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ABSTRACT ARTICLE INFO

Some near-regular mechanical systems involve global de-
viations from their corresponding regular system. De-
spite extensive research on vibration analysis (eigenso-
lution) of regular and local near-regular mechanical sys-
tems, the literature on vibration analysis of global near-
regular mechanical systems is scant. In this paper, a
method for vibration analysis of such systems was de-
veloped using Kronecker products and matrix manipula-
tions. Specifically, the eigensolution of the correspond-
ing regular mechanical system was inserted in the algo-
rithm to further accelerate the solution. The developed
method allowed reduction in computational complexity
(i.e., O(n2)) when compared to earlier methods. The
application of the method was indicated using a simple
example.
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1 Introduction

Vibration analysis and eigensolution of large-scale regular mechanical systems are per-
formed using concepts from graph and group theories. The stiffness and mass matrices of
such regular mechanical systems have canonical forms with specific repetitive or circulant
block patterns allowing efficient eigensolution. Specifically, the power of these methods
becomes more evident when analysis is to be repeated many times, for instance in dynamic
design or non-linear analysis of regular mechanical systems. However, most mechanical
systems do not exactly hold the pattern of a regular system such that the application of
efficient eigensolutions are limited.
Some mechanical systems involve a small amount of irregularities wherein a small number
of degrees of freedom are affected by the irregularity [5,7]. These mechanical systems with
locally concentrated irregularities are called local near-regular systems, eigensolution of
which has been obtained using modified numerical approaches [2]. Another group of
mechanical systems involve global deviations (i.e., irregularity affects a large number of
degrees of freedom) from their corresponding regular system and are called global near
regular mechanical systems [1]. Eigensolution for these systems, however, has not been
yet developed. Therefore, the objective of this paper was set to develop efficient methods
for vibration analysis and eigensolution of mechanical systems with global near-regularity.

2 Vibration analysis of a global near-regular system

Developing a simple algorithm for the vibration analysis of global near-regular mechan-
ical systems from available vibration solution of their corresponding regular mechanical
systems is aimed.
Consider the given eigenproblem for a global near-regular system

Kx = λMx (1)

where K is the stiffness matrix, x and λ are the eigenpairs, and M is the mass matrix.
Assume ∆K and ∆M are the deviations of the stiffness and mass matrices of the near-
regular system from the stiffness (Kreg) and mass (Mreg) matrices of the regular system.

K = Kreg + ∆K ; M = Mreg + ∆M (2)

And
Kregxreg = λregMregxreg (3)

where xreg and λreg are eigenpairs of the regular system.
Substituting Eq. (2) in Eq. (1)

(Kreg + ∆K)x = λMx (4)
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Assume the eigenvector x can be approximated using a linear combination of m linearly
independent basis vectors y1, y2, · · · , ym

x(n×1) = a1y1 + a2y2 + · · ·+ amym or x(n×1) = Y(n×m)A(m×1)

and Y = [y1, y2, · · · , ym](n×m) ; AT = [a1, a2, · · · , am](1×m)

(5)

where A is a vector of unknown coefficients. We set m to be much smaller than n (i.e.,
the number of degrees of freedom) and substitute Eq. (5) in Eq. (1)

Kx =λMx→ KY A = λMY A→ Y TKY A = λY TMYA

Kr = Y TKY and Mr = Y TMY → KrA = λMrA
(6)

where Kr and Mr are reduced stiffness and mass matrices of dimension m. Therefore,
rather than solving a system of dimension n in Eq. (1), the smaller system of dimension
m should be solved. Upon finding the vector A in Eq. (6), x is calculated from Eq. (5).
However, the basis vectors are not determined yet.
Consider Eq. (4) and pre-multiply it by K−1

reg

(Kreg + ∆K)x = λMx→ (1 +G)x = y1 (7)

where G = K−1
reg∆K and y1 = K−1

regλMx. Therefore,

x = (1 +G)−1 y1

But, we can write

(1−G)
(
1 +G+G2 + · · ·+Gr

)
= 1−Gr+1(

1+G+G2 + · · ·+Gr
)

= (1−G)−1 − (I −G)−1Gr+1

Since (I −G)−1Gr+1 = 0 as Gr → 0, we have:

G→ −G : (I +G)−1 = (I −G+G2 − · · · ) (8)

Thus,
x = (I +G)−1y1 =

(
I −G+G2 −

)
y1

Now assuming λ = λreg and x = xreg

y1 = K−1
regλMx = K−1

regλregMxreg → y1 = K−1
regRreg (9)

Where Rreg = λregMxreg . Finally,{
yi = −Gyi−1 (i = 2 : m)

y1 = K−1
regRreg

→ x =
m∑
i=1

yi ; λj =
xTj Kxj

xTjMxj
(10)
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For a regular mechanical system with given eigenpair matrices, Λreg and Xreg, decompo-
sition of stiffness matrix would be Kreg = XT

regΛregXreg and y1 is solved as follows:

y1 =
(
XT
regΛregXreg

)−1
Rreg = XT

regΛ
−1
regXregλregMxreg (11)

With x and calculated from Eq. (10), we can update y1 (i.e.,Rreg) and recalculate x and
λ to achieve the desired accuracy. Also, same procedures should be conducted to calculate
other eigenvalues and eigenvectors of the mechanical system.
Regardless of the required effort for defining the eigenpair matrices Λreg and Xreg, the
solution of Eq. (10) includes matrix by vector multiplications of the computational com-
plexity O(n2). However, the method is efficient only if there is a simple way to obtain
Λreg and Xreg.

3 Decomposition of stiffness matrix of regular me-

chanical system

For a regular mechanical system full decomposition of stiffness matrix can be obtained
using Kronecker products and matrix manipulations. The two general groups of decom-
posable regular mechanical systems include repetitive and circulant matrices with the
following block patterns:

Mn =Fl(Am, Bm, Am) = Il ⊗ Am + Tl ⊗Bm

Mn = Gl(Am,Bm, Am) = (P1)l ⊗ Am + (P2)l ⊗Bm + (P3)l ⊗Bm

(12)

where I is an identity matrix, T = F (0, 1, 0), and P1, P2 and P3 are permutation matrices.
Using the following lemma, matrix M can be decomposed:
The sufficient condition for converting Hermitian matrices A1 and A2 into upper triangular
matrices using one orthogonal matrix is [3]:

A1A2 = A2A1 (13)

Let the matrix M be the sum of two (it can also be generalized to n Kronecker products)
Kronecker products as M = A1⊗B1+A2⊗B2. If F is the matrix that upper triangularizes
the matrices A1 and A2, then U = F⊗I block upper triangularizes the matrix M , meaning
that U tMU is block upper diagonalized. Thus, we can write:

λM =
l⋃

i=1

eig(Mi) ; Mi = λi(A1)B1 + λi(A2)B2 (14)

where matrices A1 and A2 are of dimension l, and matrices B1 and B2 are of dimension
m. Since IT = TI in Eq. (12) and considering that λTl = 2 cos kπ

l+1
[4], we will have

λM =
l⋃

k=1

eig

(
2 cos

kπ

l + 1
B + A

)
(15)
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Permutation matrices also hold the following property:

PiPj = PjPi (16)

The eigenpairs of the permutation matrix Pi are obtained as follows

λ =
(
e
2πi
l
)k

=ωk ; i =
√
−1 ; k = 0 : l − 1

ϑk =
1√
l
(1, ωk, ω

2
k, · · · , ωl−1

k )T
(17)

And

λM =
l⋃

k=1

eig

(
2
(
e
2πi
l
)k−1

B + A

)
(18)

The eigenvectors of matrix M are calculated through u⊗ v [6], where u is the eigenvector
of A2 (T in Eq. (12)) and v is the eigenvector of B1. With the obtained eigenpairs, we
can decompose M as follows:

M = V TλV (19)

Now, with λ and V in hand (i.e., Λreg and Xreg in Eq. (11), Eq. (10) and Eq. (11) are
solved.
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