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Abstract 
Synthetic gene construction is one of the components of synthetic biology. It can be 

used for various purposes such as to optimize gene expression. In this study, we 
proposed six predetermined criteria for designing oligos for the synthesis of the 
Beauveria bassiana protease gene. These criteria were set up to optimize the cost and to 
accommodate the oligos assembly. A total of 44 overlapping oligos were designed and 
synthesized 0.5 µM of oligos mixture was used in assembly PCR together with high 
fidelity DNA polymerase to produce 1.1 kbp fragment. The gene was visualized by 
agarose gel electrophoresis before subcloned into pCR™2.1-TOPO. The sequence of 
the gene was verified by DNA sequencing. Site-directed mutagenesis was performed to 
repair errors resulted from the gene synthesis. A sharp and distinguished band of the 
expected size of the protease gene was observed in agarose gel electrophoresis. Errors in 
the sequence which was detected by DNA sequencing was successfully repaired using 
our simplified site-directed mutagenesis protocol. The result indicated long DNA 
sequences (>1 kbp) can be synthesized with less error by using our method. 
Additionally, this method was easy to perform because it would require minimum 
optimization to synthesize other genes by following our guidelines. 
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Introduction 
Beauveria bassiana is an entomopathogenic fungus 

and commercially produced for biological control [1]. 
Protease is one of the enzymes secreted by Beauveria 
bassiana to degrade insect cuticle during infection [2]. 
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Protease gene can increase the pathogenicity of 
microbial pesticides such as baculovirus through genetic 
modification [3]. Nowadays, synthetic gene design and 
synthesis are much simpler compared to earlier days 
with the advancement in molecular biology and web-
based application for DNA and protein analysis which 
are available on the net for free. 

There are numerous PCR-based gene syntheses have 
been developed such as polymerase chain assembly 
(PCA) or also known as assembly PCR [4], sequential 
overlap extension PCR (OE-PCR) [5] and 
thermodynamically-balance inside-out (TBIO) [6]. As 
for PCA, the overlapping oligos are assembled in the 
first reaction, and then the gene assembly is amplified 
by PCR using the first and the last oligos as primers. In 
the sequential OE-PCR method, oligo pairs axre used to 
produce overlapping fragments, extended in the 
subsequent PCR steps until a full gene is obtained. An 
attempt to reduce the cost of gene synthesis by OE-PCR 
is made by decreasing the length of the oligos for gene 
synthesis and leaved gaps between them through a 
combination of dual asymmetric PCR and OE-PCR [7]. 
TBIO approach involves designing the oligos in such a 
way that the fragments start to extend from the centre to 
gradually form a full gene. 

PCA method has been modified to synthesize longer 
genes which range from 1.0 to 5.4 kb with less mutation 
[8]. Using this method, the DNA fragments which 
constitute the full gene, 500 bp in length, were first 
synthesized from the oligos and then joined in the 
second PCR by the outermost oligos. Another approach 
includes joining the DNA fragments into a full sequence 
using ligation reaction by the addition of restriction sites 
[9]. This method can also be used to enable the 
synthesis of genes up to 32 kbp in length by insertion of 
the fragments into vectors using ligation-independent 
cloning (LIC) method and then fragments were 
assembled into full gene by digestion/ligation reaction 
[10]. Besides that, unmodified PCA has been simplified 
by combining the gene assembly and PCR reaction into 
one reaction [11–13]. Moreover, a combination of PCA 
and TBIO techniques has been shown to enable the 
synthesis of genes up to 1550 bp [14]. 

In this study, we proposed an optimized method for 
the construction of the protease synthetic gene of B. 
bassiana starting from designing oligos according to our 
predetermined criteria until its final product. This 1.1 
kbp gene was successfully synthesized with a low error 
rate. In addition, we also described simplified site-
directed mutagenesis (SDM) for the correction of the 
gene sequence. 

 
 

Materials and Methods 
Gene design 

The synthetic Beauveria bassiana serine protease 
gene was constructed according to the sequence 
published in the GenBank (Accession number: 
GUI166155). The oligos for the gene construction were 
designed based on the following criteria: 

1. The maximum length of the oligos was set to 50 
nucleotides to optimize the cost.  

2. The minimum overlapping region was set to 20 
nucleotides. 

3. The GC contents range from 40-60%.  
4. Melting temperature differences between each 

oligonucleotide must not more than 5°C. 
5. Tm of potential hairpin structures lower than 

annealing temperature. Delta G values are higher than -
9.0 kcal/mole. The parameters were determined using 
OligoAnalyzer 3.1 (available at 
http://sg.idtdna.com/calc/analyzer). 

A total of 44 oligos were designed and synthesized 
(IDT, Singapore), the locations of the oligos in the gene 
were shown (Supplementary Table 1 and 
Supplementary Figure 1). 
 
Gene synthesis 

The gene was synthesized by assembling the 44 
oligos in the first step of PCR, and then the gene was 
amplified in the second step PCR (Fig. 1). The oligos 
mixture containing all the 44 oligos was prepared by 
mixing 10 µl of each oligo in a 2 ml centrifuge tube. 
The mixture was diluted to a final concentration of 10 
µM. The oligos mixture was used at the concentration 
of 0.5 - 4 µM for optimization in PCR mix containing 
1.5 mM MgCl2, 200 µM of each dNTP and 0.4 U 
Phusion enzyme (Thermo Scientific, US). Assembly 
PCR was carried out using the following condition: 
98°C for 30 s, 55 cycles of 94°C for 60 s, 62°C for 120 
s, 72°C for 60 s and a final extension of 72°C for 10 
minutes. 

The assembled oligo was further amplified with the 
addition of the BamHI (SP1.2) and NotI (SP44.2) 
restriction sites (Table 1). The assembled oligo was 
diluted 5-fold in a 20 µl PCR mix containing the same 
component as the first PCR. The second PCR was 
carried out using the following condition: 98°C for 30 s, 
25 cycles of 94°C for 60 s, 62°C for 60 s, 72°C for 60 s 
and a final extension of 72°C for 10 minutes. The PCR 
product was visualized, and the size estimated by 
agarose gel electrophoresis. The amplicon was purified 
from the gel using Nucleospin Gel and PCR Clean-Up 
(Machery Nagel, Germany) for subcloning. 
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Besides, the additional gene fragments synthesis step 
also requires additional works to be performed such as 
digestion/ligation reaction, DNA purifications, 
sequencing and analysis, resulting in more laborious 
works [7,9,10,18]. Nevertheless, our method may not be 
suitable for a large gene because the number of 
mutations might increase with the length of the gene 
though high fidelity polymerase is used. In such cases, 
mutations may be accumulated to the point of beyond 
repair.  

It was reported that the fragments produced in the 
first step of SOE need to be further purified before fused 
to avoid the formation of the secondary products [16]. 
In this study, secondary products were still formed even 
though purification has been done indicating that other 
factors contributed to their formations. However, the 
band of the desired product was more dominant as it 
was brighter than the others. The corrected gene was 
purified and used directly as a template for SOE of 
another site without the need to subclone. However, 
when this method was performed on a longer gene, the 
desired fragments could not be produced (data not 
shown). The fragment could only be produced when the 
longer gene was subcloned into a vector. The 
complexity of DNA structure inherited by longer gene 
sequences might hinder the direct amplification of this 
template. 

Our method requires less effort and highly 
reproducible by following our criteria for designing 
good oligos. In addition, our method also serves as a 
cheaper alternative to the commercial synthetic gene.  
This method is also ideal for sequences equal to or less 
than 1 kbp in length. Furthermore, this method also 
allows customization of the DNA sequence for the 
purpose of mutation study or codon modification for 
optimization of gene expression. Moreover, 
synthesizing the gene using this method can prevent 
direct contact with dangerous organisms such as 
poisonous animals and pathogenic microorganisms. 
Nonetheless, in a study where even a single nucleotide 
change must be avoided, this method might not be 
suitable because in our method, nucleotide change in 
DNA sequence not only alters the protein it codes, it is 
required to adjust the properties of the oligonucleotides 
such as the GC contents and the melting temperatures to 
accommodate the oligonucleotides assembly.  
Additionally, this method might also need extra works 
such as the optimization of the PCR condition and DNA 
purification step.  

 
Conclusions 

Gene synthesis from oligos could be challenging 
especially for beginners without proper planning and 

design. In this study, we have listed five criteria for 
designing a gene as a guide towards more successful 
gene synthesis. By following these criteria, we 
successfully produced synthetic B. bassiana protease 
gene using assembly PCR. Thus, the criteria would 
provide useful guidance for PCR-based gene synthesis. 
Besides, we have also described the application of SOE 
for repairing the errors that occurred in the synthesized 
gene. Even though the technique might have several 
disadvantages, generally it is acceptable for small genes, 
simple study and low scale synthesis.  
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Supplmemtary Table 1. Oligos used for the synthesis of the protease gene in this study. 
Name Sequence (5’-3’) Length GC(%) Tm(ºC) 
SP1 ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGC 50 40.0 67.0 
SP2 CAGGTTCAACAACGGGAGCTGCAATGGCTAAAGGCAAAGC 40 52.5 68.7 
SP3 AGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGA 40 47.5 67.2 
SP4 GACAATGTACTTACCCGCTATGGTCTGCCCTCTCGCTTCAATTAAAGGAG 50 48.0 67.6 
SP5 TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCGACCATTGGTATC 50 44.0 66.9 
SP6 ACCTTGGACGCAGCATCCATGATACCAATAGTTGCAGTGT 40 47.5 67.3 
SP7 ATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT 50 44.0 68.8 
SP8 TGGTTAAGAGTGGCACTGAATCCCTTGAGGACCTTTTCATAAACCAATTC 50 42.0 66.5 
SP9 TTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCTTACGCCATGATCC 50 48.0 68.9 
SP10 ATGGCATCCTGCTCTATTGTTTCAACATCTGGATCATGGCGTAAGCGGTC 50 48.0 68.9 
SP11 ACAATAGAGCAGGATGCCATTGTTAGCATCAACGCAGTTGTCAGACAAGC 50 46.0 68.4 
SP12 CTAAACCCCAAGGAGCACCTGCTTGTCTGACAACTGCGTT 40 52.5 68.7 
SP13 AGGTGCTCCTTGGGGTTTAGGTCGTATTAGTCACCGTGCT 40 52.5 68.7 
SP14 ACTGTCATAATCATACGTTGTCGCACCACGAGCACGGTGACTAATACGAC 50 48.0 68.1 
SP15 CAACGTATGATTATGACAGTTCGGCAGGTGCTGGTACATGTGTATATGTT 50 42.0 66.1 
SP16 TGGGTGGCTGTCGTAGACGCCAGTGTCAATAACATATACACATGTACCAG 50 48.0 68.1 
SP17 GCGTCTACGACAGCCACCCAGACTTTGAAGGAAGAGCAAA 40 52.5 68.3 
SP18 GAAGTACCAGAGACAAAGGACTTGATCTGCTTTGCTCTTCCTTCAAAGTC 50 44.0 66.2 
SP19 TCCTTTGTCTCTGGTACTTCAGATGGTCACGGTCACGGTA 40 50.0 67.1 
SP20 TATAGTTCCTGCACAGTGTGTACCGTGACCGTGACCATCT 40 50.0 67.3 
SP21 CACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAA 50 44.0 67.1 
SP22 TTCGAGTACCTTGACGCCGAAAATGGATGCTTTTTTAGCAACACCGTAAG 50 44.0 67.5 
SP23 TCGGCGTCAAGGTACTCGAAGATAGTGGTTCGGGTTCGTT 40 52.5 68.5 
SP24 ACAAAGTCCATTCCTGCAATAACACCGCTCAACGAACCCGAACCACTATC 50 48.0 68.9 
SP25 ATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAG 50 46.0 68.0 
SP26 CCAAGACTCATACTTGCTACGGTGCCTTTGCTGCAAGGACGACTTTTTCT 50 48.0 68.9 
SP27 GTAGCAAGTATGAGTCTTGGTGGTGGTCACAGTGCAACAGTTAATCAAGC 50 46.0 67.3 
SP28 AAGCCTGTAAACGAGCTGCTGCTTGATTAACTGTTGCACT 40 45.0 66.7 
SP29 AGCAGCTCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTA 40 47.5 67.2 
SP30 CTATTGTCGTTGCCTGCTGCTACTGCTACAAAAACACCCG 40 50.0 66.8 
SP31 GCAGCAGGCAACGACAATAGGGATGCAGCACAAACAAGTC 40 52.5 68.4 
SP32 TACAGATGGTTCACTTGCTGGACTTGTTTGTGCTGCATCC 40 47.5 66.7 
SP33 CAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGAC 50 52.0 68.9 
SP34 TTTTCCAAAGTTGGAGAAGCTAGAATGACGGTCAGACGAGTCTGTAGCTC 50 46.0 67.3 
SP35 GCTTCTCCAACTTTGGAAAAGCTGTTGATATTTTTGCACCTGGCACTGGC 50 46.0 68.4 
SP36 AGTACCACCGTTATTCCATGTAGATAAAATGCCAGTGCCAGGTGCGAAAA 50 44.0 68.0 
SP37 CATGGAATAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACT 50 46.0 66.6 
SP38 CCGAGACCTGCAATGTGAGGAGTAGCCATACTCGTACCCG 40 57.5 68.6 
SP39 CCTCACATTGCAGGTCTCGGTGCATACCTTTTGGCTCTCG 40 55.0 68.6 
SP40 GTTACCTGCTGTACCCTTACCGAGAGCCAAAAGGTATGCA 40 50.0 67.0 
SP41 GTAAGGGTACAGCAGGTAACCCCTGTCAAACTATCTGGACTCTCT 45 48.9 66.9 
SP42 AAGGAACGCCAGTAAGAACATTTTTTGTGGAGAGAGTCCAGATAGTTTGA 50 40.0 66.1 
SP43 TGTTCTTACTGGCGTTCCTTCAGGCACCGTCAACTACCTG 40 52.5 68.1 
SP44 CTTATATGCCGCCGTTAAATGCCAGGTAGTTGACGGTGCCTG 42 52.4 68.2 
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Supplementary Figure 1. The location of the oligos in the gene. 
           10        20        30        40        50        60        70        80        90       100                   
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGCAGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGAGGGCAGACCA  
  TATTTATACGCAAACAGTTATTAACGTCGCCGAAACGGAAATCGGTAACGTCGAGGGCAACAACTTGGACGAGGAAATTAACTTCGCTCTCCCGTCTGGT  
 
          110       120       130       140       150       160       170       180       190       200          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCAACTATTGGTATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT  
  ATCGCCCATTCATGTAACAGTTCGTGTTCCTGTGACGTTGATAACCATAGTACCTACGACGCAGGTTCCACGGTTTGTGTCTTAACCAAATACTTTTCCA  
 
          210       220       230       240       250       260       270       280       290       300          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CCTCAAGGGATTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCTTACGCCATGATCCAGATGTTGAAACAATAGAGCAGGATGCCATTGTTAGCATC  
  GGAGTTCCCTAAGTCACGGTGAGAATTGGTTCTTGTTGAACTGGCGAATGCGGTACTAGGTCTACAACTTTGTTATCTCGTCCTACGGTAACAATCGTAG  
 
          310       320       330       340       350       360       370       380       390       400          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  AACGCAGTTGTCAGACAAGCAGGTGCTCCTTGGGGTTTAGGTCGTATTAGTCACCGTGCTCGTGGTGCGACAACGTATGATTATGACAGTTCGGCAGGTG  
  TTGCGTCAACAGTCTGTTCGTCCACGAGGAACCCCAAATCCAGCATAATCAGTGGCACGAGCACCACGCTGTTGCATACTAATACTGTCAAGCCGTCCAC  
 
          410       420       430       440       450       460       470       480       490       500          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CTGGTACATGTGTATATGTTATTGACACTGGCGTCTACGACAGCCACCCAGACTTTGAAGGAAGAGCAAAGCAGATCAAGTCCTTTGTCTCTGGTACTTC  
  GACCATGTACACATATACAATAACTGTGACCGCAGATGCTGTCGGTGGGTCTGAAACTTCCTTCTCGTTTCGTCTAGTTCAGGAAACAGAGACCATGAAG  
 
          510       520       530       540       550       560       570       580       590       600          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  AGATGGTCACGGTCACGGTACACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAAGCATCCATTTTCGGCGTCAAGGTACTCGAA  
  TCTACCAGTGCCAGTGCCATGTGTGACACGTCCTTGATATCCGAGGTTCTGAATGCCACAACGATTTTTTCGTAGGTAAAAGCCGCAGTTCCATGAGCTT  
 
          610       620       630       640       650       660       670       680       690       700          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GATAGTGGTTCGGGTTCGTTGAGCGGTGTTATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAGCAAAGGCACCGTAGCAAGTA  
  CTATCACCAAGCCCAAGCAACTCGCCACAATAACGTCCTTACCTGAAACAGCGATGCCTATCTTTTTCAGCAGGAACGTCGTTTCCGTGGCATCGTTCAT  
 
 
          710       720       730       740       750       760       770       780       790       800          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  TGAGTCTTGGTGGTGGTCACAGTGCAACAGTTAATCAAGCAGCAGCTCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTAGCAGCAGGCAACGACAATAG  
  ACTCAGAACCACCACCAGTGTCACGTTGTCAATTAGTTCGTCGTCGAGCAAATGTCCGAAGCCCACAAAAACATCGTCATCGTCGTCCGTTGCTGTTATC  
 
          810       820       830       840       850       860       870       880       890       900          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GGATGCAGCACAAACAAGTCCAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGACCGTCATTCTAGCTTCTCCAACTTTGGAAAA  
  CCTACGTCGTGTTTGTTCAGGTCGTTCACTTGGTAGACATACGTGTCAGCCTCGATGTCTGAGCAGACTGGCAGTAAGATCGAAGAGGTTGAAACCTTTT  
 
 
          910       920       930       940       950       960       970       980       990       1000         
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GCTGTTGATATTTTTGCACCTGGCACTGGCATTTTATCTACATGGAATAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACTCCTCACATTG  
  CGACAACTGTAAAAGCGTGGACCGTGACCGTAAAATAGATGTACCTTATTGCCACCATGATTATGGTAGAGCCCATGCTCATACCGATGAGGAGTGTAAC  
 
          1010      1020      1030      1040      1050      1060      1070      1080      1090      1100         
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CAGGTCTCGGTGCATACCTTTTGGCTCTCGGTAAGGGTACAGCAGGTAACCCCTGTCAAACTATCTGGACTCTCTCCACAAAAAATGTTCTTACTGGCGT  
  GTCCAGAGCCACGTATGGAAAACCGAGAGCCATTCCCATGTCGTCCATTGGGGACAGTTTGATAGACCTGAGAGAGGTGTTTTTTACAAGAATGACCGCA  
 
          1110      1120      1130      1140         
  ....|....|....|....|....|....|....|....|....|.. 
  TCCTTCAGGCACCGTCAACTACCTGGCATTTAACGGCGGCATATAAG  
  AGGAAGTCCGTGGCAGTTGATGGACCGTAAATTGCCGCCGTATATTC 



Vol. 32  No. 1  Winter 2021 M.A. Azali, et al. J. Sci. I. R. Iran 

14 

 
 
 
 
 
 
 

 
 
 
 
 
 

Supplementary Figure 2. The alignment of the expected sequence with the DNA sequence of the synthesised gene. The primer 
target sites were highlighted with yellow while the mutated sequences were highlighted with blue. 
 
 
      10        20        30        40        50        60        70        80        90       100                   
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGCAGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGAGGGCAGACCA  
  ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGCAGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGAGGGCAGACCA  
 
          110       120       130       140       150       160       170       180       190       200          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCAACTATTGGTATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT  
  TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCAACTATTGGTATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT  
 
          210       220       230       240       250       260       270       280       290       300          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CCTCAAGGGATTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCTTACGCCATGATCCAGATGTTGAAACAATAGAGCAGGATGCCATTGTTAGCATC  
  CCTCAAGGGATTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCTTACGCCATGATCC-GATGTTGAAACAATAGAGCAGGATGCCATTGTTAGCATC  
 
          310       320       330       340       350       360       370       380       390       400          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  AACGCAGTTGTCAGACAAGCAGGTGCTCCTTGGGGTTTAGGTCGTATTAGTCACCGTGCTCGTGGTGCGACAACGTATGATTATGACAGTTCGGCAGGTG  
  AACGCAGTTGTCAGACAAGCAGGTGCTCCTTGGGGTTTAGGTCGTATTAGTCACCGTGCTCGTGGTGCGACAACGTATGATTATGACAGTTCGGCAGGTG  
 
          410       420       430       440       450       460       470       480       490       500          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CTGGTACATGTGTATATGTTATTGACACTGGCGTCTACGACAGCCACCCAGACTTTGAAGGAAGAGCAAAGCAGATCAAGTCCTTTGTCTCTGGTACTTC  
  CTGGTACATGTGTATATGTTATTGACACTGGCGTCTACGACAGCCACCCAGACTTTGAAGGAAGAGCAAAGCAGATCAAGTCCTTTGTCTCTGGTACTTC  
 
          510       520       530       540       550       560       570       580       590       600          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  AGATGGTCACGGTCACGGTACACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAAGCATCCATTTTCGGCGTCAAGGTACTCGAA  
  AGATGGTCACGGTCACGGTACACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAAGCATCCATTTTCGGCGTCAAGGT-CTCGAA  
 
 
 
 
          610       620       630       640       650       660       670       680       690       700          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GATAGTGGTTCGGGTTCGTTGAGCGGTGTTATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAGCAAAGGCACCGTAGCAAGTA  
  GATAGTGGTTCGGGTTCGTTGAGCGGTGTTATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAGCAAAGGCACCGTAGCAAGTA  
 
          710       720       730       740       750       760       770       780       790       800          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  TGAGTCTTGGTGGTGGTCACAGTGCAACAGTTAATCAAGCAGCAGCTCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTAGCAGCAGGCAACGACAATAG  
  TGAGTCTTGGTGGTGGTCACAGTGCAACAGTTAATCAAGCAGCAGCTCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTAGCAGCAGGCAACGACAATAG  
 
          810       820       830       840       850       860       870       880       890       900          
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GGATGCAGCACAAACAAGTCCAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGACCGTCATTCTAGCTTCTCCAACTTTGGAAAA  
  GGATGCAGCACAAACAAGTCCAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGACCGTCATTCTAGCTTCTCCAACTTTGGAAAA  
 
 
          910       920       930       940       950       960       970       980       990       1000         
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  GCTGTTGATATTTTTGCACCTGGCACTGGCATTTTATCTACATGGAATAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACTCCTCACATTG  
  GCTGTTGATATTTC-GCACCTGGCACTGGCATTTTATCTACATGGAATAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACTCCTCACATTG  
 
          1010      1020      1030      1040      1050      1060      1070      1080      1090      1100         
  ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
  CAGGTCTCGGTGCATACCTTTTGGCTCTCGGTAAGGGTACAGCAGGTAACCCCTGTCAAACTATCTGGACTCTCTCCACAAAAAATGTTCTTACTGGCGT  
  CAGGTCTCGGTGCATACCTTTTGGCTCTCGGTAAGGGTACAGCAGGTAACCCCTGTCAAACTATCTGGACTCTCTCCACAAAAAATGTTCTTACTGGCGT  
 
          1110      1120      1130      1140         
  ....|....|....|....|....|....|....|....|....|... 
  TCCTTCAGGCACCGTCAACTACCTGGCATTTAACGGCGGCATA-TAAG  
  TCCTTCAGGCACCGTCAACTACCTGGCATTTAACGGCGGCATATAAAA 


