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Abstract 
It has been believed that microgravity directly can alter the structure, morphology, 

and function of biosystems and numerous research have been performed to recognize 
these alterations. Claudin proteins are the tight junctions’ main components. 
Additionally, they are crucial for the protection of the differentiated state of epithelial 
cells as well as for cell-cell interaction. This study aimed to explore the probable 
correlation between the claudin-1 and claudin-3 expression and microgravity condition. 
Additionally, examined the impacts of microgravity condition on cell morphology and 
viability. The gene expression in MCF-7 cells were assessed by real-time quantitative 
RT PCR. Afterward, the morphology and cellular viability of the cells were evaluated 
by an inverted microscope, MTT assay, and flow cytometry analysis. After 72 h of 
simulated microgravity, the claudin-1 and claudin-3 expression increased significantly 
(P<0.05). Also, MCF-7 cells after 72 h exposure to microgravity simulation comprised 
rounded cells, which were grouped and linked to each other making multicellular 
spheroids. However, microgravity simulation after 24 or 72 h did not have a remarkable 
effect on the viability of cells. The consequence of this research lied in the fact that 
simulated microgravity could not be a direct cure for breast cancer treatment. However, 
microgravity research can offer a unique in vitro tool to explore biomechanical effects 
in the biology of cancer. The findings obtained from this investigation can open 
fascinating research lines in astrobiology, biophysics, and cancer biology and can be 
utilized to improve survivability and life quality for malignancy patients. 
 
Keywords: Claudin-1 Gene; Claudin-3 Gene; Simulated Microgravity; MTT assay; Flow cytometry 
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Introduction 
Advances in technology have offered amazing 

opportunities for the human to travel more rapidly on or 

near the Earth surface. The primary goals of space travel 
are the search for life, planetary exploration, and more 
crucially safe return to Earth. Humans on Earth are 
adapted to the constant gravitational force (9.8 m/s2) [1]. 
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Nevertheless, in space, gravity is much weaker than on 
Earth which is known as microgravity. Presently, 
studies on the growth and development of cells exposed 
to microgravity, as biophysical force, is a hot topic in 
cell biology and astronauts' health [2, 3]. It has been 
known that gravity affects lots of physical issues, for 
instance, viscosity, diffusion process, and shear forces, 
therefore, it could affect some general features of the 
biosystems undeniably [2, 3]. The experiences of 
cosmonauts and astronauts over the past four decades 
have proven that microgravity can induce countless 
physiological disruptions such as vision loss, sarcopenia 
(a loss of muscle mass), osteopenia (low bone density), 
diminished neurological responses, decreased renal 
function, and a weakened or compromised immune 
system [4]. 

According to the literature, microgravity can induce 
variations in the function, morphology, and growth of 
the cells, directly [4, 5]. The relationship between 
tumorigenesis and microgravity condition has attracted 
special interest for scientifics. It has been shown that 
microgravity can induce gene expression alterations, 
proliferation, signal transduction as well as morphology 
in several malignant cells by affecting the mechanical 
tumor micro-environment [6, 7]. Breast cancer, as one 
of the most frequent types of female cancer, could be 
categorized into five subtypes, involving HER2 (human 
epidermal growth factor receptor 2), luminal A, basal, 
claudin-low (CL), and luminal B [6, 7]. The MCF-7 
cells belong to the Luminal A subtype, which is 
identified through the lack of HER2 expression. Until 
now, there have been various studies investigating the 
effects of microgravity on breast cancer cell lines. 
Strube et. al. exposed that simulated microgravity could 
increase BRCA1 (breast cancer antigen 1) and VCAM1 
(vascular cell adhesion molecule 1) expression and 
decrease KRAS (Kirsten ras oncogene) and VIM 
(vimentin) expression significantly. They also proved 
that simulated microgravity could not alter the 
expression of MMP13 (matrix metalloproteinase 13), 
TP53 (tumor protein 53), MAPK1 (mitogen-activated 
protein kinase 1), and PTEN (phosphatase and tensin 
homolog) [8]. Chen et al. indicated that simulated 
microgravity did not disturb the overall growth rate of 
MDA-MB-231 cells and MCF-7 cells. However, the 
authors described a noticeable adherent cells 
accumulation in the synthesis phase of the cell cycle [9]. 
Masiello et. al. highlighted that simulated microgravity 
condition causes diverse morphological changes in 
MDA-MB-231 cells [10]. Kopp et. al. suggested that 
once MCF-7 cells transit to a 3D growth on the random 
positioning machine (RPM), HMOX-1 (heme 
oxygenase (decycling) 1) and NFκB family members 

interact on a gene level [11]. CDH1 (cadherin 1) and E-
cadherin protein downregulation in MCF-7 cells were 
also detected under RPM-exposure [12].  

Claudin proteins are the tight junctions’ main 
components. Additionally, they are crucial for the 
protection of the differentiated state of epithelial cells as 
well as for cell-cell interaction. It has been shown that 
the expression status of claudin family members varies 
in various cancer types [13]. In breast carcinoma, the 
expression of claudin-7 and claudin-1 are 
downregulated, and the expression of claudin-3 and 
claudin-4 are upregulated [13]. Akasaka et. al. revealed 
that claudin-1 has anti-apoptotic impacts, and also is 
involved in the expression regulation and of E-cadherin 
and β-catenin subcellular localization in MCF-7 cells 
[14]. 

Currently, owing to progress in space technology, the 
chances for humans subjected to microgravity have 
increased undeniably. Until now, there has been no 
research about the microgravity impacts on claudin-1 
and claudin-3 expression. Hence, this study aimed to 
explore the probable correlation between the claudin-3 
and claudin-1 expression and microgravity condition. 
Also, investigated the impacts of simulated 
microgravity condition on cell morphology and cell 
viability of MCF-7 cells. The findings obtained from 
this investigation can help to determine whether 
biological processes such as gene expression and cell 
morphology are the same in space as they are on earth. 
Also, this study can help to verify whether microgravity 
could be an option for tumor treatment or not. 

 

Materials and Methods 
Materials 

Dimethyl sulfoxide (DMSO) and 3- [4, 5-
Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide 
(MTT) were obtained from Sigma-Aldrich Chemical 
Co. (Missouri, United States of America). The MCF-7 
cell line (ATCC® HTB-22™) was bought from the 
National Cell Bank of Pasteur Institute (Tehran, Iran). 
Fetal bovine serum (FBS), streptomycin, RPMI 1640 
medium, penicillin, and Trypsin-EDTA were bought 
From Gibco (New York, USA). From SinaClon Co. 
(Tehran, Iran) RNX-Plus Solution for total RNA 
isolation was acquired. DNaseI was purchase from 
Fermentas, (Vilnius, Lithuania). Phosphate-buffered 
saline (PBS) solution (1X) was obtained from Bio-Idea 
Co. (Tehran, Iran). Annexin FITC kit was bought from 
IQ Products (Groningen, Netherlands). The 
Primescript™ RT reagent Kit, the SYBR Green real-
time Master Mix kit, and the Cell Amp™ Direct RNA 
Prep Kit were obtained from Takara Bio Inc. (Shiga, 
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formed sharp and clear 28S and 18S ribosomal bands 
which was a good indicator that the RNA was not 
degraded. Afterward, total RNA was utilized for cDNA 
synthesis employing the Primescript™ RT reagent Kit. 
Quantitative real-time RT PCR was performed utilizing 
StepOnePlus Real-Time PCR, Applied Biosystems 
(California, United States of America) utilizing SYBR 
Green Master mix (Ex Taq II) with cDNA template (1 
μL), forward primer (0.2 μM), reverse primer (0.2 μM), 
master mix (5 μL), dH2O, and ROX reference dye II 
(0.04 μL) to a 10 μL final volume. PCR conditions 
were: initial denaturation at 95 ºC (2 min); 
subsequently, 40 cycles of denaturation in 5 sec at 95 
ºC, and annealing in 30 sec at 60 ºC. To verify the PCR 
reaction for apparent of any primer-dimer and validate 
the specificity of the reaction, PCR melt curves were 
analyzed. As shown in Fig. 2b, no apparent dimers or 
non‑specific bands were detected in the melting curve 
analysis, indicating that the designed primers had a high 
quality and specificity. Also, agarose gel electrophoresis 
(1.0% (w/v)) of the PCR products was analyzed. As 
demonstrated in Fig. 2c, claudin-1, claudin-3, and 
GADPH amplified a single PCR product of the desired 
size from cDNA pools. Finally, alterations in the fold 
number were analyzed through the 2-ΔΔCt method, which 
was normalized via GAPDH (glyceraldehyde-3-
phosphate dehydrogenase) gene as the housekeeping 
gene. Gene-specific primers were designed by GenBank 
(https://www.ncbi.nlm.nih.gov/) and oligo 7 primer 
analysis software. Then, the designed primers were 
submitted to the BLAST search versus human genome 
to verify that the sequences were specific only for the 
genes of interest. Primers were synthesized via 
Macrogen Incorporated (Seoul, South Korea) as 
depicted in Table 1. Two negative controls were 
included in each PCR reaction, one with no RT 
treatment (minus-RT) and one with no cDNA template.  

 
Morphology Alterations Study using Phase Contrast 
Microscope 

Observation of morphological variations of cells was 
performed according to the previous method [17]. The 

cells were subjected to simulated microgravity and 
normal gravity. Then, the medium of each cultured line 
was removed and washed once with 2 ml of cold PBS 
buffer (pH 7.4, 0.01 M). Subsequently, the MCF-7 cells 
were photographed utilizing a phase-contrast 
microscope, Olympus CK40-32PH (Tokyo, Japan). 

 
MTT Cytotoxicity Assay 

The MCF-7 cells were subjected to simulated 
microgravity (for 24 h and 72 h) and then were 
trypsinized with Trypsin-EDTA and seeded in 96-well 
plates. Later, MTT (20 μL from 5 mg.mL-1 in PBS 
buffer) was added into each well then incubated at 37 
°C for 180 min. Next, the insoluble formazan formed 
was dissolved in DMSO (100 µl). The OD (optical 
density) of each well, was determined against reagent 
blank with Model Expert 96 ELISA reader, Asys Hitech 
(Salzburg, Austria) at 570 nm. The experiment consists 
of 4 repeated trials. 

 
Flow cytometry Analyses 

The MCF-7 cells were subjected to simulated 
microgravity for 24 h and 72 h and then cells were 
gathered by centrifugation at 1000 g for 5 min then 
washed with PBS twice. Afterward, suspended in 
Annexin V binding buffer (100 µL). Therefore, MCF-7 
cells were double-stained with PI (10 µL) and Annexin 
V (10 µL) solution (50 µg.mL-1 in PBS). The MCF-7 
cells were maintained in darkness at room temperature 
(20 min) later examined through Partec PAS III flow 
cytometry cytometer (Muenster, Germany). 

 
Statistical analysis 

Relative expression was evaluated using REST 2009 
software (Version 2.0.13). Significant differences were 
analyzed by t-test of GraphPad Prism Software (Version 
8.4.3, San Diego, United States of America). GraphPad 
Prism also was used for plotting graphs. All of the data 
were expressed as the mean ± the standard deviation 
(SD). * exposes a considerable difference. * reveals 
P<0.05 and ** reveals P<0.01. 

 
Table 1. Features of designed primers 

Genes Primer sequence (5' to 3') Amplicon size (bp) 
GAPDH 

Forward primer 
Reverse primer 

 
ACGACCACTTTGTCAAGCTCAT 

TCCACCACCCTGTTGCTGTA 

 
67 

Claudin-1 
Forward primer 
Reverse primer 

 
GTGCGATATTTCTTCTTGCAGG 
TTCGTACCTGGCATTGACTGG 

113 

Claudin-3 
Forward primer 
Reverse primer 

 
CTGCTCTGCTGCTCGTGTCC 

TTAGACGTAGTCCTTGCGGTCGTAG 

129 
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microgravity. Currently, various space exploration 
investigations have been done to understand the 
variations in biological function and structure of living 
organisms in microgravity condition. Presently, it has 
been discovered that microgravity directly can alter the 
morphology and function of biosystems [4, 5, 18]. In 
this work, at first, the real-time RT qPCR method was 
utilized to measure the simulated microgravity effect on 
the expression of the claudin-1 and claudin-3 genes. 
Compared to the control group, after 24 h of simulated 
microgravity, the expression of claudin-1 did not 
change, and the claudin-3 expression diminished very 
slightly (P<0.05). After 72 h of simulated microgravity, 
the claudin-3 and claudin-1 expression increased 
significantly (P<0.01). Thus, based on our data claudin-
1 was up-regulated in MCF-7 cells. The claudin-1 
subcellular localization has been demonstrated to be 
disrupted in invasive breast tumors [19]. Hoevel et al. 
showed that claudin-1 alone could be adequate to exert 
a tight junction-mediated gate function in metastatic 
cancer cells [19]. Achari et al. found that MCF-7 cells 
as estrogen receptor-positive breast cancer cells did not 
depend on claudin-1 for survival. They also 
demonstrated that reduction of claudin-1 can induce 
apoptosis and also lead to modifications in the JNK and 
ERK1/2 pathways [20]. Zhou et al. revealed that 
overexpression of claudin-1 in the MCF-7 cell line 
could increase migration as well as could enhance cell 
numbers compared to control cells [21].  

Based on our data claudin-3 was up-regulated. Todd 
et al. demonstrated a noticeable overexpression of 
claudin-3 protein in MCF-7 breast adenocarcinoma 
[22]. Consequently, the overexpression of claudin-3 is 
probably involved in tight junctions’ disruption in this 
breast tumor, therefore facilitating metastasis [22]. 

Under microgravity condition, the morphology of 
cells changed and became larger at day 3 compared to 
earlier days of growth, i.e., MCF-7 cells after 72 h 
exposure to microgravity simulation comprised rounded 
cells, which were grouped and linked to each other 
making multicellular spheroids (MCS) floating in the 
supernatant. Our observation is coincident with those 
published by Kopp et al. [23] who explored MCF-7 
cells for several days under microgravity condition. The 
authors detected the first MCS after 24 h of exposure 
and they reported that the MCS continued to expand in 
complexity and number until 120 h. It is important to 
mention that multicellular architecture is one of the 
defining breast cancer properties and unfortunately most 
in vitro tumor models fail to renovate tumor 
architecture. However, multicellular architecture is 
well-known to drive the malignant tumor progression 
through cell-matrix- and cell-cell-contacts, diminished 

tensional homeostasis, as well as forced depolarization 
[6]. Masiello et. al. remarked that simulated 
microgravity causes distinct phenotypic switch on 
MDA-MB-231 breast cancer cells [10]. Our observation 
is also coincident with other observations [7, 8]. 
According to the literature, any alterations in the cells 
shape are correlated with variation in cytoskeleton 
architecture. The balance between the tensional forces 
and cytoskeleton architecture controls several complex 
cell functions, for example, proliferation and apoptosis 
directly [10]. As revealed earlier, gravity, as an external 
field, significantly influences the bio-system in choosing 
one out of various other structures. Even though, in 
microgravity condition, the bio-system can access 
various attractor states without limitations, and recover 
new phenotypes or configuration states [10, 24]. So, it 
seems that when MCF-7 cells were subjected to 
microgravity could obtain different phenotype. 

The results of the MTT assay demonstrated that 
microgravity simulation after 24 h or 72 h did not have 
a remarkable effect on the MCF-7 cells viability (Fig. 
5a). Recently, Ebnerasuly et al. [25] have investigated 
the effect of microgravity on adipose-derived stem cells. 
Interestingly, the viability of adipose-derived stem cells 
didn’t show significant differences after 7 days of 
simulated microgravity condition in comparison with 
normal gravity condition. Our observation is also 
coincident with the previous study which pointed out 
that under simulated microgravity condition the viability 
of MDA-MB-231 cells didn’t show significant 
differences [7].  

The flow cytometry analysis also showed that after 
24 h and 72 h of simulated microgravity the population 
of viable cells did not display remarkable variations 
compared to control cells. Chen et al. [9] examined 
MDA-MB-231 cells as well as MCF-7 cells for 120 h 
on the RCCS (Rotary Cell Culture System). They 
indicated that simulated microgravity did not alter the 
overall growth rate of these breast adenocarcinomas. 
Previous research also showed distinct behaviors of the 
malignant MCF-7 cells: an increment in apoptosis after 
24 h [23], and no apparent variation in apoptosis-related 
proteins after 48 h [26]. Masiello et al. [10] explained 
that the apoptotic progression was increased in non-
adherent MDA-MB-231 breast cancer cells after 24 h 
and 72 h simulated microgravity, in contrast to adherent 
MDA-MB-231 cells which exhibited slight alterations 
in apoptosis. 

Collectively, based on our results, even though the 
relative mechanisms require to be investigated further, 
after 72 h of simulated microgravity, the claudin-1 as 
well as claudin-3 expression increased significantly. 
Subsequently, the overexpression of claudin-3 and 
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claudin-1 could induce tight junctions’ disruption, 
increase migration as well as enhance cell numbers 
compared to control cells [6]. Furthermore, MCF-7 cells 
after 72 h exposure to microgravity simulation 
comprised rounded cells, which were linked and 
grouped to each other forming multicellular spheroids. 
However, microgravity simulation after 24 h or 72 h did 
not have a remarkable effect on the viability of MCF-7 
cells. Nowadays, researchers have discovered some 
evidence that indicates microgravity could initiate some 
types of cancer like breast, leukemia, ovarian, neck 
lung, liver, and head cancers. For example, 
epidemiological investigations have displayed an 
enhanced breast cancer incidence in female commercial 
flight attendants [6]. Thus, sending patients into space 
could not be a remedy for cancer. Conversely, the 
aggressiveness of some cancer cells appears to be 
diminished in vitro after simulated microgravity 
exposure [6]. To describe this disagreement, it is worth 
revealing that different bio-systems were explored in 
vitro do not always reveal the complex situation in vivo 
which also comprises cell-cell interactions as well as the 
crosstalk between various body systems in space. 
However, microgravity research can offer a distinctive 
in vitro tool to explore biomechanical impacts in the 
biology of cancer. For example, Hekmat et al. [7] 
proved that 48 h simulated microgravity can improve 
the antiproliferative effect of the sterilized TiO2 
nanoparticles on MDA-MB-231 breast cells and as a 
result cell viability reduced markedly. Consequently, it 
seems that microgravity could not directly be a decision 
for tumor treatment, however, supports tumor 
investigation in two different ways: First, microgravity 
research has unraveled some significantly fascinating 
aspects of the biology of cancer; second, it offers a 
trustable in vitro 3D cancer model for preclinical anti-
tumor drug discovery. Although, the finding from this 
study can be utilized to improve survivability and 
quality of life for cancer patients. However, lots of 
investigations focused on progression and cancer 
development in space as well as microgravity 
simulation are still required.  

 
Conclusion 

In this study, after 72 h of simulated microgravity, 
the claudin-1 and claudin-3 expression increased 
significantly. Furthermore, MCF-7 cells after 72 h 
exposure to microgravity simulation comprised rounded 
cells, which were linked and grouped to each other 
making multicellular spheroids. However, microgravity 
simulation after 24 h or 72 h did not have a remarkable 
effect on the viability of MCF-7 cells. Consequently, 
simulated microgravity could not be a cure for patients 

with breast cancer. However, microgravity research can 
offer a distinctive in vitro tool to explore biomechanical 
impacts in the biology of cancer. Our observation can 
open fascinating research lines in astrobiology, 
biophysics, and cancer biology. The finding from this 
study can be utilized to improve quality of life and 
survivability for cancer patients. 
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