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Abstract  

In this study, a robust optimization model is introduced, we propose a location-

routing problem with simultaneous pickup and delivery under a hard time window 

that has a heterogeneous and limited depot and vehicle capacities and multi-variety 

of products and uncertain traveling time that considering all of these constraints 

together make the problem closer to real practical world’s problems, that not been 

studied in previous papers. For this purpose, a mixed-integer linear programming 

(MILP) model is proposed for locating depots and scheduling vehicle routing with 

multiple depots. Then, the robust counterpart of the proposed MILP model is 

proposed. The results show that GA performs much better than the exact algorithm 

concerning time. GAMS software fails to solve the large-size problem, and the time 

to find a solution grows exponentially with increasing the size of the problem. 

However, the GA quite efficient for problems of large sizes, and can nearly find the 

optimal solution in a much shorter amount of time. Also, results in the Robust 

model show that increasing the confidence level has led to an increase in the value 

of the objective function of the robust counterpart model, this increase does not 

exhibit linear behavior. At 80% confidence level, the minimum changes in the 

objective function are observed, if we want to obtain a 90% confidence level, it 

requires more cost, but increasing the confidence level from 70% to 80% does not 

need more cost, so an 80% confidence level can be considered as an ideal solution 

for decision-makers. 
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Introduction 

In most industries, organizations have to compete with different internal and external 

competitors. Given the wide range of products offered in the market, customers have different 

options to choose from. Therefore, if an organization is willing to survive this competition, in 

addition to reducing prices and enhancing quality, should be able to recognize customers’ 

demands and respond to these demands within the minimum possible time. Distribution systems 

play a key role here so that a good distribution system serves as a critical element in an 

organization's success. A good distribution system controls costs and customers’ satisfaction at 

the same time. In a distribution system, depots and transportation networks are used to deliver 

the goods. As such, the distribution management should determine how many depots are 

required, where these depots should be established, and which transportation network can 
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minimize costs and realize delivery objectives better. So, location and routing problems are two 

serious factors in an organization. One of the significant problems in the supply chain and 

logistics management is the design of the distribution network; an effectual distribution network 

decreases costs significantly. A vital dimension of the distribution network design is the 

consideration of all the practical restrictions. One of the most normally used problems in the 

distribution network area is the LRP. The LRP has been extensively studied in the literature. 

This problem deals with determining the location of facilities and the route of vehicles for 

serving several customers under some constraints, such as facility and vehicle capacities, route 

time, etc. The LRP aims to satisfy the demands of all customers and to minimize total costs, 

such as transportation costs, vehicle fixed costs, facility location fixed costs, and operating 

costs. In its general form, the LRP assumes that customers have only delivery demand, and it 

is interested in how to distribute the goods to customers with a fleet of vehicles. The location 

problem is at the strategic level while the routing problem is at a tactical level, but integrating 

them into a single problem will result in better non-sub-optimal solutions. LRP has followed a 

growing trend in recent years and different extensions have been proposed to this problem by 

various researchers (see for example Nagy and Salhi, Lopes et al., Prodhon and Prins, and Drexl 

and Schneider [1,2,3,4]). Time window constraint is one of these extensions. In LRPTW a time 

window is considered for each customer within which his/her products have to be delivered. 

Organizations have addressed this problem to raise their customer satisfaction, but their 

approach to time windows can be either hard (where time window can’t be violated) or soft 

(time window can be violated by paying penalties). Simultaneous pickup and delivery and the 

existing arrivals supply chain are other extensions that can close this problem to a real-world 

problem. Uncertainty is another extension of LRP. To apply problems for real-world objectives, 

real data like real customers’ demands and actual travel times should be applied; however, exact 

values of these real data are often not available. Indeed, the dynamic and complex nature of 

real-world problems has associated them with a large deal of uncertainty. Such problems may 

be modeled following various approaches including the use of random or fuzzy variables. The 

choice between using fuzzy or random variables in a problem depends on the problem's nature 

and data availability. For many problems where reliable data are available, random variables 

can be used to attain probability distributions. Besides, using scenario-based approaches 

commonly employed in stochastic methods may result in the use of a huge number of scenarios 

to represent uncertainty which can lead to computationally challenging problems. Therefore, 

using the Robustness approach is a better option for these scenarios. This research considered 

a distribution system design from plant to customers. It was assumed that product movement 

from plant to regional depots would be performed via long haul transportation and there is 

heterogeneous and capacitated depot and vehicle and multi-variety of products. Nowadays, the 

LRP robust model is in competition with fuzzy transportation and the number of transportation 

companies establishing robust model transportation services is increasing more and more. It 

has become an important policy for organizations because of its advantages in terms of cost and 

intra-modal coordination in large-scale freights. Last but not least, since 2012, the number of 

papers on the LRP robust model has followed a growing trend. The researcher's interest in 

hybrid problems (like location-routing, inventory-routing, location-inventory-routing, etc.) 

originates from the fact that hybrid problems provide better answers and help decision-makers 

to avoid sub-optimal answers.  

In this research, the model determines the location of depots, selects, and allocates vehicles 

to warehouses, and allocates customers to selected vehicles (or warehouses). The mathematical 

model minimizes both fixed costs (such as the depot establishment and the purchase of a 

vehicle) and variable costs (including the cost of warehousing goods and carrying cost per unit 

of a product). Also, depot and vehicle capacities are heterogeneous and limited, and the variety 

of products in depots is considered multi-product. We propose a location-routing problem with 
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simultaneous pickup and delivery under a hard time window that has a heterogeneous and 

limited depot and vehicle capacities and multi-variety of products and uncertain traveling time 

that considering all of these constraints together make the problem closer to real practical 

world’s problems, that not been studied in previous papers. The results show that GA performs 

much better than the exact algorithm concerning time. Moreover, GAMS software fails to solve 

the large-size problem, and the time to find a solution grows exponentially with increasing the 

size of the problem. However, the GA quite efficient for problems of large sizes, and can nearly 

find the optimal solution in a much shorter amount of time. Also, results in the Robust model 

show that increasing the confidence level has led to an increase in the value of the objective 

function of the robust counterpart model, this increase does not exhibit linear behavior. At 80% 

confidence level, the minimum changes in the objective function are observed, if we want to 

obtain a 90% confidence level, it requires more cost, but increasing the confidence level from 

70% to 80% does not need more cost, so an 80% confidence level can be considered as an ideal 

solution for decision-makers. 

A location-routing problem with a hard time window and with delivery and pickup of the 

customers’ orders at the right time is purposed in this research. In this paper, the Robust 

Optimization (RO) approach is used to control uncertain parameters. The model has been 

codded in GAMS and The CPLEX solver has been used to solve instances. Furthermore, a 

Genetic Algorithm (GA) is adapted to solve large-scale instances. The computation results time 

showed a slight difference between the performance of the GA and the exact method. Finally, 

a sensitivity analysis of traveling time and delivered demand by using the RO approach is 

performed. This paper is organized as follows. Section 2 presents a review of the literature on 

previous works. A mathematical model is proposed for the LRP in Section 3. Section 4 explains 

the GA adapted to solve large-scale instances. Section 5 analyzes the experiments and compares 

the exact method and the GA. Finally, conclusions and suggestions for future research are 

presented in Section 6. 

 

Literature review 
 

The idea of merging depot location and vehicle routing problems dates back to 50 years ago. 

Initial papers did not mix these two problems. Though the LRP idea has been presented in the 

1960s, systematic researches can be found in the 1970s. Watson-Gandy and Dohrn [5], 

Jacobsen and Madsen [6], Or and Pierskalla [7], and Burness and White [8], were possibly the 

first researchers who considered client delivery while locating depots, through a non-linear 

profit function modeling where sales reduced with distance to the depot. Scientists paid an 

increasing deal of attention to LRP and established many methods of the problem since then. 

Nagi and Salhi [1], Prodhon and Prins [3], Lopes et al. [2], and Drexl and Schneider [4] 

reviewed LRP papers and classified this problem .Owing to their relevance to our study, 

LRPTW and LRP with uncertain data will be reviewed in this section. We momentarily review 

the associated papers to the LRPSPD. The LRPSPD contains two subproblems: the facility 

location problem (FLP) and the vehicle routing problem with simultaneous pickup and delivery 

(VRPSPD). Both the FLP and VRPSPD have been considered broadly in the literature. 

Meanwhile, the LRPSPD can be considered as an extension of the traveling salesman 

location problem with pickup and delivery (TSPPD), presented by Mosheiov [9], in the relation 

to the number of depots to be located and the capacity of vehicles. Mosheiov [9] considers 

customer demands as stochastic variables and suggests a heuristic method based on ranking 

customers in addition to extending heuristics proposed in the literature for the TSPPD. The 

LRPSPD is as well an extension of the LRP in a relation to kinds of the customers’ demand. 

LRP is one of the most researched topics in the literature. Because of the complication of the 

problem, diverse heuristic styles have been also proposed to solve bigger LRPs. Perl and Daskin 
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[10,11], Srivastava and Benton [12], Srivastava [13], and Hansen et al. [14], use typical 

heuristic methods for the problem. Meanwhile, meta-heuristic approaches have been effectively 

applied to the problem. Numerous instances for the application of metaheuristic methods can 

be assumed as tabu search (1999, 2005), simulated annealing (2002, 2010), greedy randomized 

adaptive search procedure (GRASP) (2006, 2010), memetic algorithms (2006), variable 

neighborhood search algorithms, and particle swarm optimization (2008). Inclusive reviews of 

the location-routing models and their applications are provided in Laporte [15], Min et al. [16], 

and Nagy and Salhi [17]. Lastly, the LRPSPD can be considered as a special situation of the 

many to many LRP (MMLRP) introduced by Nagy and Salhi [1] in which some customers 

request to direct cargos to others and flows among depots are allowed Wasner and Zapfel [18] 

also reflect one more section delivery problem, which is strictly linked to the MMLRP. In the 

problem, it is considered that vehicles accomplish both deliveries and pickups, and all inter-

hub flows are carried out by a central hub. Therefore, the problem under consideration is cleared 

as determining the location of depots and hubs, allocating the customers and postal sectors to 

service areas of depots, and determining the delivery paths linking customers, depots, and hubs. 

The researchers show a nonlinear MIP formulation and a classified heuristic to solve the 

problem. Finally, it is reported a 14.7% cost savings over the current state by solving a real case 

problem with the proposed heuristic. 

Jin et al. [19] proposed a mixed-integer linear mathematical model for the Multi-Depot 

Vehicle Routing Problem (MDVRP) with a two-stage solution approach. At the first stage of 

the solution approach, the problem is decomposed into two smaller problems, including 

allocation and routing problems; at the second stage, the problem is considered as an integrated 

one. Results showed that the second stage of the solution approach considerably improves the 

first stage. Liu et al. [20] proposed a Mixed Integer Linear Mathematical Model (MILMM) 

under uncertain conditions. They also presented a single-phase modeling approach with 

considering a single product and used an innovative approach to the allocation and routing of 

depots to demand points to solve the problem. Xiao et al. [21] introduced the Capacitated 

Vehicle Routing Problem (CVRP) in the distribution of goods aimed at minimizing fuel 

consumption. 

Lalla-Ruiz et al. [22] proposed a new mathematical model for the multi-depot open vehicle 

routing problem (MDOVRP) by adding some new constraints as compared with previous 

studies. The computational results obtained from sample problems demonstrate the high 

efficiency of their proposed mathematical model. Du et al. [23] presented a fuzzy linear 

programming model aimed at minimizing the expected transportation risk when preparing 

hazardous materials and shipping from different warehouses to customers. Four meta-heuristic 

algorithms (such as particle swarm optimization (PSO), GA model, simulated annealing 

algorithm, and ant colony optimization (ACO)) are used to solve the problem and a numerical 

example has been presented for comparing the proposed algorithms. Alinaghian and Shokouhi 

[24] proposed a mathematical model for solving the reservoir routing problem. The objective 

function applied to this problem includes minimizing the number of vehicles and then 

minimizing the distance between all the traversed routes. In their study, the cargo space of each 

vehicle has several parts, and each reservoir is allocated to a product. They used a hybrid 

algorithm to solve the problem and compared the obtained results with those of the exact 

method and concluded that their proposed hybrid algorithm had high efficiency in problem-

solving. Brandão [25] proposed the vehicle routing problem with time windows and used an 

iterated local search algorithm for solving the problem. This algorithm was used for large-size 

problems and a total of 418 sample problems were implemented. The results showed the 

effectiveness of the algorithm in solving large-size problems. In their study, Polyakovskiy et al. 

[26] addressed the two-dimensional product packing problem. Therefore, they proposed a 

mixed-integer linear programming model and solved the small-sized problems with the CPLEX 
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solver. They also used heuristic algorithms to solve large-sized problems. YongboLi et al. [27] 

developed a multi-depot green vehicle routing problem (MDGVRP) by maximizing revenue 

and minimizing costs, time, and emission, and then, apply an improved ant colony optimization 

(IACO) algorithm that aims to efficiently solve the problem. Yong Shi et al. [28] formulated a 

model for a Home Health Care (HHC) Routing and Scheduling Problem by taking into account 

uncertain travel and service times, from the perspective of Robust Optimization (RO). After 

that, Gurobi Solver, Simulated Annealing, Tabu Search, and Variable Neighborhood Search are 

adapted to solve the model respectively. Finally, a series of experiments have been performed 

to validate the proposed models and algorithms. Yuan Wang et al. [29] addressed a Periodic 

Vehicle Routing Problem with Time Window and Service Choice problem. This problem is 

basically a combination of existing Periodic Vehicle Routing Problem with Time Window and 

Periodic Vehicle Routing Problem with Service Choice. They modeled it as a multi-objective 

problem. To solve this problem, they developed a heuristic algorithm based on Improved Ant 

Colony Optimization (IACO) and Simulate Annealing (SA) called Multi-Objective Simulate 

Annealing - Ant Colony Optimization (MOSA-ACO). Time window needs services to be 

transported to the customer within a wanted period (2001). 

If a vehicle arrives early, it will induce waiting time and probably parking costs. If a vehicle 

made a delay, it reduces customer satisfaction, even breaks the contract in the worst cases. 

These added costs of early entrance and delay are named the penalty costs. In the case of the 

hard time window, the late entrance is severely forbidden setting the penalty cost equal to 

infinity, while the early entrance is permitted with no added charge (2016). The literature review 

showed a recent growing trend in LRPTW. Zarandi et al. [30] presented LRPTW under 

uncertainty. They considered demands and travel times as fuzzy variables, with fuzzy chance-

constrained programming (CCP) model presented using credibility theory (2013). Gharavani 

and Setak [31] described an LRPTW onto which a semi-soft time window was imposed were 

delays in service delivery consequence penalties (cost) (2015). Gunduz [32] proposed single-

stage LRP with time windows and presented a Tabu search heuristic to efficiently solve large-

scale examples (2011). Mirzaei et al. [33] demonstrated the development of the LRPTW where 

energy minimization was considered: energy-efficient LRPTW. Govindan et al. [34] proposed 

a two-echelon LRPTW for sustainable supply chain network design and optimizing economic 

and environmental aims in a perishable food supply chain network. Time windows, specifically 

hard cases, add extra difficulty to LRP so none of the above-mentioned research tried to use 

hard time windows or realize optimal solutions by using exact solutions. 

Also, adding other features to LRPTW such as uncertainty or merging it with other 

transportation problems to reach a more practical solution for the distribution network problem 

is missing in the literature. When previous data is lost or ambiguous, it is hard to define 

probabilistic distributions for uncertain parameters. In these cases, Robust optimization can be 

applied. Robust optimization is an extension to LRP to deal with uncertainty. Since the 

introduction of Robust optimization, many authors have used it for problem-solving. The need 

to use Robust optimization rises from ambiguity or uncertainty of parameters. In most cases, 

an inadequate amount of data is accessible to create a probability distribution upon the 

foundation of real data. In this regard. Ghaffari-Nasab et al. [35] proposed LRP with fuzzy 

demands and designed a fuzzy chance-constrained program to model it based on the fuzzy 

credibility theory. Lastly, a hybrid SA-based heuristic incorporated into stochastic simulations 

was presented and to solve the problem. Ismail Karaoglan et al. [36] introduce a heuristic 

approach to solve the LRPSPD problem, they consider that the variables are definite and aren’t 

under uncertainty and there is no time window for delivery cargoes to customers. Yong Shi et 

al. [37] developed a relatively robust optimization model for a vehicle routing problem with 

synchronized visits and uncertain scenarios considering greenhouse gas emissions. In this 
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study, the greenhouse gas emissions are evaluated by the fuel consumption cost, and a hybrid 

tabu search and simulated annealing are proposed to solve it. 

A summary of the most important papers published on the location and routing of vehicles 

is given in Table 1. 

 
Table 1. A summary of the most used papers published on the multi-depot location-routing problem 

Study Model Type Period Product Depot 
Time 

Window 
Vehicle Type 

Solution 

Method 

Derigs et al. (2011) Deterministic 
Single-

period 

Multi-

product 

Single-

depot 
- Heterogeneous Heuristic 

Hanczar (2012) Deterministic 
Multi-

period 

Multi-

product 

Single-

depot 
- Homogenous Heuristic 

Popović et al. 

(2012) 
Probabilistic 

Multi-

period 

Multi-

product 

Single-

depot 
- Homogenous 

Heuristic / meta-

heuristic 

Vidović et al. 

(2013) 
Probabilistic 

Multi-

period 

Multi-

product 

Single-

depot 
Hard Homogenous 

Heuristic / meta-

heuristic 

Popović et al. 

(2014) 
Deterministic 

Single-

period 

Single- 

product 

Single-

depot 
- Homogenous Metaheuristic 

Ray et al. (2014) Deterministic 
Single-

period 

Single- 

product 

Multi-

depot 
- Homogenous Heuristic 

Salehi et al. (2014) Deterministic 
Single-

period 

Single- 

product 

Multi-

depot 
Hard Heterogeneous Metaheuristic 

Lalla-Ruiz et al. 

(2015) 
Deterministic 

Single-

period 

Single -

product 

Single-

depot 
- Homogenous Metaheuristic 

Rahimi-Vahed et al. 

(2015) 
Deterministic 

Multi-

period 

Single- 

product 

Multi-

depot 
- Homogenous Heuristic 

Abdulkader et al. 

(2015) 
Deterministic 

Single-

period 

Multi-

product 

Single-

depot 
- Heterogeneous Metaheuristic 

Allahyari et al. 

(2015) 
Deterministic 

Single-

period 

Single 

product 

Multi-

depot 
- Heterogeneous 

Heuristic 

/Metaheuristic 

Lahyani et al. 

(2015) 
Deterministic 

Multi-

period 

Multi-

product 

Single-

depot 
Hard Heterogeneous Exact 

Kaabi (2016) Deterministic 
Single-

period 

Multi-

product 

Single-

depot 
Hard Heterogeneous Metaheuristic 

Sethanan et al. 

(2016) 
Deterministic 

Single-

period 

Multi-

product 

Single-

depot 
- Homogenous Metaheuristic 

Du et al. (2017) Fuzzy 
Single-

period 

Single -

product 

Multi-

depot 
- Heterogeneous Metaheuristic 

Alinaghian and 

Shokouhi (2018) 
Deterministic 

Single-

period 

Multi-

product 

Single-

depot 
Hard Homogenous Metaheuristic 

Yongbo Li et al. 

(2019) 
Deterministic 

Single-

period 

Single -

product 

Multi-

depot 
- Homogenous Metaheuristic 

Yong Shi et al. 

(2019) 
Robust 

Multi-

period 

Single -

product 

Single-

depot 
- Homogenous Metaheuristic 

Yuan Wang et al. 

(2020) 
Robust 

Single-

period 

Multi-

product 

Single-

depot 
Hard Homogenous Metaheuristic 

Yong Shi et al. 

(2020) 
Robust 

Single -

period 

Single -

product 

Single-

depot 
Hard Heterogeneous Metaheuristic 

Current research 

(2020) 
Robust 

Single-

period 

Multi-

product 

Multi-

depot 
Hard Heterogeneous 

Exact /meta -

heuristic 

 

Considering the research gap in the literature listed in Table 1, in this study, a mathematical 

model for a multi-depot location routing problem (MDLRP) under conditions of uncertainty 

has been proposed and the location of distribution depots of diverse products and routing with 

heterogeneous vehicles have been simultaneously addressed. Customers with uncertain 

demands and uncertain transportation costs have led to the uncertain parameters in the proposed 

model. In this paper, the Bertsimas and Sim (B&S) Robust Optimization (RO) approach has 
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been used to control uncertain parameters. Finally, meta-heuristic like GA has been applied to 

solve the problem with different sizes. 

 

Problem formulation 
 

In the part of this paper, the MDLRP with simultaneous pickup and delivery under conditions 

of uncertainty has been modeled. The proposed model simultaneously considers the location of 

depots and routing of the vehicle with a time window. For this purpose, vehicles travel from 

depots to customers and satisfy the customers' demand for each product. The vehicles are 

heterogeneous having different capacities and must satisfy the customers’ demands for each 

product in a hard time window. Demand parameters and transportation costs are indefinite, so 

characterized as a fuzzy triangular number. The main objective of our work is to minimize the 

total cost of network design to determine the number and location of the depots and optimal 

vehicle routing. As shown in Fig. 1, the MDLRP is explained for 12 customers and 4 potential 

depots. According to Fig. 1, in the first phase, depots 1, 2, and 4 are selected, and the 

heterogeneous vehicles are used to deliver the products to customers by the routes, as shown in 

Fig. 1. 

The assumptions of the MDLRP are as follows: 

1. The MDLRP is considered as a single-period multi-product problem  

2. The number and location of potential depots are indefinite. 

3. Demands from consumers for delivery and transportation costs are considered 

uncertain. 

4. The vehicles are heterogeneous having different capacities. 

 

Fig. 1. A diagram of a multi-depot location routing problem 

 

Multi-depot location routing problem under conditions of uncertainty 

 

To model the MDLRP under conditions of uncertainty, the sets, parameters, and decision 

variables are presented as follows. 

 

  Sets 

𝑁𝑐=Set of customers( 𝑖, 𝑗 = 1,2, … , 𝑁𝑐) 

𝑁𝑘= Set of potential depots( 𝑘 = 1,2, … , 𝑁𝑘) 

𝑉 =The index of vehicle(𝑉 = 1,2, … , 𝑣) 

𝑃 =The index of product type(𝑝 = 1,2, … , 𝑃) 

 

Index 

𝑖, 𝑗 =Number of customer 

Route 1 Route 2 Route 3 Route 4 
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𝑘 =Number of depots 

𝑣 = Number of vehicle 

𝑝 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 
 

  Parameters 

  𝐷𝐷̃𝑖𝑝=Delivery demand of customer i from product type p 

  𝐷𝐷̃𝑖𝑝= Pick-up demand of customer i from product type p 

  𝐶𝐷𝑘 =Capacity of potential depot k 

  𝐹𝐷𝑘 = the depot establishing cost at the potential location k 

  𝐹𝑉𝑣= Capacity of vehicle v 

  𝑈𝑉𝑝=Volume of per unit product p 

  𝐶𝑣= Cost per unit travel time by vehicle v 

𝑇̃𝑘𝑖𝑣= Unit transportation time from depot k to customer i by vehicle v 

𝑇̃𝑖𝑗𝑣= Unit transportation time from customer i to customer j by vehicle v 

M= A large constant 

𝐸𝑖 =The maximum possible time required for serving at the customer node i 

𝐿𝑖=The minimum possible time required for serving at the customer node i 

𝑆𝑇𝑖=Serving time to the customer I 

 

  Decision variables 

𝛼𝑘=If potential depot k =1; otherwise = 0 

𝛽𝑣=If the vehicle v=1; otherwise = 0 

𝑥𝑘𝑖𝑣=If vehicle v  is traveled from depot  k to  costumer i = 1; otherwise = 0 

𝑦𝑖𝑗𝑣=If vehicle v  is traveled from costumer i to  costumer j = 1; otherwise = 0 

𝑧𝑖𝑘𝑣=If vehicle v  is traveled from costumer i to  depot k = 1; otherwise = 0 

𝛾𝑖𝑘= if customer i is assigned to depot k =1; otherwise = 0 

𝑓𝑗𝑣𝑝=The value of product p that be transported by vehicle v from customer demand i 

𝑎𝑡𝑖
𝑣=arrival time of vehicle v to customer i 

𝑢𝑖,𝑣=auxiliary variable for the sub tour elimination 

 

   Mathematical Model 

MinZ = ∑ 𝛼𝑘𝐹𝐷𝑘

𝑘

+ ∑ 𝛽𝑣𝐹𝑉𝑣

𝑣

+ ∑ 𝐶𝑣𝑇̃𝑘𝑖𝑣𝑋𝑘𝑖𝑣

𝑘,𝑖,𝑣

+ ∑ 𝐶𝑣𝑇̃𝑖𝑗𝑣𝑌𝑖𝑗𝑣

𝑖,𝑗,𝑣

+ ∑ 𝐶𝑣𝑇̃𝑖𝑘𝑣𝑍𝑖𝑘𝑣

𝑘,𝑖,𝑣

 
(1) 

𝑠. 𝑡.:  

∑ 𝑋𝑘𝑖𝑣

𝑘,𝑖

= 𝛽𝑣,     ∀𝑣 (2) 

∑ 𝑋𝑘𝑖𝑣

𝑖

= ∑ 𝑍𝑖𝑘𝑣

𝑖

,     ∀𝑘, 𝑣 (3) 

∑ 𝑋𝑘𝑖𝑣

𝑘

+ ∑ 𝑌𝑗𝑖𝑣

𝑗
𝑗≠𝑖

= ∑ 𝑌𝑖𝑗𝑣

𝑗
𝑗≠𝑖

+ ∑ 𝑍𝑖𝑘𝑣

𝑘

,     ∀𝑖, 𝑣 
(4) 

∑ 𝑋𝑘𝑖𝑣

𝑘,𝑣

+ ∑ 𝑌𝑗𝑖𝑣

𝑗,𝑣
𝑗≠𝑖

= 1,     ∀𝑖 
(5) 
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𝑢𝑖𝑣 − 𝑢𝑗𝑣 + 𝑁𝑐 ∗ 𝑌𝑗𝑖𝑣 ≤ 𝑁𝑐 − 1,     ∀𝑖, 𝑗, 𝑣, (𝑖 ≠ 𝑗) (6) 

∑ 𝛾𝑖𝑘

𝑘

= 1,     ∀𝑖 (7) 

∑ 𝑋𝑘𝑖𝑣

𝑣

≤ 𝛾𝑖𝑘,     ∀𝑖, 𝑘 (8) 

∑ 𝑍𝑖𝑘𝑣

𝑣

≤ 𝛾𝑖𝑘,     ∀𝑖, 𝑘 (9) 

∑ 𝑌𝑗𝑖𝑣

𝑣

+ 𝛾𝑖𝑘 + ∑ 𝛾𝑗𝑚

𝑚∈𝑁0
𝑚≠𝑘

≤ 2,     ∀𝑖, 𝑗, 𝑘, (𝑖 ≠ 𝑗) 
(10) 

𝑓𝑗𝑣𝑝 ≤ 𝑓𝑖𝑣𝑝 − 𝐷𝐷̃𝑖𝑝 + 𝑃𝐷𝑖𝑝 + 𝑀(1 − 𝑌𝑗𝑖𝑣),     ∀𝑖, 𝑗, 𝑣, 𝑝 (11) 

𝑓𝑗𝑣𝑝 ≥ 𝑓𝑖𝑣𝑝 − 𝐷𝐷̃𝑖𝑝 + 𝑃𝐷𝑖𝑝 − 𝑀(1 − 𝑌𝑗𝑖𝑣),     ∀𝑖, 𝑗, 𝑣, 𝑝 (12) 

∑ 𝑓𝑖𝑣𝑝𝑈𝑉𝑝

𝑝

≤ 𝐶𝑉𝑣𝛽𝑣,     ∀𝑖, 𝑣 (13) 

∑ 𝛾𝑖𝑘(𝐷𝐷̃𝑖𝑝 + 𝑃𝐷𝑖𝑝)𝑈𝑉𝑝

𝑖,𝑝

≤ 𝐶𝐷𝑘𝛼𝑘,     ∀𝑘 (14) 

𝑎𝑡𝑖
𝑣 + 𝑆𝑇𝑖 + 𝑇̃𝑖𝑗𝑣 − 𝑎𝑡𝑗

𝑣 ≤ 𝑀(1 − 𝑌𝑗𝑖𝑣),     ∀𝑖, 𝑗, 𝑣 (15) 

𝑎𝑡𝑖
𝑣 ≥ 𝑇̃𝑘𝑖𝑣 − 𝑀(1 − 𝑋𝑘𝑖𝑣),     ∀𝑖, 𝑘, 𝑣 (16) 

𝐸𝑖 ≤ 𝑎𝑡𝑖
𝑣 ≤ 𝐿𝑖 ,     ∀𝑖, 𝑣 (17) 

𝑎𝑡𝑖
𝑣 ≥ 0,     ∀𝑖, 𝑣 (18) 

 

A mixed-integer linear programming model for the MDLRP under conditions of uncertainty 

is as follows. In Eq. 1, The objective function minimizes the total costs of the network designed. 

These costs include depot establishment costs, the cost of transporting vehicles, and uncertain 

transportation costs between customers and potential depots. Constraint (2) ensures that a 

vehicle is used to transfer the load from the depot to the customer. Constraint (3) ensures that 

each vehicle leaves the depot and returns to it. Constraints (4) and (5) guarantee that the 

equilibrium exists for each customer node, indicating the equality of the number of entries and 

exits to each customer node. Constraint (6) ensures that the sub tours are eliminated. Constraint 

(7) guarantees that each customer can only be assigned to one depot. Constraints (8) and (9) 

ensure that a customer is assigned to each depot, one of the vehicles assigned to the same depot 

is also assigned to the customer and all services are delivered to the customer by this vehicle. 

Constraint (10) guarantees that each customer can be assigned to at most one depot. Constraints 

(11) and (12) show the amount of demand to be delivered to each customer by each vehicle and 

ensure that each vehicle must have the product in its cabin tailored customers' demands before 

traveling from the depot. Constraint (13) ensures that each vehicle has a max-transferring for 

transferring the product to its customers. Constraint (14) guarantees that only depots having the 

capacity to deliver the product to customers can only be selected. Constraints (15) and (16) 

estimate the time of vehicle arrival to the customers and ensures that if the customers are 

assigned to the vehicle, arrival time can be achieved. Constraint (17) is related to the time 

window and ensures that the vehicle must satisfy the customers’ demand for each product over 

a specified period of time. Constraint (18) shows different types of decision variables. 

 

A robust optimization model for the MDLRP 
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In this section, Bertsimas and Sim [38] Robust Optimization (RO) approach has been used to 

control and analyze the effect of uncertain parameters. Considering the following optimization 

problem where the coefficients of the objective function are non-deterministic, the parameter 

𝛤0 controls the level of robustness in the objective function; therefore, we want to find the 

optimal value and optimal solution in cases where 𝛤0  changes and has the highest effect on the 

solution. 

 

P1):  Min c^T x) (21) 

Ax≤b (20) 

l ≤ x ≤ u      (21) 

 

In general cases, values higher than 𝛤0 increase the level of conservatism versus the higher 

cost to be paid for it in the objective function. 𝛤0 is necessarily an integer and 𝛤𝑖 can be either 

integers or non-integers. 

 

 

Accordingly, the robust counterpart is equivalent to a linear optimization problem which can 

be obtained as follows:  

It should be mentioned that the variables added to the robust counterpart model 

(𝑧𝑖 , 𝑦𝑗 , 𝑟𝑖𝑗, 𝑧0, 𝑟0𝑗) are used to adjust the robustness of the solution and apply the conservatism 

levels in the model, where z and r represent the vectors of the dual variables in the objective 

functions and constraints which are presented for the linearization of nonlinear formulas. Also,  

𝑒𝑗 denotes an uncertain parameter in the objective function. 

After adjusting and converting the model into a robust optimization one, it is coded in GAMS 

software, then it is solved and its results are compared with those of the deterministic model. 

As specified by the deterministic mathematical model, the uncertainty in the above 

parameters is related to the uncertainties of the objective function coefficients (c) and the 

technological coefficients (a). 

 

(𝑃2): min  𝑐𝑇𝑥 + 𝑧0𝛤0 + ∑ 𝑟0𝑗 𝑗∈𝐽0
                    

(22) 

∑ 𝑎𝑖𝑗𝑥𝑗 +𝑗 𝑧𝑖𝛤𝑖 + ∑ 𝑟𝑖𝑗𝑗∈𝐽𝑖
≤ 𝑏𝑖            ∀𝑖 

(23) 

𝑧0 + 𝑟0𝑗 ≥ 𝑒𝑗𝑦𝑗                                     ∀𝑗 ∈ 𝐽0 
(24) 

𝑧𝑖 + 𝑟𝑖𝑗 ≥ 𝑎̂𝑖𝑗𝑦𝑗                                     ∀𝑖 ≠ 0, 𝑗 ∈ 𝐽𝑖 (25) 

𝑟𝑖𝑗 ≥ 0                                                  ∀𝑖, 𝑗 ∈ 𝐽𝑖 (26) 

𝑦𝑗 ≥ 0                                                   ∀𝑗 
(27) 

𝑧𝑖 ≥ 0                                                    ∀𝑖 
(28) 

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗                                       ∀𝑗 
(29) 

𝑙𝑗≤ 𝑥𝑗 ≤ 𝑢𝑗                                             ∀𝑗 
(30) 

𝑇̃𝑘𝑖𝑣 ∈ [𝑇𝑘𝑖𝑣 − 𝑇̂𝑘𝑖𝑣, 𝑇𝑘𝑖𝑣 + 𝑇̂𝑘𝑖𝑣] 
𝑇̃𝑖𝑗𝑣 ∈ [𝑇𝑖𝑗𝑣 − 𝑇̂𝑖𝑗𝑣, 𝑇𝑖𝑗𝑣 + 𝑇̂𝑖𝑗𝑣] 
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Therefore, by modeling Bertsimas and Sim's Robust Optimization (RO) approach for the 

uncertainties of the objective function coefficients and the technological coefficients, as shown 

in Eqs. 22-30, the robust counterpart formulation of the research model can be rewritten. 

Then, based on the robust counterpart formulation in the study of Bertsimas and Sim [38], 

the mathematical model is transformed into its robust counterpart. Thus, Eq. 1 is converted to 

(31) and (32). Also, Eqs. 11 and 12 are converted to (33) and (34). Moreover, Eq. 14 is 

converted to (35), and the following relations are added to the mathematical model:  

In the above mathematical model, there are 3 parameters Γ. Each Γ specifies the robustness 

level in the model. Γ0 Controls the robustness level of the non-deterministic parameters in 

Equations 3-32. Γ1
𝑖𝑝 Controls the robustness level of the non-deterministic parameters in Eqs. 

33 and 34. Γ2
𝑘 Controls the robustness level of the non-deterministic parameters in Eq. 35. The 

control of the robustness level represents the worst and nominal values of the parameters. 

 

Min Z (31) 

∑ 𝛼𝑘𝐹𝐷𝑘

𝑘

+ ∑ 𝛽𝑣𝐹𝑉𝑣

𝑣

+ ∑ 𝐶𝑣𝑇𝑘𝑖𝑣𝑋𝑘𝑖𝑣

𝑘,𝑖,𝑣

+ ∑ 𝐶𝑣𝑇𝑖𝑗𝑣𝑌𝑖𝑗𝑣

𝑖,𝑗,𝑣

+ ∑ 𝐶𝑣𝑇𝑖𝑘𝑣𝑍𝑖𝑘𝑣

𝑘,𝑖,𝑣

+ 𝜆0Γ0

+ ∑ 𝜇𝑘𝑖𝑣
0

𝑘,𝑖,𝑣

+ ∑ 𝜇𝑖,𝑗,𝑣
1

𝑖,𝑗,𝑣

+ ∑ 𝜇𝑖𝑘𝑣
2

𝑘,𝑖,𝑣

− 𝑍 ≤ 0 
(32) 

𝑓𝑗𝑣𝑝 + 𝐷𝐷𝑖𝑝 + 𝜆1
𝑖𝑝Γ1

𝑖𝑝 + 𝜇𝑖𝑝
3 ≤ 𝑓𝑖𝑣𝑝 + 𝑃𝐷𝑖𝑝 + 𝑀(1 − 𝑌𝑗𝑖𝑣),     ∀𝑖, 𝑗, 𝑣, 𝑝 (33) 

𝑓𝑗𝑣𝑝 + 𝐷𝐷𝑖𝑝 − 𝜆1
𝑖𝑝Γ1

𝑖𝑝 − 𝜇𝑖𝑝
3 ≥ 𝑓𝑖𝑣𝑝 + 𝑃𝐷𝑖𝑝 − 𝑀(1 − 𝑌𝑗𝑖𝑣),     ∀𝑖, 𝑗, 𝑣, 𝑝 (34) 

∑(𝛾𝑖𝑘(𝐷𝐷𝑖𝑝 + 𝑃𝐷𝑖𝑝)𝑈𝑉𝑝 + 𝜇𝑖𝑝
4 ) +

𝑖,𝑝

𝜆2
𝑘Γ2

𝑘 ≤ 𝐶𝐷𝑘𝛼𝑘,     ∀𝑘 (35) 

𝜆0 + 𝜇𝑘𝑖𝑣
0 ≥ 𝐶𝑣𝑇̂𝑘𝑖𝑣𝑋𝑘𝑖𝑣          ∀𝑖, 𝑘, 𝑣 (36) 

𝜆0 + 𝜇𝑖𝑗𝑣
1 ≥ 𝐶𝑣𝑇̂𝑖𝑗𝑣𝑌𝑖𝑗𝑣          ∀𝑖, 𝑗, 𝑣 (37) 

𝜆0 + 𝜇𝑖𝑘𝑣
2 ≥ 𝐶𝑣𝑇̂𝑖𝑘𝑣𝑍𝑖𝑘𝑣         ∀𝑖, 𝑘, 𝑣 (38) 

𝜆1
𝑖𝑝 + 𝜇𝑖𝑝

3 ≥ 𝐷𝐷̂𝑖𝑝              ∀𝑖, 𝑝 (39) 

𝜆2
𝑘 + 𝜇𝑖𝑝

4 ≥ 𝛾𝑖𝑘𝐷𝐷̂𝑖𝑝 𝑈𝑉𝑝             ∀𝑖, 𝑘, 𝑝 (40) 

𝜇𝑘𝑖𝑣
0 , 𝜇𝑖,𝑗,𝑣

1 , 𝜇𝑖𝑘𝑣
2 , 𝜇𝑖𝑝

3 , 𝜇𝑖𝑝
4 ≥ 0 

 
(41) 

The probability of constraint violation in the robust counterpart model 

 

Bertsimas and Sim [38]  prove that by the formulation of the corresponding robust counterpart 

under the value Γ (both for the objective functions and for the constraints), the probability of 

constraint violation is equal to 𝑒
−2Γ2

|𝐽| , where  |𝐽|  represents the number of non-deterministic 

parameters. Also, the confidence level (CL) (probability of the non-violation of a constraint) is 

equal to 1- 𝑒
−2Γ2

|𝐽| .  

 

Meta-Heuristic solution method: The Proposed GA 

 

This section discusses the proposed solution methods. As mentioned previously, in this study, 

an exact algorithm (using GAMS software with BARON solver) and a Meta-Heuristic 

algorithm have been used to solve the problem. Because the exact algorithms failed to solve 

𝑇̃𝑖𝑘𝑣 ∈ [𝑇𝑖𝑘𝑣 − 𝑇̂𝑖𝑘𝑣, 𝑇𝑖𝑘𝑣 + 𝑇̂𝑖𝑘𝑣] 
𝐷𝐷̃𝑖𝑝 ∈ [𝐷𝐷𝑖𝑝 − 𝐷𝐷̂𝑖𝑝, 𝐷𝐷𝑖𝑝 + 𝐷𝐷̂𝑖𝑝] 
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larger-sized problems, a GA has been proposed. Therefore, first, the primary chromosome is 

designed to solve the MDLRP 

 

Design of the primary chromosome structure 

The design of the primary chromosome structure consists of two phases: one phase which 

determines the optimal location and number of depots and vehicles used, and another phase 

which determines the optimal vehicle routing to the customers’ demand. As can be seen in 

Table 2, seven customers, three potential depots, and five vehicles are considered. The length 

of the designed chromosome is equal to the number of customers, and the first row (Table 2) 

determines the optimal location and number of potential depots and the vehicles used, and the 

second row specifies a sequence of traveling a vehicle. 

 
Table 2. The structure of the chromosome designed for the problem 

7 6 5 4 3 2 1 Customer 

9 5 11 11 5 11 13 Vehicle-depot 

5 7 2 6 3 1 4 Sequence 

 

In the coding structure of the chromosome designed, random integers are generated between 

1 and 15. Then, these random integers are categorized into three groups as shown in Table 3. 

 
Table 3. How to code the primary chromosome designed for the MDLRP 

𝐷3 = {11,12,13,14,15} 𝐷2 = {6,7,8,9,10} 𝐷1 = {1,2,3,4,5} 

 

𝐷3 𝐷2 𝐷1  

11 6 1 Vehicle1 

12 7 2 Vehicle 2 

13 8 3 Vehicle 3 

14 9 4 Vehicle 4 

15 10 5 Vehicle 5 

 

As shown in Tables 2 and 3, the structure of the chromosome is illustrated by the example 

below. For example, if a chromosome generates integers 1, 6, or 11, all three integers 

representing vehicle 1 are used for routing. However, if the generated integer is 1, the vehicle 

must start from depot 1, if the generated integer is 6, the vehicle must start from depot 2 and, if 

the generated integer is 11, the vehicle must start from depot 3. To fully illustrate the given 

initial solution, as shown in Table 2, so we have:   

1. Vehicle 3 travels from depot 3 to customer 1 

2. Vehicle 1 travels from depot 3 to customers 2,4 and 5 

3. Vehicle 5 travels from depot 1 to customers 3 and 6 

4. Vehicle 4 travels from depot 2to customer 7 

Now, after assigning each customer to each depot and the vehicle, the vehicle routing (a 

sequence of traveling) must be specified.  In the second row (Table 2), the generated 

chromosome shows a sequence of traveling the vehicles. Therefore, the vehicles visit customers 

from a lower priority to a higher priority. To illustrate the vehicle routing phase, as shown in 

Fig. 2, thus we have:   

1. The vehicle travels from depot 3 to customer 1 and then returns to the same depot 

2. The vehicle travels from depot 3 to customers 2,5 and 4 and then returns to the same 

depot  

3. The vehicle travels from depot 1 to customers 3 and 6 and then returns to the same depot  

4. The vehicle travels from depot 2 to customer 7 and then returns to depot 7 
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After designing the primary chromosome, in the following, the two most important operators 

of GA, namely, mutation and crossover (also called recombination) operators are described. 

 

How to apply the crossover operator 

In this paper, the two-point crossover operator is performed on both the first and second 

parts of the chromosome. After replacing the parts of the parent, offsprings need to be modified, 

if necessary, the first part must be modified so that no vehicle is used twice in each depot and 

permutation is maintained in the second part. 

 

How to apply the mutation operator 

The mutation operator is also performed in three steps: 

In the first step, a gene (e.g., vehicle or depot) was chosen randomly and assigned to one of the 

customers randomly. 

In the second step, the two genes from the chromosome are selected randomly and replaced 

with each other. 

In the third step, a gene is selected randomly and the location of the depot for the same 

vehicle is changed. 

Also, for the second part of the chromosome (sequencing), the mutation is only considered 

as a displacement of two gene sequences. 

Before solving sample problems of different sizes, the primary parameters of the GA need 

to be adjusted. The Taguchi method is used for adjusting the primary parameters. The 

parameters of the GA used include: (1) weighted selection probability, (2) mutation probability, 

(3) Crossover probability, (4) the number of individuals in the population, and (5) a maximum 

number of repetitions. As displayed in Table 4, the three levels are considered for each of the 

five parameters in the Taguchi method. Following running 27 experiments with the Taguchi 

method, acceptable results have been obtained. 

The highest value of S/N is a criterion for selecting the values of the parameters. By 

comparing the difference between the maximum and minimum values in S/N, the significant 

effect of the MaxIt parameter (maximum number of repetitions) on the improvement of the 

solution GA process is evident. The parameters of Pm (mutation probability) and nPop (the 

number of individuals in the population) and Pc (crossover probability) and beta (weighted 

selection probability pressure) are ranked in the next places, respectively, based on their effect. 

 
Table 4. Levels of Parameters determined by the Taguchi method 

Level MaxIt nPop Pc Pm Beta 

Low 120 350 65/0 35/0 5 

Medium 200 300 75/0 55/0 5/6 

High 330 670 88/0 65/0 8/7 

 

Finally, Fig. 2 shows the mean S/N ratio plots and the mean values for adjusting the 

parameter of the GA by using the Taguchi method.  
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Fig. 2. The mean S/N ratio plots and mean values 

 

According to the graphs obtained from Minitab, as shown in Fig 2, the best values for the 

parameter of MaxIt, nPop, Pc, Pm, and beta are as follows: 

 

MaxIt = 330 (i.e., the third level) 

nPop = 670 (i.e., the third level) 

Pc = 0.65 (i.e., the first level) 

Pm = 0.65 (i.e., the third level)  

Beta = 6.5 (i.e., the second level) 

 

Analysis of experiments 
 

In this section, the exact method and GA are used in computing to find a solution and the results 

are analyzed. For this purpose, a sample problem of small size (Table 5 is designed based on 

the random data obtained (Table 6), and the results are presented by GAMS software and the 

GA. Tables 5 and 6 show the size of sample problems designed and interval bounds of the 

parameters generated based on uniform distribution, respectively. 

 
Table 5. Small-size sample problems 

|𝐼| |𝑃| |𝑉| |𝐾| 
Sample 

problem 

8 3 5 3 1 

 

Table 6. Interval bounds of the parameters generated 

Interval bound parameter Interval bound Parameter 

[10,30] 𝑈𝑉𝑝 [40,435] 𝑃𝐷𝑖𝑝 

[10,40] 𝐶𝑣 [100000,180000] 𝐶𝐷𝑘 
[10,200] 𝐸𝑖 [100,200] 𝐹𝐷𝑘 

[100,600] 𝐿𝑖 [30000,80000] 𝐶𝑉𝑣 

[10,50] 𝑆𝑇𝑖  [30,100] 𝐹𝑉𝑣 

Parameter Interval bounds 

𝐷𝐷̃𝑖𝑝 [5,100] 

𝑇̃𝑘𝑖𝑣 [10,50] 

𝑇̃𝑖𝑗𝑣 [10,50] 
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The results of the small-size problem and the values of the objective functions obtained from 

the exact method and the GA are presented in Table 7 and Fig. 3. Table 7 shows the values of 

objective functions and computational time, as well as the optimal location and number of 

depots by solution methods. Fig. 3 shows the optimal vehicle routing to deliver the customer’s 

demand using the GAMS software and the GA. The numbers inside the brackets in each node 

indicate the arrival and departure times from each node by each vehicle, respectively, so that 

the departure time of the last customer represents the total time of the tour. 

 
Table 7.  The value of the objective function and the output variables of the small-size sample problem 

Solution 

method 

The value 

of the 

objective 

function 

Computational 

time (S) 

The 

optimal 

location 

and 

number of 

depots 

The number 

of vehicles 

selected 

Traveled   

route 

Tour 

duration 

(min) 

Exact 1323 57 1 
2 8-1-7-4 51 

3 6-2-3-5 62 

Metaheuristic 

(GA) 
1325 92 1 

4 8-1-7-4 51 

3 6-2-3-5 62 

 

As can be seen from Table 7, the depots selected and vehicles used have the same number 

when using the two above-mentioned solution methods, but they differ only in the optimal type 

of the selected vehicles. Also, the relative percentage difference of the value of the objective 

function of GA is 1% as compared with the exact algorithm, indicating the GA has a higher 

efficiency in obtaining optimal solutions.  

 
GAMS 

 

 

 

 

Genetic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not selected facilities 2 and3 not selected facilities 2 and 3 

vehicles that are not used 1,4 and5 vehicles that are not used 1,2 and5 

Fig. 3. Optimal Vehicle Routing of small-size sample problem 

 

To investigate and compare the solution methods of large-size problems, and evaluate the 

efficiency of the GA in solving the MDLRP, a total of 10 sample problems of different sizes 

(Table 8) are designed based on the data from Table 7. 

Depot 3 

Depot 3 

Depot 2 

Depot 1 

6 

2 

4 

7 1 8 

5 

3 

[16-18] 
 

[35-37] 

 

[47-49] 
 

[49-51] 

 

[9-11] 

 

[25-27] 
 

[40-42] 

 

[60-62] 
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3 
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Depot 2 
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Table 8. Small-size sample problems 

|𝐼| |𝑃| |𝑉| |𝐾| 
sample 

problem 

8 3 5 3 1 

10 5 9 4 2 

13 5 10 5 3 

17 6 10 6 4 

20 6 11 7 5 

24 6 11 8 6 

27 7 12 9 7 

30 7 12 10 8 

35 7 13 11 9 

40 8 14 12 10 

 

The numerical results of 10 sample problems are shown in Table 9. The results of this table 

include the optimal value of the objective function obtained from the GAMS software, as well 

as the values obtained from solving sample problems with the GA in 5 consecutive repetitions. 

The computational time for solving sample problems is also presented in Table 9. 

 
Table 9. Comparison of results from the exact and GAs of solving sample problems 

The value of the objective function Mean computational time (s) sample 

problems GAMS GA  GAMS GA 

1323 1325 57 92 1 

1670 1676 73 128 2 

1964 1981 238 205 3 

2573 2605 789 318 4 

2991 3074 1338 465 5 

- 3983 - 664 6 

- 4726 - 989 7 

- 5878 - 1211 8 

- 7345 - 1658 9 

- 9846 - 2148 10 

 

To evaluate the efficiency of the GA in obtaining optimal solutions, the relative percentage 

difference of each of the repetitions and the mean percentage difference of the total repetitions 

are given in Table 10. 

 
Table 10. The relative percentage difference of sample problems 1-5 

the mean 

percentage 

difference 

the relative percentage difference of five repetitions 
Sample   

problem 

0.000013 0.00001 0.000015 0.00001 0.00002 0.00001 1 

0.0036 0.0035 0.0037 0.0034 0.0035 0.0036 2 

0.00864 0.0086 0.0086 0.0086 0.0089 0.0085 3 

0.0122 0.012 0.012 0.014 0.011 0.012 4 

0.0274 0.027 0.026 0.029 0.027 0.028 5 

 

As can be seen from Table 10, with the increasing size of the problem, the relative percentage 

difference obtained from the GA is very small and in general, the solved sample problems are 

reported to be about 1%. Also, due to the complexity of the problem and model, GAMS 

software can only solve sample problems 1-5. Figs. 4 and 5 compare the mean values of the 

objective function and the computational time of solving sample problems with solution 

methods, respectively. 
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Fig. 5. Comparison of computational time of exact and GAs in sample problems 

 

As is clear from the above, the GA solutions approximate to those of the exact algorithm, 

although they are slightly worse, they are close to optimal solutions. The GA performs much 

better than the exact algorithm concerning time. Moreover, GAMS software fails to solve the 

large-size problem, and the time to find a solution grows exponentially with increasing the size 

of the problem. However, the GA quite efficient for problems of large sizes, and can nearly find 

the optimal solution in a much shorter amount of time. 

Due to uncertainties in parameters such as transportation cost and demand, the Bertsimas 

and Sim (B&S) Robust Optimization (RO) approach is used to model the problem. The 

parameters of the customers’ demand for each product and transportation cost are considered 

to be robust. The B&S Robust Optimization (RO) approach has advantages over the 

probabilistic approach in terms of solving the problem, the lack of need for the probability 

distribution of uncertain data, and the use of historical data and decision-making experiences, 

leading to the selection of this method to control the uncertain parameters. For this reason, the 

B&S robust optimization model for MDLRP is as follows. 
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Analysis of the results of the robust mathematical model 
 

Given the uncertainty in the parameters of the mathematical model, in Section 3, a robust 

mathematical model is presented to deal with uncertainty. In this mathematical model, Γ0, Γ1
𝑖𝑝, 

and Γ2
𝑘  are considered as control parameters of a robust optimization model. According to 

Bertsimas and Sim [38], the values of these parameters are selected based on the confidence 

level of decision-makers. In this section, different confidence levels are considered for 

sensitivity analysis, and accordingly, the control parameter values for the numerical example 2 

are determined, as shown in Table 11. 

 

Table 11. The control parameter values of the robust counterpart model 

confidence level 

The probability of 

constraint 

violation 
𝚪𝟎 𝚪𝟏

𝒊𝒑 𝚪𝟐
𝒌 

0.5 0.5 1.177 8.326 2.355 

0.6 0.4 1.354 9.572 2.907 

0.7 0.3 1.752 15.973 3.604 

0.8 0.2 2.448 17.308 4.895 

0.9 0.1 2.746 18.174 5.292 

0.95 0.05 2.948 20.308 5.895 

0.99 0.01 3.035 21.460 6.070 

 

 

 

 

Fig 6. Effect of confidence level on the control parameter values 

 

 

 

Fig. 6. Effect of confidence level on the control parameter values 

 

As shown in Fig. 6, the control parameter values  can be increased nonlinearly with 

increasing the confidence level. Increasing the control parameter values indicates that more 

parameters in their worst state are considered and then the model is optimized. Therefore, it can 

be argued that more uncertain parameters have deviated from their nominal value (the value 

used in an uncertain solution) as the confidence level increases, and thus the result is closer to 

real conditions. 

Then, the mathematical model is optimized under the different confidence levels, and the 

value of its objective function is reported. The results are presented in Table 12. 
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As can be seen in Table 12, the percentage increase in the objective function compared to its 

best state (basic non-robust model) is represented by R% in which, the confidence level of the 

basic non-robust model is one and parameters assume no uncertainty and the nominal values 

given for the parameters are constant and exact (In fact, we know that and some parameters 

have tolerance). 

 
Table 12. The results of optimizing the robust model 

confidence level 

(CL) 

Z (without 

uncertainty) 

Z (with 

considering 

uncertainty and 

robust status) 

R% 

Percentage 

difference of each 

confidence level 

compared to the 

previous CL 

0.5 1670 1718.5312 2.8% 2.8% 

0.6 1670 2228.8720 33% 30.2% 

0.7 1670 2399.3342 43% 10% 

0.8 1670 2527.360 51% 8% 

0.9 1670 2976.6527 78% 27% 

0.95 1670 3167.249 89% 12% 

0.99 1670 3293.7932 97% 8% 

 

 

Fig. 7. Sensitivity analysis of the robust counterpart model 

 

As shown in Fig. 7, increasing the confidence level has led to an increase in the value of the 

objective function of the robust counterpart model. “The reason for this is that the control 

parameter values are increased with increasing the confidence level, and as a result, more 

uncertain parameters would be required in the worst case, and thus the optimal solution of the 

objective function is increased. As shown in Fig. 7, this increase does not exhibit linear 

behavior, so the best possible state can be chosen among them. The best state is that has a higher 

degree of robustness, in other words, it has less variability compared to the confidence level. 

According to the above figure, at the 80% confidence level, the minimum changes in the 

objective function are observed as compared with the previous CL, while changes in the 
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objective function are higher than those in the next CL, i.e., if we want to obtain a 90% 

confidence level, it requires more cost, but increasing the confidence level from 70% to 80% 

does not need a more cost, so an 80% confidence level can be considered as an ideal solution 

for the robust counterpart model. Analysis of the values of R% is performed in the same way. 

As is clear from the above, the higher the confidence level, the greater the percentage increase 

in the value of the objective function would be, indicating that the decision-maker must 

determine an equilibrium level between the confidence level and the R%, and the comparisons 

show that the equilibrium level can be obtained at an 80%confidence level. 

 

Conclusions and Suggestions for Future Research 
 

In this paper, a multi-depot location routing problem has been modeled under uncertainty in 

demand and transportation times to reduce total transportation costs. This study addresses the 

decision to select the optimal location and number of facilities as well as the heterogeneous 

vehicle routing problem (HVRP) for multiple products. Unlike other papers published, in this 

study, a robust optimization approach has been used to control uncertain parameters. Also, the 

GA has been applied to solve the problem using a heuristic chromosome, which shows the 

effectiveness of this chromosome in the results obtained from solving sample problems. To 

evaluate the efficiency of the GA with the designed chromosome, a total of 10 sample problems 

were designed. The results showed that GAMS software fails to solve large and medium-sized 

problems. However, by calculating the relative percentage difference, it is found that the 

maximum difference between the results of the objective function is about 1% concerning the 

GA and the GAMS software, while the GA has solved the problem in a much shorter amount 

of time as compared with the GAMS software.  

Given the widespread use of the multi-depot vehicle routing problem (MDVRP), it is 

recommended that further research be undertaken in the following areas: 

a) The GA is one of the meta-heuristic methods available and the study of a given problem 

with other meta-heuristic methods may lead to better or worse results. Therefore, this 

problem can be solved with other meta-heuristic algorithms and compared the results 

with those of the present study. 

b) We propose a single-objective model, but a multi-objective model can present to 

minimize CO2 from the vehicle. 

c) The proposed model can be implemented at real projects of petroleum products 

distribution systems, pharmaceuticals, food industry, and major industries in Iran to 

organize the transportation system such as oil and steel industries and shuttle services. 
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