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In this paper, a new algorithm for computing secondary
invariants of invariant rings of monomial groups is pre-
sented. The main idea is to compute simultaneously a
truncated SAGBI- Gröbner basis and the standard in-
variants of the ideal generated by the set of primary in-
variants. The advantage of the presented algorithm lies
in the fact that it is well-suited to complexity analysis
and very easy to implement.
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1 Introduction

Let G be a finite matrix group, linearly acting on a polynomial ring R with n variables
over some field IK. We denote the action of σ ∈ G on f ∈ R by σ.f and the invariant
ring by

RG = {f ∈ R : σ.f = f, ∀σ ∈ G}.
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It is clear that RG is an algebra over IK. A famous theorem of Hilbert states that RG is
finitely generated as a IK-algebra and also it is well known [8] that there are n algebraically
independent homogeneous invariants polynomials P = {f1, . . . , fn} ⊂ RG such that RG

is finitely generated as a module over sub-algebra IK[f1, . . . , fn]. The elements of P are
called primary invariants. Any minimal system of homogeneous g1, . . . , gt generating RG

as a IK[f1, . . . , fn]-module is called a system of secondary invariants.
The secondary invariants can be calculated by using the existing algorithms[3, 4, 5, 8].
It is known that most of these algorithms require the computation of a suitable Gröbner
basis in polynomial ring R. However, this computation breaks all symmetries, and lead
to costly calculations inside the full polynomial ring.
In [9], N.Thiéry circumvents the above shortcoming by relying on the theory of SAGBI-
Gröbner bases(a generalization of Gröbner bases to ideals of sub-algebras of polynomial
ring). In fact, he provided an algorithm like Buchberger’s algorithm for computing trun-
cated SAGBI- Gröbner bases and the standard monomials( i.e. secondary invariants; see
proposition 4 in [9]) in the special case of invariant rings of permutation groups. However,
according to our experience, this algorithm is not very practical way in order to compute
a SAGBI- Gröbner basis [2].
The main aim in this paper is to present a new algorithm for the computation of secondary
invariants of invariant rings of monomial groups. The idea is to compute simultaneously
a truncated SAGBI- Gröbner basis and the standard invariants of the ideal generated by
the set of primary invariants. To compute truncated SAGBI- Gröbner bases, we apply
the F5-invariant algorithm which provided by Faugère and Rahmany [2].
A first implementation of our algorithm has been made in the Maple 13 computer algebra
system and have been successfully tried on a number of examples. We study here the
non-modular case ,i.e., the characteristics of IK does not divide the order of G. Note that
according to [5], algorithms for non-modular case are useful also in the modular case.
The paper is organized as follows: In Section 2, we will give some basic definitions and
properties of invariants rings of monomial groups. In Section 3, we introduce some nota-
tion of SAGBI- Gröbner bases and give a brief exposition of F5-invariant algorithm. In
Section 4, we concentrate on our main goal, namely providing an algorithm for computing
secondary invariants of invariants rings of monomial groups.

2 The ring of invariants of a monomial group

In this section, we give some basic definitions of invariants rings of monomial groups and
describe the main properties of them. For this, we assume that G be a subgroup of Ŝn
where

Ŝn =

{
Π.

 a1 0
. . .

0 an

 |Π is an n× n permutation matrix, ai ∈ IK

}
.
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Also, we use the notation X, for column vector of the variables x1, . . . , xn. In other words:

X =

 x1
...
xn

 .

Let A = (aij) ∈ G and f ∈ R. We define the group action ′′.′′ of G on the ring R by:

A.f(X) = f(A.X) = f(a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn).

Definition 2.1 A polynomial f ∈ R is called invariant polynomial if f(A.X) = f(X) for
all A ∈ G. The invariant ring RG of G is the set of all invariant polynomials.
It is easily seen that RG is not finite dimensional as a IK-vector space. But we have
a decomposition of RG into its homogeneous components, which are finite dimensional.
This decomposition is similar to decomposition of R.
Let Rd denote the vector space of all homogeneous polynomials of degree d, then we have

R =
⊕
d≥0

Rd

The set of monomials of degree d is a vector space basis of Rd. Now, observe that the
action G preserves the homogeneous components. Hence we get a decomposition of the
invariant ring

RG =
⊕
d≥0

RG
d .

An important tool to the calculation of a vector space basis of RG
d is the Reynolds operator,

which is defined as follows
Definition 2.2 Let G be a finite group. The Reynolds operator of G is the map < : R −→
RG defined by the formula

<(f) =
1

| G |
∑
σ∈G

f(σ.X)

for f ∈ R.
Following properties of the Reynolds operator is easily verified(see[1], Section 7.3, Propo-
sition 3).
Proposition 2.1 Let < be the Reynolds operator of the group G, then
(a) < is IK-linear in f .
(b) If f ∈ R, then <(f) ∈ RG.
(c) If f ∈ RG, then <(f) = f .
It is easy to prove that, for any monomial m the Reynolds operator gives us a homogeneous
invariant <(m). Such invariants are called orbit sums.
The set of all orbit sums is a vector space basis of RG, so any invariant can be uniquely
written as a linear combination of orbit sums. Now, we give a special representation of
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invariant polynomials which is used in the next section. For this, we assume a monomial
order < has been fixed and LM(p) denote leading monomial of p with respect to <.
Definition 2.3. A monomial in LM(RG) = {LM(p) | p ∈ RG} is called an initial.
Using proposition 2.1 and definition 2.3 we can simply derive the following lemma.
Using proposition 2.1 and definition 2.3 we can simply derive the following lemma.
Lemma 2.1 Every f ∈ RG can be written uniquely as f =

∑
α cα<(m∗α), where cα ∈ IK

and m∗α are initial monomials.
In the rest of this paper, we suppose that all representations of invariant polynomials are
in the above form.
SectionSAGBI- Gröbner bases in RG In this section, we recall the definition of SAGBI-
Gröbner bases(SG-bases) which is an analogs of Gröbner basis for ideals in IK-sub-
algebras [6, 7]. Also, we will present basic properties of SG-basis in invariant rings.
The following symbol will be needed throughout the paper. Let f1 . . . , fn be invariant
polynomials and I, IG represent the ideal generates by f1 . . . , fn in R and RG respectively.
For the sake of simplicity, we assume that all the polynomials are homogeneous. The
extension to the non-homogeneous case raise no difficulty.
Definition 3.1. A subset F ⊆ IG is SG-basis for IG if LT (F ) generates the initial ideal
〈LT (IG)〉 as an ideal over algebra 〈LT (RG)〉. It is a partial SG-basis up to degree D of
IG if LT (F ) generates 〈LTIG〉 up to the degree D.
Recall that in ordinary Gröbner basis theory every ideal is assured to have a finite Gröbner
bases but SG-basis need not be finite.We continue by describing an appropriate reduction
for the current context.
Definition 3.2. Let f, g, p ∈ RG with f, p 6= 0 and let P be a subset of RG. Then we say

i) f SG-reduces to g modulo p by eliminating t(denote by: f
p−−→
SG

g[t]), if t ∈ T (f),

there exists s ∈ LM(RG) with s.LT (p) = t, and

g = f − (
a

Lc(p).Lc(<(s))
).<(s).p

where a is the coefficient of t in f .

ii) f SG-reduces to g modulo P ( denote by:f
P−−→
SG

g), if f SG-reduces to g module p

for some p ∈ P .

Finally, the definition of SG-reducible, SG-normalform are straightforward.

Basic properties of SG-basis presented in [2, 9]. We will review some of the standard fact
on SG-bases. The proofs of the following proposition and its corollary proceed in the
standard way.
Proposition 3.1 The following are equivalent for a subset F of an ideal IG ⊆ RG:

a) F is an SG-basis for IG.

b) For every h ∈ IG, every SG-normal form of h modulo F is 0.
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Corollary 3.1. A SG-basis for IG generates IG as an ideal of RG.
Corollary 3.2 Suppose that F is an SG-basis for I ⊆ RG. Then f ∈ RG belongs to

I ⇐⇒ f
F−−→
SG

0.

In [2], Faugère and Rahmany presented an efficient algorithm, called F5-invariant, for
computing SG-basis up to degree D of invariant rings of monomial groups. In rest of
this section, we give a brief exposition of F5 invariant algorithm. For this, we need the
following definition which is an adaptation of Macaulay’s matrix [9] in invariant rings:
Definition 3.3 [Macaulay’s Matrix Invariant] Let f1, . . . , fm be homogeneous invariant
polynomials with degfi = di and d1 ≤ . . . ≤ dm. The Macaulay’s matrix invariant
f1, . . . , fm of degree d is matrix which rows are all coefficients multiples <(m).fi where
m is an initial monomial of degree d − di and columns indexed by initial monomials of
degree d.
We will use the symbol Md,m to denote Macaulay’s matrix invariant.

Md,m =



m̃1 m̃2 . . . m̃k

<(m1).f1 . . . . . . . . . . . .
... . . . . . . . . . . . .
<(mi).fj . . . . . . . . . . . .
... . . . . . . . . . . . .
<(mt).fm . . . . . . . . . . . .


In fact, the algorithm F5-invariant constructs matrices incrementally in the degree and
the number of polynomials. Let d be the current degree and i the current number of
polynomials(in other words are computing a SG-basis of 〈f1, . . . , fi〉 truncated in degree
d with deg fi = di). The algorithm constructs sub matrix Md,i of the Macaulay’s matrix
invariant and performs a row reduction on them. The incremental step from i − 1 to i
introduces the lines corresponding to <(m).fi for all monomials m of degree d−di that do
not appear as leading monomials in the M̃d−di,i−1(F5-invariant criterion). The algorithm
stops when a large enough D has been reached.
We now describe the F5-invariant algorithm. Here the order is any monomial ordering.
We now describe the F5-invariant algorithm. Here the order is any monomial ordering.

Algorithm 3.1 Algorithm F5-invariant

Input: homogeneous polynomials invariants (f1, . . . , fm) with degrees d1 ≤ . . . ≤ dm; a
maximal degree D.

Output:The elements of degree at most D of reduced SG-bases of (f1, . . . , fm) for i =
1, . . . ,m.

for i from 1 to n do Gi := φ

for d from d1 to D do
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Md,0 := φ, M̃d,0 := φ

for i from 1 to m do

if d < di then Md,i := Md,i−1

else if d = di then

Md,i := add new row fi to M̃d,i−1 with index(i, 1)

else

Md,i :=add new row <(m).fi for all monomials m of degree d− di that do not appear
as leading monomials in the M̃d−di,i−1 with index (i,m) in M̃d,i−1. Compute M̃d,i by
Gaussian elimination from Md,i add to Gi all rows of M̃d,i not reducible by LT (Gi)

return [Gi|i = 1, . . . ,m]

Theorem 3.1. The algorithm F5-invariant computes the elements of degree at most D
of the reduced SG-bases of 〈f1, . . . , fi〉, for i = 1, . . . ,m.
Proof 3.1. See [2], section 3.3, theorem 2.

3 An algorithm for computing secondary invariants

In this section we concentrate on our main goal: providing an algorithm for computing
secondary invariants of RG. For this, we assume that the primary invariants f1, . . . , fn ∈
RG have been given . In our algorithm, we use the number and the degrees of secondary
invariants which can be computed by the following proposition.
Proposition 4.1.
Let d1, . . . , dn be the degree of a primary invariants of RG. Then

(a) the (minimal) number of secondary invariants equals

t =
d1 · · · dn
|G|

.

(b) if e1, . . . et be the degrees of the secondary invariants then the Hilbert series of RG

equals

H(RG, z) =
ze1 + · · ·+ zet

(1− zd1) · · · (1− zdn)
.

Remark 4.1. In the non-modular case, Molien’s formula [8] provides complete infor-
mation about the Hilbert series of RG.
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A result of Nakayama’s lemma (see [5] lemma 2.1) state that the gi are secondary in-

variants if and only if they generate
RG

IG
as a vector space over IK, where IG is the ideal

generated by f1, . . . , fn in RG. Since the number of gi is correct, it is equivalent to the
condition that the gi are linearly independent modulo IG. In fact, the following definition
and proposition is the key of our algorithm.

Definition 4.1. Let IG be an ideal of RG. An initial monomial m is standard if
m 6∈ 〈LT (IG)〉. The invariant polynomial <(m) of standard monomial m is called a
standard invariant.

Proposition 4.2. Let {f1, . . . , fn} be a set of primary invariants and IG = 〈f1, . . . , fn〉 be
the ideal generates by {f1, . . . , fn} in RG. Then, the standard invariants w.r.t 〈f1, . . . , fn〉
form a system of secondary invariants of RG.

With this proposition, our goal becomes to compute the standard invariants of IG.
Therefore, we can calculate the partial SG-basis up to the degree et (i.e. maximum de-
gree of secondary invariants) by algorithm F5-invariant and in the process of computation
yields the complete information about the standard invariants (i.e.secondary invariants).
We now present an algorithm for finding secondary invariants. We use the same notations
of section 2.

Algorithm 4.1. Algorithm for computing secondary invariants

Input: A set of primary invariants( Homogeneous polynomials invariants

(f1, . . . , fn) with degrees d1 ≤ . . . ≤ dn.

output: The secondary invariants.

calculate the number and the degrees e1, . . . , et by Proposition(??)

standard:= ∅;

for i from 1 to t do

Ni= the set of initial monomials of degree ei of RG.

standardi := Ni\LT (M̃ei,n)

(matrix M̃ei,n has been calculated in the process of finding the SG-basis up to the
degree et in algorithm F5-invariant)

standard:=standardi∪ standard;

return standard;
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Let us look at an example now.
Example 4.1. Let G be cyclic group generated by the matrix

A =

 0 1 0
−1 0 0
0 0 −1

 .

The Hilbert series is calculated by Molien’s formula to be

H(RG, z) =
(z3 + z2 − z + 1)

(1 + z)2(1 + z2)(1− z)3
.

Magma delivers the following primary invariants:

f1 = x2 + y2

f2 = z2

f3 = x4 + y4

According to lemma 4.1 there exist four secondary invariants g1, g2, g3, g4 with degrees
e1, e2, e3, e4 which are computed by formula

H(RG, z)(1− zd1)(1− zd2)(1− zd3) = ze1 + ze2 + ze3 + ze4 .

After replacing, we obtain e1 = 0, e2 = e3 = 3, e4 = 4. Now we can apply the above
algorithm for finding secondary invariants. In degree 3, we obtain N = {x2z, xyz}, and
LT (M̃3,3) = {}. So the set of standard monomials of degree 3 is {x2z, xyz}. In degree 4,
we have N = {x4, x3y, x2y2, x2z2, z4}, and LT (M̃4,3) = {x4, x2y2, x2z2, z4}. So monomial
x3y is standard monomial of degree 4 and the desired secondary invariants are

g1 = 1, g2 = <(x2z), g3 = <(xyz), g4 = <(x3y).

4 Concluding remarks

We have presented a method based on SAGBI- Gröbner basis to find the secondary
invariants of invariant rings of monomial groups.Thanks to our approach, we can use the
symmetries of primary invariants . In fact, we limit our calculations inside the invariant
rings and also to avoid additional computations in the full polynomial ring. Another
advantage of our algorithm lies in the fact that it can be obtained from the efficient
algorithm F5-invariant.
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