
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

A new indexed approach to render the attractors of
Kleinian groups

Alessandro Rosa∗1

1Software Developer, Brindisi, Italy .

ABSTRACT ARTICLE INFO

One widespread procedure to render the attractor of
Kleinian groups, appearing in the renown book [8],
wants huge memory resources to compute and store the
results. We present a new faster and lighter version that
drops the original array and pulls out group elements
from integers.

Article history:
Received 30, June 2017
Received in revised form 18,
November 2017
Accepted 3 December 2017
Available online 23, December
2017

Keyword: Kleinian groups, converge uniformly, limit cycles.

AMS subject Classification: 05C72.

1 Introduction: some definitions

Let K be a group of one-to-one relations. One model binds the elements of K to strings
of symbols: letters showing up in two cases and distinguishing the group elements from
their inverses: ‘a’ (lower case) and ‘A’ (upper case).
The generating set G, the smallest subgroup of K, includes relations tagged with single
letters that collect into the alphabet of K. All entries in K come from the combina-
tion, termed multiplication1, of elements in G. Multiplication corresponds lexically to
concatenation of letters into the so-called word. Words resemble to algorithms and they
enjoy both symbolic (code) and operative (run) features. There are finite (bbbbaBAbA)
or infinite2 (bbbbaBAbA) words and the reading order, left-to-right (LR) or right-to-left

∗alessandro.a.rosa@gmail.com
1For example a ◦ b, but the operator ◦ is often omitted for sake of brevity.
2The overline symbol marks the period, like for numbers.

Journal of Algorithms and Computation 49 issue 2, December 2017, PP. 53– - 62

54 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

(RL), drives the letters/generators picking. Thus the word value, the last orbit element,
may change depending on that order. Given W = abA in RL, the orbit is the sequence
z1 = A(z0), z2 = b(z1), z3 = a(z2), Subwords, returning the identity map I, are said
crash word and they provoke the cancellation of letters and produce reduced words. Given
W = aBba, we find one cancellation, bB, so that W reduces to aa.
Words in K converge uniformly to limit cycles,3 collectively defined as the attractor. Gen-
erators and words show up in a twofold (lexical and geometric) nature: as symbol/point
and as concatenation/orbit respectively. Such a duality extends to groups, in terms of
words/attractor.4

2 Basic setup

Working with attractors wants a sufficient degree of freedom and to consider all words
in the group. So we step back to the abstraction of strings and symbols, because we
need a ‘malleable’ setup to work with: any concatenation of letters with length d < +∞.
According to the theory of enumerative combinatorics, it is represented by a m-branched
tree (see fig. 1), where m is the alphabet size.

t a

b

A

B

BA

AA

bA

aA

AB aBBBbB

ba

Ba

aa

Aa

Ab bbab Bb

� � R j

I
Y

)

=

Q
Q

QQk M 7 *

�
*

q

R

-� 6

?

Figure 1: Original tree. Enumeration of all possible concatenations of symbols up to
depth 2.

Luckily, the theory of combinatorial groups5 helps to set strong links between tree graphs
and groups: generators and words deal with concepts of node, path, depth, root, leaf,
parent, child. Group generation rules can be resumed by the presentation tool. We
account two versions: the Cayley multiplication table including all multiplicative pairs of
elements for finitely generated groups6 G; and the group presentation 〈R|S〉: a compact
list of generators, said relators R, and of relations S [6]. The tree shows as the easiest
graphical expedient to explain how groups are generated through a presentation. Fig. 1

3Every K is a convergence group; see [4], pp. 334–340.
4Alternatively defined the ‘limit set’.
5Pioneered by Sir Arthur Cayley during 1850s. Refer to [2].
6Equipped with a finite number of generators and of relations between them.

55 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

shows the original tree, related to the simplest presentation, where S ≡ ∅. We will work
with trees of bounded depth d < +∞.

w w
A

AbB

a
-

�

�
�* t a

A

b

B

ab

bb

Ab

ABaBBB

ba

Ba

aa

BAAAbA

-� 6

?

I
�

	

�
-

w

36k

?s+

(A) (B)

Figure 2: Pruning. (A) New nodes are pruned if relating to crash words (in red). (B)
The resulting pruned tree.

3 Once-punctured torus groups

Let K be a Kleinian group, a discrete group of orientation preserving conformal maps
M . In recent times, this topic gained more interest from the popular audience as it
was dragged by the caravan of fractals, due to the similarities with Julia sets.7 Let M
be a linear fractional map (mz + n)/(pz + q) in one complex variable z ∈ C. We are
interested into the quasi-Fuchsian subfamily of K and we will work with 4 generators
a, b, A,B: the topological model is the once-punctured torus and it shows as the free
product K = G ∗H, G = {a,A}, H = {b, B}. The presentation is 〈x,X|xX = I〉 or the
Cayley table 1, because Kleinian groups are finitely generated. K is also free because only
trivial relations appear. We will discuss the role of Cayley table later in section 5. This
presentation prunes the original tree in fig. 1 from nodes related to strings with crash
words Aa, aA, Bb, bB (fig. 2/A at p. 55), squeezing into the identity map I that sends
points forth and back, z1 = A(z0), z0 = a(z1), and arresting the tree growth along the
branch. The goal is to have no reduced words and get the pruned tree in fig. 2/B.

4 The revised deterministic approach

The problem of rendering the attractor8 of K has been studied thoroughly, in terms of
automatic groups,9 only in [7, 8], as far as the author knows.

7Gaston Julia was the first to set this analogy in 1918, while studying the iterations of functions in
one complex variable. Refer to [1]. Also see [8] as introduction to Kleinian groups.

8The renderings of attractors in this article have been computed through author’s software ‘Circles’:
http://alessandrorosa.altervista.org/circles/

9Any finitely generated group equipped with a finite state automata. Refer to [3], p. 356.

56 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

I a b A B
I I a b A B
a a a b I B
b b a b A I
A A I b A B
B B a I A B

Table 1: Cayley multiplication table for once-punctured torus groups.

Figure 3: Probabilistic rendering. Attractor for the parameter µ = −0.097 + 1.838i
in the Maskit T1,1 embedding, rendered via a ‘boosted-up’ modification. Only 1.048.576
words has been required to enhance sharp details.

Two approaches have been developed. One is probabilistic, not relying on tree model
and working on one only word/orbit, which gets longer and longer as generators are
appended through random picks, given a probability law.10 The second is deterministic,
where words obey to the combinatorial tree model. The larger the depth, the longer the
word, the finer the rendering: this is the base meaning of this approach, running millions
of words to get fine quality pictures.11 The original implementation implements a huge
array of unique words - the dictionary12 – and requires expensive resources, in terms of
memory allocation. Our version only intends to save resources, not to return finer quality
renderings.
We are going to explain a two-stages strategy revisiting the pruned tree of letters. Num-
bers are the synthesis of two entities: symbol and value. Consider the set {10, 11, 12, . . . , 19}
in terms of symbols: the elements come from appending one digit on the right of ‘1’, like
a new branch of a tree (see fig. 4/A). It makes sense to review numbers as paths. Given
the mapping [a → 0, A → 1, b → 2, B → 3], we replace letters with digits in the tree at
p. 55. Starting from the root at depth 0, corresponding to I (empty string), we move to
the left branch at depth 1 and get the subword ‘1’; we route to one next branch and get
‘31’ at depth 2. Each number represents one only chain of digits and so we pull out the

10A sketch is available in [8], p. 152. This algorithm can be boosted up via commutators, similarly to
a technique for the deterministic approach, discussed in [8], pp. 181, 248.

11Authors of [8] had to pull additional manipulations (so-called ‘repetends’) out of the hat, to catch
up sharp renderings, because orbits run slower as they get closer to parabolic points.

12See p. 114 of [8] suggested cardinality 10E7 or more, refer to caption of fig. 6.

57 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

1

0 1 2 3 4 5 6 7 8 9

0 1

t 0

2

1

3

31

11

21

13 0333

20

30

00

12 2202

-� 6

?

I
�

	

�
-

w

36k

?s+

(A) (B)

Figure 4: First stage. (A) Numerical paths: the mid row shows numbers composition
from 10 to 19. The bottom row shows one next step. (B) Digital version of the lexical
pruned tree.

digital tree in fig. 4/B.
The master plan is to move from symbols to digits and finally to indexes (numbers). Now
notice that words include digits from 0 to m− 1 (here m = 4) and nodes bind to base-m
numbers, turning into indexes in base-10 (prefixed by ‘]’ in fig. 5). Indexes count the
appearing order of nodes, during the whole tree growth. The notation 314← indicates
that 31 is written in base-4 and read in RL order: it amounts to 410←. For example,
Ba ⇒ 214← ⇒ 510←. We finally get the indexed tree in fig. 5/A), whose nodes bind to
base-10 indexes.

t 0
]0

1]1

2
]2

3]3

20]8

30]12

00]0

10]4

11
]5

21
]9

31
]13

01
]1

32]14

02]2

12]6

22]10

23
]11

03
]3

13
]7

33
]15

Y
�

�

= ?~

-6�
?

3
-

s

�MY

Figure 5: Second stage. Indexed version of the digital tree: red nodes mark crash words.

We do not need words to be stored: they are already ‘coded’ inside integers!

5 Cayley Multiplication Tables

Cayley tables portray all multiplicative combinations between pairs of elements of G
and they are homologue to state transition tables, supported by a finite state automaton
(FSA): in fact word runs [5] behave like dynamical systems, whose ‘states’ match to values

58 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

inside cells. Cayley tables prune the original tree, depending on whether the final state
is of crash kind (indexed with 0) or not.

0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 0 4
2 2 1 2 3 0
3 3 0 2 3 4
4 4 1 0 3 4

-

+ -
i -

-

+ -
i -
Y -

Table 2: Zig-zagging for words of once-punctured torus groups. On the left, the
indexed version of Cayley table 1. At the center, the succession of states related to abA,
that is, ‘123’ (RL). On the right, the crash path of AabA.

The Cayley table for once-punctured torus groups is simple to run: just the recognition of
the crash words {aA,Aa, bB,Bb}. But there are groups equipped with more complicate
presentations, demanding a generalized management: take on each string from the original
tree and run it along the Cayley table. We will illustrate it in two examples.
The once-punctured torus groups offer a comfortable start. The indexes, originally ranging
in [0−9], will be incremented by 1 to avoid collisions with the crash state. Let the indexed
table 2 at p. 58 and W = abA (RL), which turns into ‘123’. For algorithmic reasons,
the table scan begins from the neutral state of the identity element at row 0: WI ≡ W .
Reading the first symbol ‘3’, we move to column 3, with state value ‘3’: in fact, in a
dynamical system, each state rules the value of the next one in progression. We read the
second symbol ‘2’, we move to column 2 with state 2. Again, we place at row 2, we read
the third and last symbol ‘1’, so we move to column 1, with (final) regular state value 1.
The second example concerns the Klein-four group, equipped with less obvious presenta-
tion: 〈a, b|a2 = b2 = (ab)2 = I〉. Despite of its name, it has nothing to do with Kleinian
groups, but we want to show that crash states do not necessarily relate to pairs of inverse
maps.

I a b ab
I I a b ab
a a I ab b
b b ab I a
ab ab b a I u

u u
u
I

R

I

R
I

ba

ba

ab

ab

ab
ab

	

�

-�

�

	?

6
0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 3: Klein Four-Group. From left to right, multiplication table, tree model and
indexed version of the left table.

We notice one entry tagged with ‘ab’, a compound word. We apply the translation
[a→ 1, b→ 2, ab→ 3] to preserve the one-to-one symbols match and obtain the indexed

59 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

version (table 3, on the right), helping to rework the indexed words. Let the indexed
W = ‘123’ (RL), or (a)(b)(ab).13 Reading W leads to the zero index at row 1 / column
1, so ‘123’ is a crash word! There exist even more complicate groups, with multiple crash
states.14

6 Implementation

Disclaimer. We will show Javascript pseudo-code implementing the indexed scan. Be-
ing an higher level language, Javascript runs reasonably slower than C++. The fastest
algorithms want bare codings: just the essential computations and possibly no exter-
nal function calls. Our web environment15 has broader goals and does not follow such
indications; our benchmarks just attest faster speeds, not the fastest possible.
We count all nodes in the original tree and return the indexed word through the routine
get RL word. The goal is to return strings whose length is equal to the node depth.
This routine does not just run as ordinary base conversion: tests showed that there could
be base-10 indexes not retrieving words of required depth and thus bugging the final
rendering. So we put an extra if-statement assuring that the tree is transversed all the
way back to depth 1. Our code is tuned to 9 generators at most. If more are required, the
string out shall be replaced by an array that stores indexes (even with multiple digits)
separately: the string object – although being again an array – allows to save just one
symbol per indexed entry.

RL-path scanner
1 function get_RL_word(_n, _gens_n, _depth)

2 {

3 // _gens_n : is the number of symbols, i.e. of generators

4 var _rem = 0, _quot = _n, out = "" ;

5 while(true)

6 {

7 // remainder incremented by 1 to match our indexing

8 // rule: 0 for identity, other digits for generators index

9 _rem = (_quot % _gens_n) + 1 ;

10 _quot = (_quot / _gens_n) >> 0 ; // integer division

11 //it stops only when depth 1 is reached

12 if (_quot < _gens_n && _depth <= 1) return _rem + ’’ + out ;

13 out = _rem + ’’ + out ; // string concatenation

14 _depth-- ;

15 }

16 }

13We will explain further why we split it into tokens.
14Including commutators of order 2, (abAB)2 = I, for example: see [8], p. 359.
15See footnote 8.

60 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

We give the code below to check an indexed word run through any Cayley table. It is
simply a multi-dimensional array reading, returning 0 if a crash word is met, otherwise
returns 1.

Check word run
1 // indexed Cayley table for once-punctured torus groups

2 var _idx_cayley_table = [[0, 1, 2, 3, 4],

3 [1, 1, 2, 0, 4],

4 [2, 1, 2, 3, 0],

5 [3, 0, 2, 3, 4],

6 [4, 1, 0, 3, 4]] ;

7

8 function check_word_run(_idx_word, _cayley_table)

9 {

10

11 // we start from row 0, by convention

12 var _idx = -1, _ret = 1, _row = 0 ;

13

14 /* get the input word, split indexes into tokens, convert’em all

15 into numbers and reverse for RL order */

16

17 _idx_word=_idx_word.split("") ;

18 _idx_word=_idx_word.map(function(_i){return parseInt(_i,10);}) ;

19 _idx_word = _idx_word.reverse(); //RL reading order

20

21 for(var _i = 0 ; _i < _idx_word.length ; _i++)

22 {

23 _idx = _idx_word[_i], _row = _idx_cayley_table[_row][_idx] ;

24 if (_row == 0) { _ret = 0; break ; } // crash state is met

25 }

26

27 return _idx == -1 ? 0 : _ret ;

28 }

All nodes will be scanned according to the tree in fig. 5 and keep track of both depth
and run for each node. Given an m-branched tree, let λ = md be the number of nodes
at bounded depth d ≤ D < +∞. The attractor can be rendered in ‘limit set ’ or ‘tiling ’
mode, whether points are drawn for λ = mD leaves only or for all σ =

∑D
d=1 λ nodes

respectively. We finally pseudo-code the nested loops below, to render the attractor in
three steps: (1) a loop feeding the fixed points to start the orbits;16 (2) a loop to get the
indexed word from each node; (3) a loop to read and compute and draw the word values.

Index search algorithm
1 var _gens_n = 4, _rl_word = "", _max_depth = 4, _fp = null ;

2 /*assume that we already collected the fixed points of the Mobius

16See table in [8], p. 135.

61 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

3 transformations of K into the array _input_fixed_pts and that we have

4 a multi-dimensional array storing the current Cayley Table*/

5 // feed fixed points

6 for(var _p = 0 ; _p < _input_fixed_pts.length ; _p++)

7 {

8 _nodes_n = Math.pow(_gens_n, _d) ;

9 // n is the index of each node belonging to depth _d

10 for(var _n = 0 ; _n < _nodes_n ; _n++)

11 {

12 _fp = _input_fixed_pts[_p] ;

13 _rl_word = get_RL_word(_n, _gens_n, _d) ;

14 // pseudo-code (loop):

15 // 1.0 read _rl_word

16 // 2.0 check_word_run(_rl_word, _cayley_table)

17 // 2.1 if crash state is met, continue to the next iteration

18 // 2.2 otherwise, for each digit in the _rl_word:

19 // 2.2.1 get the related Mobius transformation M_n.

20 // 2.2.2 apply _fp = M_n(_fp)

21 // 3.0 draw _fp on the screen, according to

22 ’tiling’ (any word)

23 ’limit set’ (only words whose length = depth) mode

24 }

25 }

Figure 6: Index-search approach. Same attractor as in picture 3, rendered through a
tree of depth 14, counting about 350 millions of words. In terms of original deterministic
approach, the dictionary would weight more then 4 Gigabytes.

7 Conclusions

The benefits of this version account to: 1) words are pulled out from integers, not by
tree transversion17; 2) save memory resources required by the dictionary; 3) very easy

17See breadth-first and depth-first implementations, p. 115 and 148–151 of [8] respectively.

62 Alessandro Rosa / JAC 49 issue 2, December 2017, PP. 53– - 62

implementation; 4) quick extension to arbitrary Cayley tables.

References

[1] Alexander D.S., Iavernaro F., Rosa A., Early days in complex dynamics, AMS, 2011.

[2] Cayley A., On the theory of groups, as depending on the symbolic equation θn−1 = 0,
Philosophical Magazine, Vol. 7 (1854), pp. 40–47.

[3] Epstein D., Cannon J., Holt D., Levy S., Paterson M., Thurston W., Word Processing
in Groups, Boston, MA, Jones and Bartlett Publishers, 1992.

[4] Gehring F., Martin G., Discrete quasiconformal groups I, Proceedings of the London
Mathematical Society, 55 (1987), pp. 331–358.

[5] Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, 1979.

[6] Lyndon R.C., Schupp P.E., Combinatorial Group Theory, Springer-Verlag, 1977.

[7] McShane G., Parker J.R., Redfern I., Drawing limit sets of Kleinian groups using
finite state automata, Experiment. Math. Volume 3, Issue 2 (1994), pp. 153–170.

[8] Mumford D., Series C., Wright D., Indra’s pearls: The Vision of Felix Klein, Cam-
bridge University Press, 2002 (reprinted in 2015).

17This article is dedicated to the memory of the Iranian mathematician and Fields medallist Maryam
Mirzakhani (1977 – 2017). The author did not know her in person, either he is not involved in her field
of interest. But he admired her working on top mathematical problems with extraordinary pleasure and
joy, played with success in parallel with her role as mother and wife.

