the obtained experimental data, an empirical relation was proposed to estimate these 

nanofluid properties. 

The artificial neural network (ANN) modeling technique has been successfully employed to 

approximate the nonlinear and complex relations. Recently, the ANNs are applied to estimate 

the behavior of the properties of nanomaterials. The prediction of nanofluid properties by neural 

networks was investigated in the literature [12]. Akhgar et al. [13] developed ANNs for 

estimating the thermal conductivity of MWCNT-TiO2/ Water-Ethylene glycol nanofluid. ANN 

models can find and distinguish information and rules between the empirical data using their 

training procedure. The viscosity of a hybrid nano-lubricant was modeled by Afrand et al. [14]. 

The results of their comparison with empirical correlations showed that the ANN was superior 

in the prediction of target data. Jang [15] developed an efficient model by the combination of 

the neural network and fuzzy logic. The result of this combination is well-known as the adaptive 

neuro-fuzzy inference system (ANFIS). The combining of ANN with other artificial 

intelligence (AI) models (e.g. genetic algorithms and fuzzy logic) leads to improved 

performance in comparison with individual ANN [16]. Alarifi et al. [17] used particle swarm 

optimization (PSO) and genetic algorithm (GA) thermos-physical properties of Al2O3-

MWCNT/Oil nanofluid. The modeling results indicate that the ANFIS-PSO model is more 

accurate than ANFIS-GA. Mehrabi et al. [18] predicted the alumina-water nanofluid thermal 

conductivity by ANFIS and GA-polynomial ANN. Alrashed et al. [19] performed an 

experimental and numerical study about the thermos-physical properties of carbon-based 

nanofluids. The ANFIS, ANN, and regression were developed to estimate the properties. 

With regards to the superior performance of nanofluids in heat exchangers, it would be very 

useful to provide an accurate predictive model for their thermo-physical properties. This study 

aims to model and estimate the viscosity of water-glycerin nanofluid containing Cu 

nanoparticles with different temperatures and volume concentrations. An adaptive neuro-fuzzy 

inference system was developed to approximate the viscosity of Cu-Water/Glycerin nanofluid. 

The viscosity has been studied within the temperature range of 20°C-80°C and volume 

concentration range of 0.22 %–1 %. The optimum structure of the ANFIS was determined by 

grid partition and subtractive clustering approaches. Finally, the developed ANFIS was 

compared with genetic algorithm (GA) based polynomial correlations in terms of accuracy of 

the viscosity estimation. The suitable prediction results indicate that the model can be used for 

other nanofluids (e.g. Hybrid nanofluids) with high precision. 

 Data preprocessing and modeling procedure 

The fuzzy logic systems trained by the neural network based on the principles of artificial 

neural network training known as the adaptive neuro-fuzzy inference system (ANFIS). The 

ANFIS is employed in different chemistry and chemical engineering fields due to the ability to 

recognize the complex relationship between variables. The ANFIS is composed of layers that 

are associated with specific rules. The interconnected structure provides a reasonable 
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relationship between input-output variables. The number of rules and membership functions for 

the ANFIS structure should be determined by an optimization technique which will be 

described in the following sections. In addition, the prediction ability of the genetic algorithm 

(GA) based correlations was investigated.  

Experimental data collection 

Recently, the enhanced thermal properties of nanofluids in heat transfer applications have 

attracted much attention [20, 21]. The accurate predictive models for the nanofluid properties 

are very useful to reduce laboratory efforts. In the study, the experimental data related to the 

viscosity of the copper-based Water-Glycerin nanofluids, which were collected by Chaitanya 

Lahari et al [22], used for developing artificial intelligence (AI) models. The viscosity of 

nanofluids with a base solution of water and glycerol in the ratio of 70 to 30 containing copper 

nanoparticles was measured. The two-step dispersion synthesis technique is used to make 

nanoparticles smaller than 50 nm in size and mixed with Water-Glycerin as the base fluid. The 

viscosity values of these nanofluids were measured in vitro at different temperatures of 20, 40, 

60, and 80°C using the DV 2T model Brookfield Viscometer. Also, three different 

concentrations of copper nanoparticles in the base fluid were considered as 0.2٪, 0.6٪, and 1 ٪

values. Water-glycerin base fluid viscosity was also measured at these temperatures. The more 

detailed explanations about experimental data were presented in Ref. [22]. 

Adaptive neuro-fuzzy modeling 

Artificial neural networks (ANNs) resemble biological nervous structures (i.e. human brain) 

and can learn and understand complex relations. Neural networks contain many simple 

processing units (neurons) in the interconnected structure to generate a network by weights and 

biases. ANN components will be modified regularly to reduce the deviation values between the 

network output and target data [23]. The neural networks are highly suggested as a method for 

estimating the main parameters in engineering systems. ANNs and fuzzy systems are the 

subgroups of artificial intelligence. Fuzzy logic schemes work by reasoning and have an 

advanced level of computational structures in comparison with ANNs. However, the fuzzy 

systems are not able to learn and therefore they cannot adjust their components. A combination 

of the neural network and the fuzzy system was introduced by Jang [15] which is known as 

adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy model benefits the 

advantages of both methods. The developed ANFIS can find objective data values from inputs 

associated with suitable precision. The ANFIS comprises two parts (antecedent and conclusion) 

connected by using a set of fuzzy if-then rules. The first-order Sugeno inference model is used 

in the present study. In the model, the typical rules have the following form: 

If (x1 is A) and (x2 is B) then f=px1+qx2+r (1) 

where A and B are fuzzy sets, and x1 and x2 are input variables. In addition, p, q, and r are 

the first-order polynomial parameters and obtained using the training process. 

As shown in Fig. 1, the ANFIS architecture comprises five layers such as fuzzification, 

implication, normalization, defuzzification, and summation (total output) layer. The input 

signals are transferred to the first layer which is named the fuzzification layer. Different 

membership functions (MFs) in this layer product membership grades from the input variables. 

The second layer is called the implication layer. Each fixed node in the layer states the rules 

and number of the Sugeno fuzzy inference system. The output of each layer node (wi) is the 

multiplication of membership degrees from the previous layer. The third layer (normalization) 

computes the normalized ignition level for each rule (𝑤̅𝑖). In the fourth layer which named as 

the defuzzification layer, the normalized ignition level multiplied by a specific function of 
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inputs (𝑤̅𝑖𝑓𝑖). Finally, there is a single node in the last layer (summation) which is indicated 

with ∑. The outputs of nodes in the fourth layer are added to each other and the final ANFIS 

output is calculated. 

The premise and consequent parameters are two sets of modifiable parameters in the ANFIS 

model which are found during the training process. The consequent factors can be obtained 

with the least square approximation through forwarding pass and the premise factors can be 

adjusted by the gradient descend in the backward pass [24]. In the present study, two techniques 

including the grid partition and subtractive clustering were applied to find the best ANFIS 

configuration. In the grid partition method, the membership function (MF) types (Gaussian, 

combination Gaussian, generalized bell, triangular, Π-shaped, and trapezoidal) and rules 

number are determined through the trial-and-error. On the other hand, in the subtractive 

clustering approach, the parameters related to the method (range of influence, squash actor, 

accepted ratio, and rejected ratio) should be determined. 

 

Fig. 1. The ANFIS architecture 

In the study, it was attempted to develop an ANFIS model for approximating the viscosity 

of Water/Glycerin nanofluid containing Cu nanoparticles. The input parameters for the ANFIS 

are the important and effective variables on viscosity including temperature and volume 

concentration of nanofluids. The network training was performed by three-quarters of data 

points and the rest were used for the model validation. The validation (testing) data were 

randomly selected and the high accuracy of the model for predicting these data guarantees the 

accuracy of the model estimation for other data (extrapolation). The hybrid-learning scheme 

was employed to obtain the optimal parameters. In the method, the gradient and least mean 

square approximation are used simultaneously [15]. 
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Genetic algorithm modeling 

The genetic algorithm (GA) as a subgroup of artificial intelligence is a numerical heuristic 

search. The GA is inspired by Charles Darwin’s theory of the natural evolution process. The 

algorithm states the procedure of natural selection in which the most suitable individuals are 

chosen to reproduce for producing offspring of the next generation. GA typically has shown to 

be an appropriate choice for approximation based on the regression [25, 26]. This method can 

solve min-max problems rapidly, after exploring a small section of the possible answers. 

Five steps are considered in a genetic algorithm including initialization, fitness assignment, 

selection, crossover, and mutation. Fig. 2 illustrates the flow chart related to the genetic 

algorithm steps. The first step is defining a set of solutions (chromosomes) as the initial 

population. The fitness function specified the fitness grade of each individual. The chance that 

an individual will be chosen for reproduction is based on the grade. The pairs of individuals 

(parents) are selected according to the fitness grade. In the crossover phase, the selected parent 

chromosomes generate children. In some of the new children, some genes maybe have a genetic 

mutation.  

 

Fig. 2. Flowchart of the genetic algorithm 

Finally, the termination criteria control the number of generations in which there are no 

meaningfully different from the previous generation. 

 In the present work, this algorithm was used to develop polynomial correlations due to its 

superiority in achieving global min-max over traditional methods. Based on the empirical data, 

a correlation between the viscosity (μ), temperature (T), and volume concentration of 

nanofluids (φ) is found using the GA technique. For this attempt, the following polynomial 

equation is considered according to the related literature [27, 28]: 

2 3 4 5

1 2 3 4 5(1 )b C C C C C           
 

(2) 

where μb is the viscosity of the base fluid (Water-Glycerin in 70:30 ratio) which has a 

temperature dependence. 

The error function from experimental data and approximated values defined by the root mean 

square error: 
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where N is the number of data points. The GA was employed to obtain the optimum constant 

values (Ci) of the assumed polynomial correlation.  

Values of 500 and 0.8 were specified for the initial population and the crossover fraction, 

respectively. Two elite offspring (the best answer of every generation) were considered in the 

GA searching process. 

Results and discussion 
 

In this study, an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) 

models were developed to estimate the viscosity of a nanofluid with an aqueous solution of 

glycerin containing copper nanoparticles based on temperature and volume concentration of 

nanoparticles. Providing a precise model for viscosity estimation would be very useful given 

its importance in the design of nanofluidic systems. Four criteria of accuracy include the root 

mean square error (RMSE), mean relative error (MRE), the sum of squared error (SSE), and the 

absolute fraction of variance (R2) were used to select the optimum models. 
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in which t is the target (experimental data) and y is the approximated value. 

Adaptive neuro-fuzzy modeling results 

The ANFIS using a large number of adjustable parameters can learn and recognize the 

complex relationship between viscosity and input variables. Different fuzzy inference system 

configurations were designed and investigated using two kinds of partitioning techniques 

including grid partition and subtractive clustering. The trained ANFIS performance was 

evaluated with a test data group which was not used in the training process. 

In the subtractive clustering method, the main parameters including the range of influence 

(ROI), squash factor (SF), accept ratio (AR) and reject ratio (RR) should be optimized. The 

procedure proposed by Cakmakci [29] was used for this purpose. Three parameters were held 
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constant and the fourth parameter was changed until its optimal value was determined. The 

RMSE values related to the test data set were considered as the criterion for selecting the 

optimal model. Fig. 3 illustrates the variations of RMSE with different clustering parameters. 

The ranges of ROI=0.45-0.65, SF=1.20-1.35, AR=0.45-0.55, and RR=0.1-0.2 were 

investigated. The figure shows that AR and RR have no significant effect on the ANFIS 

performance. Finally, the values of 0.61, 1.25, 0.5, and 0.15 were selected for ROI, SF, AR, 

and RR, respectively. The minimum testing RMSE of 0.4199 was achieved for ANFIS 

modeling by the subtractive clustering method. 

 

 

 

 

Fig. 3. Effects of clustering parameters on the prediction accuracy of the ANFIS model 
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On the other hand, in the grid partition technique, the best membership function (MF) type 

and the optimum number of rules were found by trial-and-error. The performances of various 

ANFIS model arrangement is shown in Fig. 4.  

 
Fig. 4. Testing RMSE for different ANFIS configuration 

As seen in the figure, using more MFs and rules leads to the complexity of the model and its 

lower accuracy. ANFIS with 3 and 2 MFs for the first and second variables, respectively, has 

the best accuracy (RMSE=0.0830). In addition, the triangular membership function was 

selected which the related fuzzy sets of the two input variables are indicated in Fig. 5.The 

triangular function defined as follows: 
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where a and b are the lower and upper limit, respectively, and m is a value between a and b. 

The obtained fuzzy rules of the developed ANFIS model and optimum consequent 

parameters are tabulated in Table 1. 
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Fig. 5. Fuzzy sets of the input variables 

Table 1. Fuzzy rules related to the optimum ANFIS configuration 

Rule number Rule description 

1 if (φ is φ MF1) and (T is T MF1) then (μ=2.14φ-0.01187T+2.719) 

2 if (φ is φ MF1) and (T is T MF2) then (μ=0.8058φ+0.01727T-0.6796) 

3 if (φ is φ MF2) and (T is T MF1) then (μ=-0.9719φ+0.05619T+3.137) 

4 if (φ is φ MF2) and (T is T MF2) then (μ=-1.544φ+0.03275T-0.783) 

5 if (φ is φ MF3) and (T is T MF1) then (μ=1.723φ+0.03648T+1.323) 

6 if (φ is φ MF3) and (T is T MF2) then (μ=0.01689φ+0.02443T-0.33) 

 

Polynomial correlation-based genetic algorithm 

The genetic algorithm was used to provide an empirical correlation for approximating the 

viscosity of the nanofluid as a function of temperature and volume concentration. The form of 

the polynomial equation (Eq. 2) was considered according to the phenomenological argument 

and investigated literature [27, 28]. After using the experimental data points, the correlation 

constants (Ci) were optimized for different equation orders. Table 2 reports the prediction 

accuracy of the polynomial correlations with different orders (1 to 5). As shown in the table, 
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the third-order equation has the least error (RMSE=0.4931). Using the constants presented in 

the table, the following equation was obtained: 

2 3(1 1.95 3.395 1.969 )b         (9) 

 

Table 2. The constants and accuracy of polynomial equations with different orders 

 

 

 

 

 

Table 3. Comparison of ANFIS and GA prediction results 

 
Data 

type 

Input 

variables 
     

Data 

Number 
ANFIS φ(%) T(°) 

Experimenta

l μ(cp) 

Predicted 

μ(cp)by 

ANFIS 

Relative 

error (%) 

Predicted 

μ(cp) by GA 

correlation 

Relative 

error (%) 

1 Training 1 20 3.77541 3.77541 0.00007 4.57504 21.180 

2 Training 1 40 3.22459 3.22459 0.00002 2.62552 18.578 

3 Testing 1 60 2.59508 2.51311 3.15856 1.70825 34.173 

4 Training 1 80 1.64098 1.64098 0.00027 1.21209 26.137 

5 Training 0.6 20 3.55902 3.55902 0.00018 4.11719 15.683 

6 Testing 0.6 40 2.99836 3.00664 0.27610 2.36277 21.198 

7 Training 0.6 60 2.17213 2.17214 0.00025 1.53730 29.226 

8 Testing 0.6 80 1.22787 1.11515 9.17974 1.09079 11.164 

9 Training 0.2 20 3.37213 3.37211 0.00073 3.80526 12.844 

10 Training 0.2 40 2.51639 2.51641 0.00056 2.18376 13.219 

11 Training 0.2 60 1.76885 1.76883 0.00121 1.42083 19.675 

12 Testing 0.2 80 0.93279 1.00838 8.10370 1.00815 8.079 

13 Training 0 20 2.49672 2.48148 0.61046 2.99610 20.001 

14 Training 0 40 1.45410 1.49984 3.14566 1.71940 18.245 

15 Training 0 60 0.95246 0.90673 4.80163 1.11870 17.454 

16 Training 0 80 0.68689 0.70214 2.22056 0.79377 15.561 

      
MRE=1.9

7% 
 

MRE=18.

90% 

 

Comparison of the models 

Table 3 is presented to compare the accuracy of the developed models for predicting the 

experimental data. The acceptable prediction error related to the testing data points proved the 

validity of the ANFIS model. The MRE of 5.18% was obtained for the testing data set and the 

value of 1.97% was found for all data points. On the other hand, the MRE value of 18.9% was 

calculated for the third-order polynomial equation developed by GA. Four deviation values 

such as MRE, RMSE, SSE, and R2 for the developed models are reported in Table 4. Although 

the accuracy of the developed ANFIS model is much higher, the developed correlations by GA 

can be employed to estimate the viscosity more efficiently. 

Order C1 C2 C3 C4 C5 RMSE 

1 0.577     0.5099 

2 0.781 -0.239 
 

  0.5002 

3 1.95 -3.392 1.969 
 

 0.4931 

4 1.121 1.922 -7.888 5.392 
 

0.4934 

5 3.35 -7.26 3.751 1.924 -1.233 0.5179 
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Table 4. Deviations of the ANFIS and GA models 

Model MRE RMSE SSE R2 

ANFIS 1.97 0.04320 0.10192 0.99891 

GA (Eq. 9) 18.90 0.49307 3.88992 0.99942 

Conclusion 
This study aimed to investigate the ability of modeling by an adaptive neuro-fuzzy inference 

system to estimate the viscosity of copper nanoparticles in the Water-Glycerin solution. In 

addition, polynomial equations with different orders were developed by the genetic algorithm 

searching procedure. The relevant laboratory data were collected at different temperatures and 

nanofluid concentrations to develop the models. The grid partition and subtractive clustering 

techniques were applied to find the optimum ANFIS configuration and the validity of the model 

was proved by the testing data set. The optimal ANFIS structure obtained by the grid partition 

has a lower prediction error value. The estimation precision of the ANFIS is more than the GA-

based polynomial correlations. The MRE and RMSE of the ANFIS model are 1.97% and 

0.0432, respectively, and the values for correlation are 18.9% and 0.4931. Nevertheless, using 

the GA-based correlation is easier than ANFIS that can be treated as an advantage of the GA 

correlation. 

Nomenclature 
a upper limit of triangular function 

b lower limit of triangular function 

Ci constant 

E error function 

N number of data points 

t target data 

T  temperature (°C) 

xi input variables 

y predicted value 

  

Greek Symbols  

μ dynamic viscosity 

μb dynamic viscosity of base fluid 

φ volume concentration of nanofluid 

Abbreviations 
 

ANFIS adaptive neuro-fuzzy inference system 

GA genetic algorithm 

MF membership function 

MRE mean relative error 

RMSE root mean square error 
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