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ABSTRACT ARTICLE INFO

It is well-known that, given inorder traversal along with

one of the preorder or postorder traversals of a binary tree,

the tree can be determined uniquely. Several algorithms

have been proposed to reconstruct a binary tree from its in-

order and preorder traversals. There is one study to recon-

struct a binary tree from its inorder and postorder traver-

sals, and this algorithm takes running time of O
(
n2
)
. In

this paper, we present InPos an improved algorithm to

reconstruct a binary tree from its inorder and postorder

traversals. The running time and space complexity of the

algorithm are an order of θ
(
n
)

and θ
(
n
)

respectively, which

we prove to be optimal. The InPos algorithm not only re-

constructs the binary tree, but also it determines
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Abstract continued

di�erent types of the nodes in a binary tree; nodes with two children, nodes with one child,

and nodes with no child. At the end, the InPos returns a matrix-based structure to represent

the binary tree, and enabling access to any structural information of the reconstructed tree in

linear time with any given tree traversals.

1 Introduction

Binary trees [9, 22] are fundamental structures in computer science (CS). Tree traversals are

therefore among one of the most important topics in CS [3]. In fact, many algorithms work on

binary trees by using its traversals. We mentione a few examples here. The time complexity

of combinatorial Gray coding by a twisted tree and new tree traversal, has been abdicated

to O
(
1
)

time [24]. In [12], it has been shown that k-pebble tree transducer, a kind of tree

traversal, can be typechecked in (k+2)-fold exponential time for both ranked and unranked

tree. In [13], A method for semi-algorithmic veri�cation of programs has been proposed that

manipulate balanced trees using a tree traversals.

In general, there are three binary tree traversals; inorder, preorder, and postorder. These binary

tree traversals are also termed tree walk in [9]. The inorder traversal �rst visits the value of

the root of a subtree between visiting the values of its left subtree and respectively visiting

those in its right subtree. Similarly, a preorder traversal visits the root before the values in

either subtree, and the postorder traversal prints the root after the values in its subtrees [9].

The problem of reconstructing a binary tree from its inorder preorder traversals, is �rst pro-

posed by Knuth [17]. This reconstruction is also used in program inversion [8]. Nowadays it

is common knowledge that given the inorder traversal of a binary tree, along with one of the

preorder or postorder traversals, one can identify and reconstruct the tree uniquely. Regarding

a binary tree T with n nodes, several studies have been presented to rebuild a binary tree from

its inorder and preorder traversals as well as inorder postorder traversals. Primary studies

used the inorder-preorder sequence (i-p sequence for short), which is annunciated in [14] and

also is called tree-permutation in [16]. These algorithms are based on two stages. In the �rst

stage the i-p sequence is built, and in the second stage the binary tree will be reconstructed

using the i-p sequence. We review here all the results from the literature to date.

Two algorithms were proposed by [4] to rebuild a binary tree from its inorder and preorder as

well as inorder and postorder traversals. Both algorithms take O
(
n2
)

time. Shortly thereafter

[6, 7], presented two algorithms to reconstruct a binary tree from its inorder and preorder

traversals. In one of these two algorithms binary search [5] and in the other hashing tech-

niques [18] are applied. The second algorithm has running time and space O
(
nlogn

)
and

O
(
n
)

respectively. The �rst one has running time of O
(
n
)

but non-optimal space complexity.

Solugh and E�e [23] also used this approach but with a slight twist; �rstly, they applied the

preorder traversal in the second stage of their algorithm. Moreover, instead of using the search

method aforementioned, they applied the recursive property of the i-p sequence. The running

time of the algorithm is linear.

In Mäkinen [20], an iterative algorithm is presented to rebuild a binary tree from its inorder
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and preorder traversals. The algorithm uses a stack of controlled pointers, and reconstructs

a binary tree using this stack and moving on the preorder and inorder traversals. Besides, a

certain combination of the two traversals were applied. The algorithm has time and space

complexity of an order of O
(
n
)
. Four algorithms were proposed in [2], to rebuild an or-

der binary tree from its preorder traversal along with structural information, like inorder or

postorder traversals. Firstly, they proved that given preorder and postorder traversals of an

ordered binary tree, the tree will be reconstructed. Secondly, they showed that given preorder

traversal along with inorder traversal of a directed tree, the tree will be rebuilt. Thirdly, they

illustrated with only preorder traversal of a binary search tree, the tree will be reconstructed.

All these three algorithms take linear time and need an extra stack space which is commensu-

rate with the height of the reconstruction tree. Finally, they proposed an iterative algorithm to

reconstruct a directed tree from its preorder and postorder traversals in optimal space by using

empty pointers instead of a stack [2]. Cameron et al. [5] applied dual-order traversal [21],

the combination of inorder and preorder traversals, to obtain the i-p sequence. The time and

space complexity of their algorithm are in orders of O
(
n
)

and O
(
h
)
, where h is height of the

tree respectively.

Recently, two studies [3, 10] focus on an algorithm to rebuild a binary tree from its inorder

and preorder traversals. The earlier study [10] proposes an iterative algorithm which takes

the O
(
n
)

and O
(
nlogn

)
for time and space respectively. In the later study [3] the authors

’prove’ that the algorithm proposed in [10] works correctly in most of the cases, however,

in some cases it returns a binary tree which is not correct. To address this problem, they use

some restrictions on the algorithm which take a constant time. Consequently, the modi�ed

algorithm [3] takes the same time and space complexity as the original critisized algorithm

and is not better. In the best case time the algorithm takes O
(
n
)
, though.

In [11] an algorithm to reconstruct all binary trees from its preorder and reversal of preorder

is presented, which takes a linear time and space.

Here in this paper, we consider binary trees [9, 22] rather than ordered binary trees [2],

such that the position of the nodes does matter; whether an internal node is either a left or

right child. We will present our novel algorithm InPos to reconstruct a binary tree from its

inorder and postorder traversals, which, as is well-known, enables to reconstruct the binary

uniquely. But InPos not only reconstructs the binary tree, it also determines di�erent types

of each node: whether it has no child (which also is termed leaf of a binary tree), one child, or

is a node with two children. At the end InPos returns a matrix-based structure, such that any

structural information of the reconstructed binary tree can be gained in linear time by any

given tree traversals.

In section 2, we give InPos and exemplify how this algorithm works. In section 3, we present

our results and in section 4 we give our discussion in which we discuss the some of the pre-

sented algorithms with details. Finally, in section 5 our conclusion is given. Although in this

paper we work on tree traversal sequences rather than the shape of the tree, in order to ex-

emplify our discussion in some cases we have depicted the shape of the tree or some parts of

it abstractly.
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2 Algorithm

In this section, we propose the InPos algorithm to reconstruct a binary tree from its inorder

and postorder traversals. Then, within an example we will show how the algorithm works.

For each type each node we classify it into one of three following categories.

i nodes with two children (two-child nodes), such that the node has exactly two children.

ii nodes with one child (one-child nodes), such that the node has exactly one child.

iii nodes with no child (no-child nodes), such that the node has no child, is a leaf.

2.1 Presenting the reconstruction algorithm

Here, we �rst give the general description of the InPos algorithm. Then, we explain the pseudo

code of it. Based on postorder traversal, we have the following properties.

Property 1. According to postorder traversal, the rightmost element of the postorder traversal is
always the root node.

Property 2. According to postorder traversal, the parent node is always placed after its child
(children).

On the other hand, the inorder and postorder traversals together share some features. Consid-

ering a node in postorder traversal, the left and right subtrees of the node can be determined

by inorder traversal. Theorem 1 re�ects this feature.

Theorem 1. If a node x is in postorder traversal, then in the inorder traversal all the elements at
the left and at the right of of x are in the left and right subtrees of x respectively.

Proof. For a given node, say x, according to inorder traversal, the left subtree of x will be

visited, then the x element, and �nally its right subtree. Therefore, all the elements at the

left and at the right of the x in inorder traversal are placed in the left and right subtrees of x
respectively.

Thus, regarding each node in postorder traversal, we can de�ne the elements on its left and

right subtrees respectively, based on inorder traversal.

Nodes with one child whose only child is a leaf also share a feature in both traversals. In

fact, these two nodes will appear as two consecutives in both traversals, however, their orders

depend on the position of the child; either left or right. Theorem 2 and Theorem 3 show this

feature.

Theorem 2. A one-child node x has a leaf left child y if and only if y,xare two consecutive
elements both in inorder and postorder traversals.
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Figure 1: Parts of a binary tree considered in Theorem 1 and Theorem 2. Subtrees which do

not contain any value means that those subtrees can be either empty or not. Vertical edges

show that those edges can be either left or right. (a) Part of a binary tree in which the node

y is in a right subtree of the node z. (b) Part of a binary tree in which the node y is in a left

subtree of the node z. (c) Part of a binary tree in which the node y is placed in a subtree which

is not rooted at node z.

Proof. (⇒): According to inorder traversal, since the node x does not have a right child and

the node y is a leaf, the node y and then the node x will be visited. Likewise, in postorder

traversal the node y and then the node x are visited respectively.

(⇐): In contrary, let x is not a one-child node with the leaf left child y. We have the three

following cases:

1. The node x is leaf and the node y is placed elsewhere. Let z be the parent of x. Without

loss of generality, let x be the left child of the z. We have the two following cases:

(a) The node y is placed in right subtree of the node z (Figure 1(a)). According to

postorder traversal, in general, we have . . . ,x,. . . ,y,. . . ,z,. . . . It is evident that the

node y never precedes the node x, thus it is a contradiction.

(b) The node y is place in a one of a subtrees rooted from a node except z, say w (Fig-

ure 1(c)). According to postorder traversal, in general, we have either . . . ,x,z,. . . ,y,. . . ,w,. . . or

. . . ,y,. . . ,w,. . . ,x,z,. . . . It is evident that the node y never precedes the node x, thus it

is a contradiction.

2. The node x is node with one child. Let its child be z which is a leaf. Without loss of

generality, let z is the left child of the x and the node y is placed elsewhere. According

to postorder traversal, in general, we have . . . ,z,x,. . . . It is evident that the node x always

immediately followed by the node z. Thus, it is a contradiction. It should be noted that

in this case by the assumption, we just can consider that the node z is a leaf.

3. The node x is node with two children z and w such that the nodes z and w are the left

and right children of the x respectively. We have three following cases:

(a) The node y is placed in the on of the subtrees of the node z. According to postorder

traversal, in general we have . . . ,y,. . . ,z,. . . ,w,x, . . . . It is evident that the node y never
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precedes the node x, thus it is a contradiction.

(b) The node y is placed in the one of the subtrees of the node of the node w. According

to postorder traversal, in general, we have, . . . ,z,. . . ,y,. . . ,w,x,. . . . The node x always

followed by the node w, which is contradiction.

(c) The node y is neither in left and right subtrees of the node x, so it is placed else-

where. According to postorder traversal, in general, we have either

. . . ,y,. . . ,z,. . . ,w,x,. . . or . . . ,z,. . . ,w,x,. . . ,y,. . . . It is evident that the node x is never fol-

lowed by the node y, which is contradiction.

Therefore, x is a node with one child y which is a leaf and the left child.

Theorem 3. A one-child node x has a leaf right child y if and only if x,y and y,x two consecutive
elements in inorder and postorder traversals respectively.

Proof. (⇒): According to inorder traversal, since the node x does not have a left child and the

node y is a leaf, in inorder traversal the node x and then the node y will be visited. On the

other hand, in postorder traversal the node y and the node x are visited respectively.

(⇐): In contrary, let x is not a one-child node with the leaf right child y. We have the three

following cases:

1. The node x is leaf and the node y is placed elsewhere. Let z be the parent of x. We have

the two following cases:

(a) Either the node y is placed in left subtree of the node z (Figure 1(a)), which accord-

ing to inorder traversal, in general, we have . . . ,y,. . . ,z,x,. . . or the node y is place

right subtree of the node z, which based on inorder traversal, in general, we have

. . . ,x,z,. . . ,y,. . . (Figure 1(b)). It is evident in both conditions the node y never pre-

cedes the node x, thus it is a contradiction.

(b) The node y is place in one of the subtree rooted from a node except z, say w and

the node x is either the left or right child of the node z. According to postorder

traversal, in general, we have either . . . ,x,z,. . . ,y,. . . ,w,. . . or . . . ,y,. . . ,w,. . . ,x,z,. . . . It is

evident that node z is always followed by the node z, thus it is contradiction.

2. The node x is node with one child. Let its child be z and is a leaf. Without loss of

generality, let z is the right child of the x, and the node y is placed elsewhere. According

to postorder traversal, in general, we have . . . ,z,x,. . . . Since the node z always precedes

the node x, it is a contradiction. It should be noted that in this case by the assumption,

we just can consider that the node z is a leaf.

3. The node x is node with two children z and w such that the nodes z and w are the left

and right children of the x respectively. We have three following cases:

(a) The node y is placed in the on of the subtrees of the node z. According to postorder

traversal, in general we have . . . ,y,. . . ,z,. . . ,w,x, . . . . It is evident that the node w
always precedes the node x, thus it is a contradiction.
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Figure 2: A binary tree. The inorder traversal is b,j,e,a,f,c,g,n, and the postorder traversal is

j,e,b,f,n,g,c,a

(b) The node y is placed in the one of the subtrees of the node w. According to pos-

torder traversal, in general, we have, . . . ,z,. . . ,y,. . . ,w,x,. . . . The node w always pre-

cedes the node x, which is contradiction.

(c) The node y is neither in left and right subtrees of the node x, so it is placed else-

where. According to postorder traversal, in general, we have either

. . . ,y,. . . ,z,. . . ,w,x,. . . or . . . ,z,. . . ,w,x,. . . ,y,. . . . It is evident that the node w always pre-

cedes the node x, which is contradiction.

Therefore, x is a node with one child y which is a right child.

The algorithm starts the reconstruction process by both postorder and inorder traversals to-

gether. It uses a stack and inorder traversal for control and postorder traversal to reconstruct

a binary tree from its inorder and postorder traversals. It moves on postorder from the last to

the �rst element, because of the Property 1 and Property 2. In fact, it starts the reconstruction

process by considering the root node which is located at the end of the postorder traversal.

It then, �rst reconstructs the right subtree of the root and then its left subtree recursively,

since in postorder traversal based one Property 2 the right child of a node is visited after its

left child. The algorithm, in each step considers a node from postorder traversal, say current

node. It then, determines whether the child of the current node have a right subtree or not

according to Theorem 1, Theorem 2, and Theorem 3 . In fact, according to these theorems we

consider in the algorithm per iteration two consecutive elements in postorder traversal (for

more information see the InPos algorithm). On the other hand, since for the current node

all the elements in its left and right subtrees are placed before and after the current node in

inorder traversal, it moves on the inorder traversal from the last element to the right. If the

current node has a right child, it pushes the index child node of postorder traversal in the

stack. By pushing the index of the node, it can access the node without any searching during

the pop process. Thus, in the stack the index of the elements that have a right subtree will be

pushed. The algorithm pops up an element from the stack, when the right subtree of the ele-

ment at the top of the stack is already built, and its left subtree should be built. So the current

node will be changed to the element at the top of the stack. In e�ect, it is evident when the

current inorder traversal node is equal to the top of the stack, the right subtrees are already

constructed, and so the left subtrees of the elements in the stack, if existing, should be rebuilt.
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Figure 3: The process of the reconstruction of the binary tree depicted in Figure 2. The process

of the reconstruction is shown one by one. In each step the added node is colored red.

As a result, in this condition it pops up the element at the top of the stack and changes the

current node to the popped element. Thereafter, it initiates the attributes of the current node

as well as the parent index of the child, and continue this process for either the child node or

for the element popped up from the stack. Regarding a binary tree illustrated in Figure 2, the

process of reconstruction is depicted in Figure 3, one by one. As is seen in Figure 3 the right

subtree of each node �rstly is rebuild, then the algorithm reconstructed the left subtrees, if

they existed.

2.2 InPos algorithm

Here, we give the pseudo code of the InPos algorithm using the pseudo code style de�ned in

[9]. The algorithm is implemented in the C# and MATLAB programming languages, and is

available upon request. In this algorithm, we let In and Pos denote to inorder and postorder

traversals respectively. Two variablesLeft andRight show whether the algorithm is working

on a left or right subtree respectively. The variable CurrentNode also shows the considered

node in postorder traversal. Two functions, Push and Pop show the two operation on the

stack. The function Push(stack, x), inserts the element x at the top of the stack. Similarly, the

operation Pop, returns and then removes the element at the top of the stack.

In InPos we consider four attributes per node; parent, left, right, and type. The attributes

parent, left, and right, for a given node show the parent, left child, and right child indices
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corresponding to the postorder traversal. The attribute type indicates the type of the node,

which is either 0, 1, and 2. These numbers correspond respectively to no-child, one-child, and

two-child nodes. We note that there is di�erence between Left and left as well as Right
and right, so that the variables Left and Right depict that in which subtree the algorithm is

working, while left and right are attributes that should be initiated during the reconstruction

process.

Algorithm1 in initial steps, makes the type value of each node equivalent to 0. Two variables

countpos and countin illustrate the indices of the considered nodes in inorder and postorder

traversals respectively. As is said in advance, since the process of reconstruction starts with

the end of the two traversals, the initial value of the countin is equal to the index of the last

element in inorder traversal. The value of the countpos is at �rst equal to the last but two ele-

ments of the postorder traversal, since it is known that the last element is the root node, and

during the reconstruction process the two postorder consecutives from the end to the �rst are

considered.

The algorithm, then �rstly checks whether the last elements if the inorder and postorder

traversals are equal or not. By this comparison it recognizes that the root of the tree has a

right subtree or not. According to Theorem 1, it is obvious, if they are equal, then the root

does not have a right subtree, and so the algorithm should work on the left subtree of the root,

and in this condition it sets the variableLeft equal to 1. Otherwise, it pushes the root node into

to the stack, since it has the right subtree (for more information see section 2.1 Presenting the

reconstruction algorithm). As it was mentioned before, by two variables Left and Right the

algorithm identi�es whether to work on either left or right subtree of a current node. At �rst,

the variableCurrentNode is equal to the last element of postorder, as the algorithm starts the

reconstruction process from the root of the tree. In each iteration of the for loop (line 12), the

position of a node is recognized and based on this its corresponding attributes are initiated.

The while loop (line 13), checks the element at the top of the stack whether it is equivalent to

the considered node in inorder traversals or not. If they are equal, the algorithm understands

that the right subtree of the considered node in postorder is already rebuilt and so it pops up

the element from top of the stack and initiates the CurrentNode to this element, and sets the

variable Left equal to 1, since it has to work on the left subtree of the CurrentNode in pos-

torder traversal. In fact, if a node is popped up from the stack, the algorithm recognizes that

the right subtrees are rebuilt and it should reconstruct the left subtree of the pushed nodes,

one by one. Here, it uses a loop, because some nodes in the stack may not have any left sub-

tree and then by the comparison in the while loop (line 13) it eliminates the nodes that are

pushed and do not have a left subtree. Therefore, after this loop, the CurrentNode is such

node that its right subtree is already rebuilt and it has a left subtree that the algorithm should

reconstruct. In the rest of the algorithm there are two if conditions, such that each of them

along with their else parts initiate the corresponding attributes based on the position of the

current node, its child, variables Left and Right. In fact, in each iteration one of these four

parts is performed.
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Algorithm 1 Reconstructing a binary tree from its inorder and postorder traversals.

InPos(In, Pos)

1 stack.top = nil

2 CurrentNode = Pos[Pos.length]
3 countin = In.length
4 for i = Pos.length downto 1
5 Pos[i].type = 0
6 if Pos[Pos.length] == In[In.length]
7 Left = 1
8 Right = 0
9 else Left = 0

10 Right = 1
11 Push(stack, Pos.length)
12 for countpos = Pos.length− 2 downto 0
13 while Pos[stack.top] == In[countin] and stack.top 6= nil

14 CurrentNode = stack.top
15 Pop(stack)
16 Left = 1
17 Right = 0
18 countin = countin − 1
19 if Pos[countpos + 1] 6= In[countin]
20 Push(stack, countpos + 1)
21 if Left == 1
22 Pos[CurrentNode].left = Countpos + 1
23 Pos[countpos + 1].parent = CurrentNode
24 Pos[CurrentNode].type = Pos[CurrentNode].type+ 1
25 else Pos[CurrentNode].right = Countpos + 1
26 Pos[countpos + 1].parent = CurrentNode
27 Pos[CurrentNode].type = Pos[CurrentNode].type+ 1
28 Left = 0
29 Right = 1
30 else if Left == 1
31 Pos[CurrentNode].left = Countpos + 1
32 Pos[countpos + 1].parent = CurrentNode
33 Pos[CurrentNode].type = Pos[CurrentNode].type+ 1
34 else Pos[CurrentNode].right = Countpos + 1
35 Pos[countpos + 1].parent = CurrentNode
36 Pos[CurrentNode].type = Pos[CurrentNode].type+ 1
37 Left = 1
38 Right = 0
39 countin = countin − 1
40 CurrentNode = countpos + 1
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1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / / / / / / /

left / / / / / / / /

right / / / / / / / /

type 0 0 0 0 0 0 0 0

Figure 4: Initial step, consider four attributes per node associated with postorder traversal. all

the three attributes of parent, left, and right are equal to nil , and the value of the attribute

type is equivalent to 0.

1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / / / / / 8 /

left / / / / / / / /

right / / / / / / / 7

type 0 0 0 0 0 0 0 1

Figure 5: First iteration of the for loop. The element c is de�ned as right child of the element

a. The corresponding attributes are initiated.

2.3 Example of the InPos algorithm

Here we exemplify how our algorithm InPos works. Once again consider the inorder and pos-

torder traversals for the binary tree illustrated in Figure 2. Each �gure shows one iteration of

the for loop. For convenience, in each �gure the initiated attributes as well as their associated

indices are colored red.

Figure 4 shows the initial steps of the algorithm, in which all the attributes except the type
are equal to nil, and the initial value of the type for all the elements is 0. The index of the

root (i.e. 8) is pushed into the stack. Figure 5 shows the �rst iteration of the for loop of the

algorithm. The index of the element c (i.e. 7) is pushed into the stack. The right child of the

root node (i.e. a) is de�ned which is the element c. The attributes right and type for the

element a, as well as the attribute parent for the element c are initiated. Figure 6 shows the

second iteration of the for loop of the algorithm. The index of the elements g (i.e. 6) is pushed

into the stack. The right child of the CurrentNode (i.e. c) is de�ned which is the element g.
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1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / / / / 7 8 /

left / / / / / / / /

right / / / / / / 6 7

type 0 0 0 0 0 0 1 1

Figure 6: Second iteration of the for loop. The element g is de�ned as right child of the element

c. The corresponding attributes are initiated.

1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / / / 6 7 8 /

left / / / / / / / /

right / / / / / 5 6 7

type 0 0 0 0 0 1 1 1

Figure 7: Third iteration of the for loop. The element n is de�ned as right child of the element

g. The corresponding attributes are initiated.

1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / / 7 6 7 8 /

left / / / / / / 4 /

right / / / / / 5 6 7

type 0 0 0 0 0 1 2 1

Figure 8: Next iteration of the for loop. The element f is de�ned as left child of the element

c. The corresponding attributes are initiated.
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1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / / 8 7 6 7 8 /

left / / / / / / 4 3

right / / / / / 5 6 7

type 0 0 0 0 0 1 2 2

Figure 9: Next iteration of the for loop. The element b is de�ned as left child of the element a.

The corresponding attributes are initiated.

1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent / 3 8 7 6 7 8 /

left / / / / / / 4 3

right / / 2 / / 5 6 7

type 0 0 1 0 0 1 2 2

Figure 10: Next iteration of the for loop. The element e is de�ned as right child of the element

b. The corresponding attributes are initiated.

1 2 3 4 5 6 7 8

In b e j a f c g n

1 2 3 4 5 6 7 8

Pos j e b f n g c a

1 2 3 4 5 6 7 8

parent 2 3 8 7 6 7 8 /

left / 1 / / / / 4 3

right / / 2 / / 5 6 7

type 0 1 1 0 0 1 2 2

Figure 11: Next iteration of the for loop. The element b is de�ned as left child of the element

a. The corresponding attributes are initiated.
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The attributes right and type for the element c, as well as the attribute parent for the element

g are initiated. Figure 7 shows the third iteration of the for loop of the algorithm. No elements

are pushed or popped up into or from the stack. The right child of the CurrentNode (i.e. g)

is de�ned which is the element n. The attributes right and type for the element g, as well as

the attribute parent for the element n are initiated. Figure 8 shows the next iteration of the

for loop of the algorithm. The index of the elements g and c (i.e. 6 and 7 ) are popped up from

the stack in order. The left child of the CurrentNode (i.e. c) is de�ned which is the element f.
The attributes left and type for the element c, as well as the attribute parent for the element

f are initiated. Figure 9 shows the next iteration of the for loop of the algorithm. The index

of the element a (i.e. 8) is popped up from the stack, and then the index of the element b (i.e.

3) is pushed into the stack. The left child of the CurrentNode (i.e. a) is de�ned which is the

element b. The attributes left and type for the element a, as well as the attribute parent for the

element b are initiated. Figure 10 shows the next iteration of the for loop of the algorithm. No

elements are popped up or pushed from or into the stack. The right child of theCurrentNode
(i.e. b) is de�ned which is the element e. The attributes right and type for the element b, as

well as the attribute parent for the element e are initiated. Figure 11 shows the next iteration

of the for loop of the algorithm. No elements are popped or pushed from or into the stack.

The left child of the CurrentNode (i.e. e) is de�ned which is the element j. The attributes

left and type for the element e, as well as the attribute parent for the element j are initiated.

In brief, Figure 4 trough Figure 11 show the process of the reconstruction of the binary tree

illustrated in Figure 2 from its inorder and postorder traversal by the algorithm InPos.

3 Results

In this section, we investigate time and space complexity of the Algorithm 1. The number of

the elements in either inorder or postorder traversal is equal to n, and T (n) as well as S(n)
denote to time and space complexity respectively, We probe the complexity of each of them

separately.

3.1 Time complexity of InPos

Here, we look for the time complexity of the algorithm InPos. Except the for and while loops

in lines 4,12, and 13 other commands take constant time, so they can be discarded. The for loop

in line 10 takes θ
(
n
)
. The for loop in line 12, runs n− 2 times, which is an order of the O

(
n
)
.

The while loop in line 13, repeats until its conditions do not hold. It compares the element at

the top of the stack with the element in inorder traversal using the variable countin. On the

other hand, as was said before, the index of the nodes that have a right subtree are pushed into

the stack. Therefore, the height of the stack is at most equal to the number of the nodes that

have right subtree. Shape of a binary tree with n nodes that has the maximum number of the

nodes with right subtrees is a right chain. Figure 12 shows an example of right chain binary

tree. In this case the inorder and postorder traversals are reverse of each other Theorem 4

re�ects it.
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a

b

c

d

Figure 12: A right chain binary tree. The inorder traversal is a,b,c,d, the postorder traversal is

d,c,b,a
.

Theorem 4. If a binary tree has shape of right chain, then the inorder and postorder traversals
are reverse of each other.

Proof. According to inorder traversal, since each node does not have any left subtree, at �rst

the root will be visited and then its left child. Thus, nodes will be visited in term of their level

of the tree respectively. In other words, at �rst the root will be visited, then the node at the

level 2 and so on. Whereas, based on postorder traversal, since each node does not have any

left subtree, the right subtree will be visited �rst and then the root. Since each node in the

right subtree (except the leaf node) has a parent node, the parent is also placed in the right

subtree of its parent, these nodes will be visited from the leaf to root level by level.

If the binary tree is a right chain, the condition of the while loop, in line 13, never holds until

the last repeation of the for loop in line 13. Hence, the number of iterations of the while

loop can be discarded. The time complexity of the algorithm InPo depends on the number of

iterations of the for loops in line 4 and 12, which is

T (n) = θ
(
n
)
+O

(
n
)

= θ
(
n
)
.

(1)

Thus, from Equation 1, the total time complexity of the algorithm InPos is θ
(
n
)
. In other

words, algorithm InPos considers each node according to the type. It considers elements that

have two children twice, once for building their right subtrees, and once for their left subtrees.

Likewise, it considers the elements that have one child, only once, for building either their right

or left subtree, and the algorithm never considers the leaf node. That is to say, the variable

CurrentNode never initiates for leaf nodes. Therefore, from this point of view the total time

complexity of the algorithm is at most θ
(
2n

)
which is θ

(
n
)
.

3.2 Space complexity of InPos

Here, we investigate the space complexity of the algorithm InPos. Since the algorithm re-

gards four attribute per node n the matrix-based structure that it returns has four rows and n
columns. We let M(n) denote to the space occupied by the matrix, which is equal to
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M(n) = θ
(
4n

)
= θ

(
n
)
.

(2)

From Equation 2, the space occupied by the returning matrix is θ
(
n
)
. On the other hand, in

the InPos algorithm all commands take constant space except the dynamic space occupied

by the stack, and so they can be discarded. The space that the stack takes is at most equal

to the number of the nodes with one child, since only these nodes push into the stack. As

was discussed above, when the resulting binary tree has a right chain shape, all the one child

nodes push into the stack and the height of the stack would be θ
(
n
)

in this condition. In other

situations it would be less, so the stack takes the O
(
n
)
. Hence, the total space complexity of

the algorithm InPos is equal to the space occupied by the return matrix and the stack, which

is

S(n) = θ
(
n
)
+O

(
n
)

= θ
(
n
)
.

(3)

Therefore, from Equation 3 the total space complexity of the algorithm InPos is linear.

4 Discussion and future work

Here we discus our result incuding camparison to the previously mentioned studies. As we

proved in section 3, the algorithm InPos takes linear time and space, while the other study

that uses inorder and postorder traversals to reconstruct a binary tree, takes O
(
n2
)
. So, the

algorithm InPos works much e�ectively. Furthermore, the time and space that this algorithm

takes are optimal according to Theorem 5 and Theorem 6.

Theorem 5. The reconstruction of a binary tree from its traversals, takes at least θ
(
n
)
time,

where n is the number of elements in either traversal.

Proof. In the reconstruction process of a binary tree from its traversals, since every node

should be visited at least once, this process takes at least θ
(
n
)
, where n is the number of

elements in either traversal.

Theorem 6. The reconstruction of a binary tree from its traversals, takes at least θ
(
n
)
space,

where n is the number of elements in either traversal.

Proof. In the reconstruction process of a binary tree from its traversals, since every node

should be stored, this process takes at least θ
(
n
)

space, where n is the number of elements

in either traversal.
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Algorithm Using Traversals Time Complexity Space Complexity

[4] inorder and preorder O
(
n2
)

not mentioned

[4] inorder and postorder O
(
n2
)

not mentioned

[6, 7] inorder and preorder O
(
nlogn

)
O
(
n
)

[6, 7] inorder and preorder O
(
n
)

O
(
n2
)

[20] inorder and preorder O
(
n
)

O
(
n
)

[5] inorder and preorder O
(
n
)

O
(
h
)

[10] inorder and preorder O
(
n
)

O
(
nlogn

)
[3] inorder and preorder O

(
n
)

O
(
nlogn

)
[11] preorder and reversed preorder O

(
max(n, 2m)

)
O
(
n
)

InPos inorder and postorder θ
(
n
)

θ
(
n
)

Table 1: Proposed algorithms to reconstruct a binary tree from its traversals. n, h, and m
respectively denote to number of elements in one of the traversal, height of the tree, and the

number of one-child nodes.

The algorithm InPos takes linear time and space which are optimal. As is seen from the Table 1,

across the presented algorithms to reconstruct a binary tree from its inorder and preorder

traversals, only the algorithm proposed by [20] has linear time and space complexity, which

are optimal. The authors of the algorithm presented in [5] have claimed that their algorithm

takes O
(
h
)

space where h is the height of the reconstructed binary tree which may vary from

logn to n. This is seemingly optimal, since its maximum will be n. But not the height is at

stake during the reconstruction process, the algorithm takes O
(
n
)

space, in the end, since

every node should be stored ( Theorem 6), where n is the number of the elements in one of

the traversals. However, these two algorithms were proposed to reconstruct a binary tree

only from its inorder and preorder traversals. Among the algorithms in Table 1, there is one

study focusing on both inorder and postorder traversals that takes O
(
n2
)

time, but its space

complexity is not mentioned . Here, our algorithm works more e�ective than it. In fact, our

algorithm works in optimal linear time and space. Besides, during the reconstruction of a

binary tree from its inorder and postorder traversals, it de�nes the type each tree. This will

make it more convenient to work up a reconstruction tree. For many reasons the type of a node

is important. The external nodes in both Hu�man Coding [15] as well as decision trees [1, 19]

represent the symbols and classes that can be found in linear time and space by this algorithm.

At the end, it returns a matrix-based structure accessible to any structural information of the

tree in linear time by any tree traversals, like BFS (Beardth-first search) or DFS (Depth-first

search) [9]. Although the most common representation of a binary tree is a linked list [9]

many programming languages, such as MATLAB, do not support it. Thus, the representation

of a binary tree with linked lists may not be embeddable in many cases, while because of

matrix-based structure of the binary tree beside the postorder traversal, can be used by many

programming languages, and one can access any structural information of the resulting tree

in linear time. It also does not bind the users only to some tree traversals. This representation

enables any traversal of binary trees. This representation is also suggested by [9].
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Furthermore, by applying both Theorem 2, Theorem 3, and Theorem 7 one can rebuilt a binary

tree from inorder and postorder traversals from a di�erent view point.

Theorem 7. A two-child node x has a left child y and a right child z, such that both y are z are
leaves if and only if y, x, z and y, z, x are in inorder and postorder traversals respectively.

Proof. (⇒): According to inorder traversal, since the node y and z are a leaf, the node the

nodes y,x,z will be visited respectively. Based on postorder traversal, the nodes y,z,x will be

visited respectively.

(⇐): On the contrary, let x is not a two-child node with the two leaf left child y and the leaf

right child z. We have the following cases:

1. The node x is leaf. Let its parent is w. Without loss of generality, we let x is the left child

of the node w. We have the following cases:

(a) The nodes y and z are placed in right subtree of the node w. According to postorder

traversal, in general, we have either . . . ,x,. . . ,y,. . . ,z,. . . ,w, . . . or . . . ,x,. . . ,z,. . . ,y,. . . ,w,

. . . . It is evident that the node x is always precedes the nodes y and z, which is

contradiction.

(b) The nodes y and z are in a subtree rooted from a node except w. According to

inorder traversal, in general, we have . . . ,x,w,. . . . It is evident the node x always

precedes the node w, thus it is contradiction.

2. The node x is one child. Let its child is w. Without loss of generality, we let the node w
be the left child of the node x. We have the following cases:

(a) The both nodes y and z are placed in left subtree of the node w. According to in-

order traversal, in general, we have either . . . ,y,. . . ,z,. . . ,w,x,. . . or . . . ,z,. . . ,y,. . . ,w,x,. . . .

It is evident that the node w always precedes the node x, thus it is contradiction.

(b) The nodes y and z are places in right subtree of the node w. According to inorder

traversal, in general, we have either . . . ,w,. . . ,y,. . . ,z,. . . ,x,. . . or

. . . ,w,. . . ,z,. . . ,y,. . . ,x,. . . . It is evident that the node x is always followed by the nodes

y and z, thus it is contradiction.

(c) The nodes y and z are placed elsewhere in the tree rather than the subtrees of the

node w. According to inorder traversal, in general, we have one of the follow-

ing pattern; . . . ,y,. . . ,z,. . . ,w,. . . ,x,. . . or . . . ,z,. . . ,y,. . . ,w,. . . ,x,. . . or . . . ,y,. . . ,w,. . . ,x,. . . ,z
or . . . ,z,. . . ,w,. . . ,x,. . . ,y,. . . . It is evident that in none of the conditions the three con-

secutive elements of x,y,z never happen, regardless of the gaps between sequences,

thus it is contradiction.

3. The node x is a node with two children u and v such that the nodes u and v are the left

and right children of the x respectively, and they are leaves. The nodes and are placed

elsewhere. According to postorder traversal, in general we have . . . ,u,v,x. It is evident

that the node u always precedes the node x and the node v always followed by the node

x, thus it is contradiction. It should be noted that in this case by the assumption, we can

consider that the nodes u and v are leaves.
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Therefore, the two-child node x has a left child y and a right child z, such that both y are z are

leaves

Based on Theorem 2 and Theorem 3 the one-nodes child can be determined, and depending on

its child position and considering two distinct notations which are not contained in the these

traversal values, these one-child with their only node can be merged into a new element with

new value containing either notions, as mentioned. Similarly, based on Theorem 7, two-child

nodes can be de�ned. Then each two-child node with their children can be merges them into

new element regarding two new distinct notations from whom said for Theorem 2 and The-

orem 3 inorder to distinguish between parent, left child, and right child values. Therefore, by

using the three theorem- Theorem 2, Theorem 3, and Theorem 7, for each node its position

in the reconstruction binary tree as well as their attributes- parent, leftchild, and rightchild
can be de�ned, and the binary tree can be reconstructed uniquely.

5 Conclusion

Binary trees [9, 22] are essential structures in computer science [3]. Tree traversals are there-

fore are across the most paramount topics in CS. The process of reconstructing a binary tree

from its traversals �rst was described by Knuth [17] and later became its application om-

niscient. In Hu�man Coding [15], for instance, inorder to increase the e�ciency instead of

transmission of the complete tree, its traversals are sent either inorder and preorder or in-

order postorder traversals, and the tree will be reconstructed in the receiver [3]. Now, it is

well-known, given inorder traversal along with preorder or postorder traversal of a binary

tree, the binary can be rebuilt uniquely. Many algorithms have been presented to reconstruct

a binary tree from inorder and preorder traversals, among them is the algorithm proposed

by [20]. It has optimal time and space complexity. However, there is one study [4] focusing

on reconstructing a binary tree from its inorder and postorder traversals, such that this takes

O
(
n2
)

time. Here, was proposed InPos, an improved algorithm to reconstruct a binary tree

from its inorder and postorder traversals. We proved that the algorithm takes optimal time and

space which both are linear. Finally InPos returns a matrix-based structure enabling use by

every programming language and all structural information of a binary tree can be accessed

by InPos in linear time and space by every tree traversal. What is more, during the recon-

struction process it determines the type of each node: with two children, with one child, or

with no child. So this algorithm also could be applied in linear time and space to optimize de-

cision trees in the applications to decision support, machines learning and pattern recognition

systems [1, 19].
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