
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

A novel algorithm to determine the leaf (leaves) of a
binary tree from its preorder and postorder traversals

N. Aghaieabiane*1, H. Koppelaar†2 and P. Nasehpour‡3

1Department of Engineering, School of Computer Science, New Jersey Institute of Technology,
Newark, New Jersey, the USA.

2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of
Technology, Delft, The Netherlands.

3Department of Engineering Science, Golpayegan University of Technology, Golpayegan, Iran.

ABSTRACT ARTICLE INFO

Binary trees are essential structures in Computer Science.
The leaf (leaves) of a binary tree is one of the most signif-
icant aspects of it. In this study, we prove that the order of
a leaf (leaves) of a binary tree is the same in the main tree
traversals; preorder, inorder, and postorder. Then, we prove
that given the preorder and postorder traversals of a binary
tree, the leaf (leaves) of a binary tree can be determined.
We present the algorithm BT-leaf, a novel one, to detect the
leaf (leaves) of a binary tree from its preorder and postorder
traversals in quadratic time and linear space.
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Figure 1: A binary trees. Preorder traversal: a, b, d, i, c, f, l, g, n, o, inorder traversal:
d, i, b, a, l, f, c, n, g, o, and postorder traversal: i, d, b, l, f, n, o, g, c, a. The leaves are colored
red. The order of the leaves are the same in all the three traversals.

1 Introduction
Binary trees [8, 12, 13] are fundamental data structures in computer science [3]. Leaves of a
binary tree, in turn, are one of the most important aspects of a binary tree. As an example, the
leaves of a decision tree exhibit the content [1, 10] for such classification. Tree traversals, also,
are among the most significant aspects and uses of binary trees. Several algorithms have been
proposed to reconstruct a binary tree from its traversals, for instance, [4, 6, 7, 14, 11, 5]. There
are three main tree traversals: inorder, preorder, and postorder, which are together called tree
walks as well [8].
In this study, we explore traversals of binary trees, to present a novel algorithm BT-leaf com-
bining two of these three traversal methods to detect the leaf (leaves) of a binary tree. In fact,
we use its preorder and postorder traversals.
In section Order of the leaf (leaves) of a binary tree in the tree traversals, we show that there is a
relationship between leaves of a binary tree in their traversals. In section Proposing algorithm,
we present the BT-leaf algorithm to determine the leaf of a binary tree using its preorder and
postorder traversals. In section Results, the time and space complexity of the algorithm BT-Leaf
is presented. Finally, in section Conclusion, our conclusion is given.

2 Order of the leaf (leaves) of a binary tree in the tree traver-
sals

In this section, we show the relationship between the order of the leaf (leaves) of a binary tree
in its traversals. We first ask, if there is any relationship between the order of the leaf (leaves) of
a binary tree in its traversal. As it is seen from the Figure 1, the leaves of the binary tree appear
in the same order. In other words, firstly the node with value i, secondly the node with value
l, then the node with value n, and finally the node with value o appears in the three traversals.
In fact, the order of leaves of a binary tree in the tree traversals is the same. Theorem 1 reflects
this property.

Theorem 1. If x, y, and z are the leaves of a binary tree such that x and z are the leftmost and
rightmost, respectively, and y is in the middle, then the order of the leaves in preorder, inorder,
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and postorder traversals, in general, is . . . ,x,. . . ,y,. . . ,z,. . . .

Proof. Without loss of generality, let x, y,and z be the left child of the nodes u, v, and w,
respectively.

• According to preorder traversal, since the nodes x and z are the leftmost and rightmost
leaves of a binary tree, in general, we have . . . ,u,x,. . . ,v,y,. . . ,u,z,. . . , that can be consid-
ered as . . . ,x,. . . ,y,. . . ,z,. . . .

• According to inorder traversal, since the nodes x and z are the leftmost and rightmost
leaves of a binary tree, in general, we have . . . ,x,u,. . . ,y,v,. . . ,z,w, which can be considered
as . . . ,x,. . . ,y,. . . ,z,. . . .

• According to postorder traversal, since the nodes x and z are the leftmost and rightmost
leaves of a binary tree and the node y is in the middle, in general, we have
. . . ,x,. . . ,u,. . . ,y,. . . ,v,. . . ,z,. . . ,w,. . . , which can be considered as . . . ,x,. . . ,y,
. . . , z.

Thus the nodes x, y,and z which are leaves of the a binary tree will be visited with the same
order in the three tree traversals. �

It should be noted that although in the Theorem 1, we assume that tree has three leaves, this can
be to generalized to less or more than three leaves.

3 Proposing algorithm
In this section, we present the BT-Leaf algorithm. As we proved in Order of the leaf (leaves) of
a binary tree in the tree traversals, in three traversals the order of the leaves are the same. Here,
we propose BT-Leaf algorithm to determine the leaf (leaves) of a binary tree using its preorder
and postorder traversals.
The algorithm works by considering each two consecutive elements in preorder traversal, say
x,y. It, then, looks for the order of x and y in postorder traversal. If the element y appears
after the element x, then it marks the element x as a leaf node, otherwise x is not a leaf. In
effect, Theorem 2 reflects this property.

Theorem 2. If the elements x,y are two consecutive elements in preorder traversal and the
element y appears after the element x, then the node x is a leaf.

Proof. On the contrary, let x be no leaf. We have the two following cases:

• The element x is a node with only one child. We have the two following cases:

1. The element y is the child of x. Without loss of generality we let y is its left child.
According to preorder traversal, in general, we have . . . ,x,y,. . . , whereas based on
postorder traversal, in general we have . . . ,y,x,. . . . As in postorder traversal, the
element y appears before the element x, it is contradiction.
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2. We let child of the element x be the element z and the element y is placed else-
where. According to preorder traversal, in general, we have either . . . ,x,z,. . . ,y,. . . ,
or . . . ,y,. . . ,x,z, . . . . As the element y does not appear immediately after the element
x or the element y appears before the element x, it is a contradiction.

• The element x is a node which has exactly two children. We have the three following
cases:

1. The element x has the left and right children y and z respectively. According to pre-
order traversal, in general, we have . . . ,x,y,. . . ,w,. . . ,and based on postorder traver-
sal, in general, we have . . . ,y,. . . ,w,. . . ,x, . . . . As the element y appears before the
element x, it is a contradiction.

2. The element x has the left and right children z and y respectively. According to
preorder traversal, in general, we have . . . ,x,z,. . . ,y,. . . . As two elements x and y are
not two consecutive elements in preorder, it is a contradiction.

3. The element x has the left and right children u and v respectively, and the el-
ement y is placed elsewhere. According to preorder, in general, we have either
. . . ,y,. . . ,x,u,. . . ,v,. . .
or . . . ,x,u,. . . ,v,. . . , y, . . . . As in the former, the element y appears before the element
x and in the later, there are at least two elements between the elements x and y, it is
a contradiction.

Thus, if the elements x and y are two consecutive elements in preorder traversal, and in postorder
traversal the element y appears after the element x, then the element x is a leaf. �

From Theorem 2, all the leaf elements can be determined except the last element in the preorder
traversal. Based on Property 1, it is evident that the last element of preorder traversal is always
a leaf. So, the last element of preorder traversal must be a leaf node.

Property 1. The last element of the preorder is a leaf.

3.1 BT-Leaf algorithm
Here, we present the pseudo code of BT-Leaf using the pseudo code style defined in [8]. First,
without loss of generality, we let all the values be distinct. The two arrays Pre[1 . .n] and
Pos[1 . .n] denote preorder and postorder traversals, respectively. The indices i and j denote
position of the elements in preorder and postorder traversals, respectively. In each iteration,
the algorithm considers two consecutive elements in preorder traversal using the index i, then it
checks the order of these two consecutive elements in postorder traversal using the index j. In
each iteration, the f lag defines the order of two consecutive elements considered in preorder, in
postorder traversal. For two consecutive elements in preorder traversal, say x,y, if the f lag = 0
means the element x appears after the element y in postorder traversal, otherwise, the element x
appears before the element x in postorder traversal. So, when the f lag = 1, the element x is a
leaf.
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Algorithm 1 Determining a leaf (leaves) of a binary tree from its preorder and postorder traver-
sals.

BT-Leaf(Pre,Pos)
1 i = 2
2 j = 1
3 k = 1
4 f lag = 0
5 while i ≤ Pre.length−1
6 flag = 0
7 while temp1 , Pos[j] and j ≤ Pos.length
8 j = j + 1
9 while temp2 , Pos[j] and j ≤ Pos.length

10 j = j + 1
11 if j ≤ Pos.length
12 f lag = 1
13 if f lag == 0
14 i = i + 1
15 else leaves[k] = i
16 k = k + 1
17 i = i + 1
18 j = 1
19 f lag = 0
20 leave[k] = Pre.length

Algorithm 1 shows the BT-Leaf. This algorithm gives two arrays as a preorder and postorder
traversals, Pre and Pos in order. Since the first element in preorder traversal is the root, the
algorithm starts considering each two consecutive elements in preorder from the immediate
element after the root element, so the initial value of i is 2. In each iteration of the while loop in
line 5, two consecutive elements are considered, where Pre[i] and Pre[i + 1] indicate these two
elements. The while loop in line 7 searches for the Pre[i] in postorder traversal. The while loop
in line 9 searches the Pre[i+1] in postorder traversal. If the Pre[i+1] do not appear after Pre[i]
in postorder traversal, then it should occur before this element. So, after finding the element
Pre[i], the algorithm only needs to check the elements after this element in postorder traversal.
In other words, By finding the Pre[i] and searching the elements after this element in postorder
traversal, the algorithm can define the order of Pre[i] and Pre[i + 1] in postorder traversal. If
the element Pre[i] appears before the element Pre[i], then the algorithm initiates the f lag to 1,
which means the element Pre[i] is a leaf. At the end of each iteration of the while loop in line
5, the algorithm checks the f lag. If the f lag is equal to 1, then it initiates the array leave at
index i as a defined leaf element.
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1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 2: The initial step. Pre and Pos denote preorder and postorder traversals.

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 3: The first iteration. The two consecutive elements b and d are considered in Pre. The
reverse order of these two elements is found in Post.

3.2 Example of BT-Leaf algorithm
In this section, we exemplify how the algorithm BT-Leafworks. Each figure shows one iteration
of the while loop in line 5 and selected elements are colored red. Once again, consider the tree
illustrated in Figure 1.
Figure 2 shows the initial step of the algorithm. Pre and Pos arrays denote preorder and pos-
torder traversal. Figure 3 shows the first iteration of the while loop in line 5. The two consec-
utive elements of b and d are considered in preorder traversal, the reverse order of these two
elements is found in postorder traversal, so the element b is not a leaf. Figure 4 shows the sec-
ond iteration of the while loop in line 5. The two consecutive elements of d and i are considered
in preorder traversal, the reverse order of these two elements is found in postorder traversal,
so the element d is not a leaf. Figure 5 shows the third iteration of the while loop in line 5.
The two consecutive elements of i and c are considered in preorder traversal, the same order
of these two elements is found in postorder traversal, so the element i is a leaf. Figure 6 shows
the next iteration. The two consecutive elements of c and f are considered in preorder traversal,
the reverse order of these two elements is found in postorder traversal, so the element c is not a
leaf. Figure 7 shows the next iteration. The two consecutive elements of f and l are considered

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 4: The second iteration. The two consecutive elements d and i are considered in Pre.
The reverse order of these two elements is found in Pos.



7 Peyman Nasehpour / JAC 49, issue 2 December 2017, PP. 1–11

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 5: The third iteration. The two consecutive elements i and c are considered in Pre. The
same order of these two elements is found in Pos.

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 6: The next iteration. The two consecutive elements c and f are considered in Pre. The
reverse order of these two elements is found in Pos.

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 7: The next iteration. The two consecutive elements f and l are considered in Pre. The
reverse order of these two elements is found in Pos.

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 8: The next iteration. The two consecutive elements l and g are considered in Pre. The
same order of these two elements is found in Pos.

1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 9: The next iteration. The two consecutive elements g and n are considered in Pre. The
reverse order of these two elements is found in Pos.
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1 2 3 4 5 6 7 8 9 10

TeiPre a b d i c f l g n o

1 2 3 4 5 6 7 8 9 10

TeiPos i d b l f n o g c a

Figure 10: The last iteration. The two consecutive elements n and o are considered in Pre. The
same order of these two elements is found in Pos.

in preorder traversal, the reverse order of these two elements is found in postorder traversal,
so the element f is not a leaf. Figure 8 shows the next iteration. The two consecutive elements
of l and g are considered in preorder traversal, the same order of these two elements is found
in postorder traversal, so the element l is a leaf. Figure 9 shows the next iteration. The two
consecutive elements of g and n are considered in preorder traversal, the reverse order of these
two elements is found in postorder traversal, so the element g is not a leaf. Figure 10 shows
the last iteration. The two consecutive elements of n and o are considered in preorder traversal,
the same order of these two elements is found in postorder traversal, so the element n is a leaf.
According to Property 1, the last element is preorder traversal (i.e o) is considered as a leaf.
In brief, Figure 2 to Figure 10 show how the BT-Leaf works on the binary tree illustrated
in Figure 1.

4 Results
In this section, we explore the time and space complexity of the BT-Leaf separately.

4.1 Time complexity of BT-Leaf
The time complexity of the algorithm BT-Leaf depends on the three while loops in lines 5, 7,
and 9. The while loops in lines 7 and 9 run for at most n time (i.e. O

(
n
)
), where n is the number

of elements in one of the traversals. The while loop in line 5 runs for n− 1 times. So, if T (n)
denotes the time complexity of BT-Leaf, the total complexity of the algorithm is equal to the
times which are taken by the two while loops in line 7 and 11, as well as the while loops in line
5. We thus have

T (n) = (n−1) ·O
(
n
)

= O
(
n2) (1)

where n is the number of elements in of the traversals.
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4.2 Space complexity of BT-Leaf
The space complexity of the algorithm BT-Leaf depends on the spaces which are taken by Pre,
Pos, and leaves arrays. Each of the arrays of Pre and Pos take exactly n space, where n is
the number of elements in one of the traversals. Hence, the space taken by these two arrays is
equal to n + n = 2n which is θ

(
2n
)

= θ
(
n
)
. The array leaves takes θ

(
m
)
, where m is the number

of leaves. Therefore, if S (n) denote space complexity, where n is the number of elements in of
the traversal, the total space complexity is equal to

S (n) = θ
(
n
)
+ m

= θ
(
n
)
.

(2)

It is evident that the number of leaves is always less than the total elements in one of the
traversals.
Thus, from Equation 1 and Equation 2 the total time and space complexity of the BT-Leaf are
equal to T (n) = O

(
n2) and S (n) = θ

(
n
)
, respectively.

5 Conclusion
Binary trees [8, 12, 13] are fundamental data structures in computer science [3]. Leaves of a
binary tree, in turn, are one of the most important aspects of a binary tree. As an example, the
leaves of a decision tree exhibit the content [1, 10] for such classification. Tree traversals, also,
are among the most significant aspects and uses of binary trees. Several algorithms have been
proposed to reconstruct a binary tree from its traversals, for instance, [4, 6, 7, 14, 11, 5, 2, 9,
3]. Here, we have proved that the order of a leaf (leaves) of a binary tree is the same in the
three main tree traversals, Theorem 1. We have, then, showed that, in preorder and postorder
traversals of a binary tree, if the node x and y are as two consecutive elements in preorder, and
the element x appears after the element y in postorder traversal, then x is a leaf. Otherwise, it
is not a leaf, Theorem 2. Regarding Theorem 2, the algorithm BT-Leaf can determine the leaf
(leaves) of a binary tree in quadratic time and linear space.
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