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Abstract  
Effective pretreatment of lignocellulosic biomass could be used to produce 

fermentable sugar for renewable energy production, which reduces problems 

related to nonrenewable fuel. Therefore, the purpose of this study was to produce 

monosaccharide sugar for renewable energy from agricultural waste via ammonia 

pretreatment optimization using response surface methodology (RSM) and 

artificial neural network (ANN).  Cornstover was collected and mechanically pre-

treated. RSM and ANN were applied for experimental design and optimum 

parameters estimation. Cornstover was converted into simple sugars with a 

combination of ammonia treatment subsequently enzymatic hydrolysis. 

The maximum yield of glucose (87.46%), xylose (77.5%), and total sugar 

(442.0g/Kg) were all accomplished at 20 min of residence time, 4.0 g/g of ammonia 

loading, 132.5 0C of temperature, and 0.5 g/g of water loading experimentally. 

While 86.998% of glucose, 76.789% of xylose, and 439.323(g/Kg) of total sugar 

were achieved by prediction of the ANN model. It was shown that cornstover has 

a massive potential sugar for the production of renewable fuel.  Ammonia loading 

had a highly significant effect on the yield of all sugars compared to other 

parameters.  Interactively, ammonia loading and residence time had a significant 

impact on the yield of glucose, while water loading and residence time, had a 

significant effect on the yield of xylose. The accuracy and prediction of an artificial 

neural network are better than that of the response surface methodology. 

 

Keywords: 
Artificial Neural Network, 

Biomass, 

Central Composite Design,  

Pretreatment,  

Sugar 

Introduction 

Increment in the exhaustion of fossil fuel and fossil fuel drawbacks leads to hunting for 

elective vitality source from a renewable source [1]. If we are expected to achieve the changes 

required to address the effects of global warming and transportation problem, the use of a 

renewable energy source is becoming more and more important [2]. Investigation on the 

utilization of lignocellulosic biomass as elective vitality feedstock to fossil fuel has picked up 

significant consideration majorly due to their availability and critical parts in CO2 reduction 

[3]. Lignocellulosic biomass is the foremost abundant renewable energy source worldwide and 

it is expected to substitute the biofuel generation within the future [4]. Low cost and local 

biomass such as corn Stover, wheat straw, and rice straw byproducts could be utilized for the 

production of bioethanol. One noteworthy biomass source is corn Stover, which is particularly 

plenteous around the world [5].   
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The transformation of lignocellulosic biomass into ethanol requires three handling steps: 

pretreatment, hydrolysis, and maturation of the sugars into ethanol. Since cellulose, 

hemicellulose and lignin are the main components of lignocellulosic biomass, a practical kind 

of pretreatment to be carried out for the expulsion of hemicelluloses and lignin which are 

reinforced by covalent cross-linkages and noncovalent forces [6]. 

Different pretreatment strategies have been used during the last decades. These strategies 

incorporate (i) physical (ii) chemical (iii) organic pretreatments utilizing microorganisms; (iv) 

physical-chemical and so on [7]. However, the generation of harmful chemicals, retentive 

processing time, and serious corroding of processing equipment commonly influence the usage 

of the above stated for pretreatment of corn stover biomass [8]. Therefore, selecting appropriate 

pretreatment techniques and optimizing the pretreatment conditions for effective conversion of 

biomass to suitable products are critical steps[2].  

Liquid ammonia pretreatment is currently a popular method because of several desirable 

features, including the utilization of mostly non-polluting, non-corrosive, non-poisonous, mild 

conditions, and high effectiveness [9], expel lignin, depolymerizing hemicellulose, and 

debasing the crystalline range of cellulose [10, 11]. In addition, the residue of ammonia can 

serve as a nitrogen source for microorganisms amid maturation.  

The different investigation has been utilized using physical pretreatment as well as chemical 

pretreatment methods on the optimization of pretreatment conditions for cornstover biomass 

conversion to fermentable sugar. However, pretreatment of this biomass was not investigated 

using ammonia-based pretreatment optimization of cornstover using response surface 

methodology (RSM) and artificial neural network (ANN) methods for efficient degradation of 

this biomass. To overcome this issue, optimization and prediction of  RSM and ANN  are widely 

used in optimizing various process variables for pretreatment conditions [12]. RSM was applied 

to optimize the multivariate system to determine individual as well as combination influences 

of process parameters. However, these models are used only for a restricted range of parameters 

and thus, impose a restriction on the use of RSM models for non-linear behavior [13] and this 

limitation has been fulfilled by ANN model [14-16]. MATLAB® 2014a was used to build up 

the ANN model with feed-forward Multilayer backpropagation (FMBP) to predict the response. 

Therefore, the goal of this study was ammonia-based pretreatment parameters optimization 

and prediction of cornstover biomass using RSM and ANN methods for lignocellulose 

degradation to simple sugars. 

Materials and Methodology  

Materials and chemicals 

Cornstover was collected from local farmer Jimma, Ethiopia. It was washed, dried, milled, 

and screened to select the fraction of particles with a size lower than 0.6 mm and stored for a 

subsequent experiment. 

All chemicals were purchased from Birbirsa Goro chemical purchaser (Addis Ababa, 

Ethiopia). The cellulase (Novozyme 4513) and b-glucosidase (Novozyme 4510) were 

purchased from the Holeta agricultural research center in Ethiopia. 

Ammonia pretreatment 

The liquid ammonia pretreatment of cornstover was conducted in a 1000 mL using a high-

pressure reactor (CBC-2L 30/300, automatic control, Chemistry department Lab.) with 

designed ammonia loading to dry biomass ratio. Cornstover was pre-homogenized with 

distilled water for optimum water loading. The homogenized sample was placed into the high-

pressure reactor. Then; ammonia loading according to experimental design was injected into 
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the reactor containing biomass. The reactor was heated rapidly to set temperature, and the 

treated samples were dried at 40 0C for one day and stored. 

Liquid ammonia pretreatment parameters were optimized to maximize degradation of 

cornstover biomass using an RSM on central composite design and ANN model. By varying 

temperature (100−160 0C), the mass ratio of water to cornstover biomass (0.5−2.0 g/g, the 

mass ratio of ammonia to cornstover biomass (0.6−4.0 g/g), and residence time (10−30 min). 

The selected independent variables and their ranges were selected according to previous studies  

[14]. 

 Response surface methodology experimental design 

Center composite designs Expert 11.0.1version was applied for experimental design and 

optimize the pretreatment parameters of cornstover biomass. The independent variables were 

temperature (C0), water loading (g/g), ammonia loading (g/g), and residence time (min). The 

scopes and levels of pretreatment parameters as indicated in Table 1. The glucose, xylose, and 

total sugar yields were used as dependent parameters for analyses.  

Table 1. Central composite design parameters and levels 

Parameters Unit Minimum Maximum Levels 

A min 10 30 10(-1) 20(0) 30(+1) 

B g/g 0.5 4 0.5(-1) 2.25 (0) 4(+1) 

C g/g 0.6 2 0.6(-1) 1.3 (0) 2(+1) 

D C 100 160 100(-1) 130(0) 160(+1) 

A: Time, B: Ammonia loading, C: Water loading, D: Temperature, g/g: mass % 

The second-order polynomial was employed to generate the model between responses and 

pretreatment conditions, and it was expressed as Eq. 1. 

Y = β0 ∑ βiXi

k

i=1

+ ∑ βiiXiXi

k

i=1

+ ∑ ∑ βijXiXj

k

j=i+1

k−1

i=1

 + 𝜖 (1)    

where, Y, xi and xj, β0, βi, βi, βii, k and 𝜖 are anticipated response, input variable, constant 

term, linear coefficient, quadratic coefficient, interaction term, number of variables, and 

random error respectively. 

Artificial neural network (ANN) modeling and prediction  

MATLAB® 2014a was used for the formulation of an artificial neural network model using 

a feed-forward multilayer network contains three primary layers known as input (used 

hyperbolic tangent sigmoid transfer function), hidden and output layers (used pure-linear 

transfer function) to anticipate the yield [17]. 

F(x)  =  tansig(x)  =  (1 − ex)/(1 + ex)   (2)    

The developed artificial neural network model constitutes inputs (residence time, ammonia 

loading, water loading, and temperature) and outputs (glucose, xylose, and total sugar yield). 

The Marquardt–Levenberg back-propagation (MLBP) algorithm was selected for training. The 

input and output data detected from the actual values are categorized into three different parts; 

70% (20 samples) for training, 15% (5 samples) for testing, and 15% (5 samples) for validation. 
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To find out the best training efficiency and reduce the effect of larger values in input and 

output data, input, and output was normalized between -1 and 1 [12]. The normalized data was 

forwarded to the ANN in feed-forward multilayer backpropagation. The mean square error 

values between the output neurons and the observational outputs were determined and 

backward propagated via the network. Then, the individual weights of the neuron, corrected by 

the algorithm. After the ANN tool memorizes the data from the training, cross-validation was 

applied to prevent the training's fit. By repetition in testing several NN, the best number of 

neurons in the hidden layer was determined when the mean square error (MSE) value of the 

output reached its minimum value [18].  

Analytical methods 

Moisture was measured using an analyzer (Sartorius, Model MA25; Jimma Ethiopia). 

Glucan, xylan, lignin arabinan, and ash contents of cornstover biomass were determined by the 

analytical procedure of Ethiopian Paper and Pulping Industry Laboratory (EPPIL) using two-

step acid hydrolysis.  

Enzymatic hydrolysis 

Enzymatic hydrolysis was developed using LAP0011 [17] and substrate gotten from 

ammonia pretreatment was hydrolyzed using 1.5% glucan stacking in vials without washing. 

Every hydrolysis was accomplished in 100 mL by adding volume up to 15 mL. A 0.08 mol/L 

citrate buffer was utilized to alter the hydrolysis holding pH solution at 4.78. To avoid microbial 

defilement, tetracycline; 40 mg/L, and cycloheximide; 30mg/L were included in hydrolysis, 

individually.  

The cellulose of 20 FPU/g glucans, b-glucosidase of 25 CBU/g glucans, and xylanase of 800 

IU/g glucans were utilized, for all hydrolysis tests, separately. Shaking incubator at 48 0C and 

16.5 rad/s, was utilized in all hydrolysis tests [20]. The tests were solidified at a negative 

temperature of 20 0C for HPLC investigation. All tests were carried out in triplicated.  

HPLC analysis 

The hydrolyzates from compositional investigation monosaccharide sugars and enzymatic 

digestibility were decided by the HPLC framework (Agilent 1300 Arrangement). The Agilent 

HPLC framework was prepared with a refractive index detector and a CG column (Aminex 

HPX-75H). The versatile stage was 0.005 mol/L H2SO4 solution working at a stream rate of 

0.6 mL/min, with temperature operated at 60 0C. All tests were repeated, and the mean value 

was demonstrated. The yield of monosaccharide sugar was determined according to [14], Eqs. 

3 and 4. 

Gyield =
massgluose

f1 ∗  massglucan
∗ 100% (3) 

Xyield =
massxylose

f2 ∗  massxylan
∗ 100% (4) 

where mass glucose and massxylose are,  the mass of glucose and xylose discharged from glucan 

and xylan by enzymatic hydrolysis, massglucan and mass xylan is, the mass of glucan and xylan in 

crude fabric, respectively, and f1 and f2 are the transition factor for glucan and xylan to glucose 

and xylose respectively (f1=1.11, f2 = 1.14). The mass of monosaccharide sugars (glucose and 
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xylose) expelled per kg of dry cornstover biomass was used to determine the yield of total sugar 

as indicated in Table 2. 

Table 2.  Factors, response (experimental and predicted) value of the central composite design 

 Factors Responses% 

Run Time 
Amonia 

loading 

Water 

loading 
Temp Solid Glucose Xylose Total sugar 

S/N Min g/g g/g 0C  Exp. Pred. Exp. Pred Exp. Pred. 

1 20 4 1.25 165 84.76 54.14 55.63 64.02 65.33 406.00 414.90 

2 20 0.5 1.25 100 89.56 43.50 44.31 55.00 55.34 310.00 322.47 

3 20 0.5 0.5 132.5 92.5 61.10 63.35 56.43 58.18 320.00 329.22 

4 10 4 1.25 132.5 79.2 63.50 64.14 67.81 67.48 417.00 422.73 

5 20 0.5 2 132.5 97.14 66.09 68.64 52.30 54.00 301.56 299.83 

6 20 4 1.25 100 91.5 70.60 69.72 72.10 71.44 425.01 430.78 

7 30 2.25 2 132.5 86.1 78.90 81.67 58.02 57.10 350.80 354.10 

8 30 2.25 1.25 165 85.78 68.98 65.93 60.32 59.66 346.45 360.85 

9 20 2.25 2 165 84.58 65.32 65.56 59.42 58.66 350.70 346.05 

10 10 2.25 1.25 100 90.5 65.10 66.08 64.21 63.77 375.12 376.51 

11 30 2.25 1.25 100 90.68 62.60 64.95 70.50 69.98 370.10 376.73 

12 20 2.25 0.5 100 89.42 73.50 70.08 68.05 66.11 405.90 391.32 

13 20 2.25 1.25 132.5 92.67 75.43 72.60 65.30 63.98 372.70 368.68 

14 30 4 1.25 132.5 89.31 77.89 77.80 75.70 76.25 433.10 422.95 

15 30 2.25 0.5 132.5 95.61 82.45 84.46 73.00 72.54 396.70 383.49 

16 10 2.25 2 132.5 94.1 81.50 80.09 71.70 69.20 360.70 353.88 

17 20 0.5 1.25 165 96.1 53.90 52.43 57.89 56.84 313.57 306.59 

18 10 2.25 1.25 165 83.6 58.89 59.13 61.30 62.51 367.80 360.64 

19 20 2.25 0.5 165 84.21 75.76 78.16 65.45 63.50 389.58 375.44 

20 20 4 0.5 132.5 91.73 87.40 84.48 77.50 78.41 442.00 437.53 

21 30 0.5 1.25 132.5 90.5 54.80 52.67 52.30 53.39 303.12 314.64 

22 10 2.25 0.5 132.5 87.32 83.80 80.37 59.04 57.08 388.78 383.27 

23 10 0.5 1.25 132.5 88.34 60.80 60.66 58.67 58.79 312.34 314.42 

24 20 2.25 2 100 78.98 80.54 79.61 66.60 67.63 370.00 361.93 

25 20 4 2 132.5 77.74 77.50 76.13 73.10 72.30 410.10 408.14 

26 10 4 0.5 100 82.6 68.98 71.94 62.00 62.85 440.60 445.37 

27 10 4 0.5 165 83.56 64.78 64.94 56.89 57.48 420.12 429.49 

28 20 2.25 1.25 132.5 87.8 70.21 72.60 60.90 63.98 355.80 368.68 

29 30 0.5 2 100 80.4 56.78 54.92 49.04 47.51 316.50 307.88 

30 20 2.25 1.25 132.5 79.56 70.90 72.60 60.67 63.98 365.05 368.68 

For determination of biomass compositions, all experiments were carried out in the 

triplicated run and the average mean was indicated in Table 3. 

Table 3. Cornstover biomass composition analysis on a dry basis 

Components Glucan Xylan Arabinan Lignin Ash 
Total 

carbohydrate 

Cornstover (%) 31.01±0.1  17.1 ± 0.0 4.505 ± 0.1 13.1 ± 0.3 8.4.43 ± 0.1 52.615± 0.20 

 

Comparison of ANN and RSM performance 

The coefficient of determination; R2, Root mean square error; RMSE,  mean average error; 

MAE, standard error of prediction; SEP, and absolute average deviation; AAD was determined 

to check the accuracy and predictive ability of ANN and RSM using Eqs. 5 to 10: 

R2 = 1 − ∑ ⌊
(pr − ex)2

(pr − m)2
⌋

x

i=1

 (5) 
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MSE = 1 −
1

x
∑⌊(pr − ex)2⌋

x

i=1

 (6)   

RMSE =  ∑[MSE]1/2

x

i=1

 (7) 

SRP = [
RMSE

m
] (8) 

AAD =
100

x
∑ [

ex − p

ex
]

r

i=1

 (9) 

MAE = ∑ ⌊
ex − p

ex
⌋

x

i=1

 (10) 

                                                                                                                

where x is the number of runs, pr is predicted values from the model, ex is experimental values 

and m is mean experimental values 

 Results and Discussion 

Cornstover biomass composition analysis 

The components of cornstover used in this study are indicated in Table 3. This biomass 

contains glucan of 31.01 ± 0.07%, xylan of 17.1 ± 0.02%, arabinan of 4.505 ± 0.11%, lignin of 

13.1 ± 0.29% and ash of 8.4.43 ± 0.10% on dry basis (Table 3). Weiss et, al. [21] reported the 

previous result on the compositions of cornstover was in line with these results., Developing 

areas, seasonal, evaluation methods, and so on, can affect the chemical composition of 

feedstock [14]. The relative variation in the cell wall content of various cornstover did not make 

a difference significantly. Relative to the total sugar, glucan, and xylan are accounts for 91.4% 

of raw material (Table 3). This result indicates ammonia-based pretreatment is an alternative 

method for lignocellulose biomass degradation. 

Response surface methodology statistical data analysis 

A very good correspondence between the observational and anticipated values for the sugar 

yields was obtained from the check bit plot between the expected and the observational values 

as shown in Fig. 1a, 1b, and 1c. The scatter plots were distributed relatively near to the diagonal, 

and the correlations between anticipated and experimental values of sugar yields were satisfied 

with above ninety percent.  

The test framework and the outcome of solid and sugar yields are displayed in Table 2. As 

indicated in Table 2, the solid yields of liquid ammonia-treated substrates extended from 77.5% 

to 97.14%. Relative to the number of runs, most solid yields of the experiments were over 86%, 

which demonstrated a slight amount loss of material at the pretreatment stage, due to human or 

process equipment problems. The yields of glucose, xylose, and total sugar were extended from 

43.5−87.4%, 52.3− 77.5%, and 301.56−442.0 g/kg dry biomass respectively (Table 2). It 

appears that the pretreatment conditions of fluid alkali (ammonia) pretreatment had the most 

prominent impact on the yields of sugar. The most extreme yield of glucose, xylose, and total 

sugar were all accomplished at 20 min of residence time, 4.0 g/g of ammonia loading and 132.5 
0C of temperature, 0.5 g/g of water loading (Table 2).  
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Fig. 1.  Actual sugar yields versus predicted sugar yields from regression models: (a) glucose, (b) 

xylose, and (c) Total sugar by RSM prediction 

 Past works demonstrate that ammonia fiber expansion treated biomass is 80−91% of 

glucose and 50−78% of xylose yields separately [22]. In this manner, the quality of liquid 

ammonia pretreatment was corresponding to ammonia fiber expansion. The outcome of 

ANOVA for the models is demonstrated in appendix Table 4. To analysis the statistical 

significance of the proposed models, F-value and P-value were applied. It is shown that the 

model is statistically significant with a confidence level of above 95% if the P-value for the 

model is below 0.05 [21]. As demonstrated in Table 4, the P-value for all yields was below 

0.0001. In this manner, all models are highly significant, meaning variable needs to be 

controllable.  

The regression coefficient (in terms of coded), and all correlation coefficients ( R2, R2adj. 

and R2-pred.) have been used to test the goodness of the model [23]. The Pred. R² is in 

reasonable estimate with the Adj. R²; i.e. the distinction is much less than 0.2 (Table 4). A very 

small value of the coefficient of variation (CV: Table 4) clearly shown a very strong degree of 

precision and a great deal of reliability of the experimental values [23].  

 The quadratic, 2FI (two-factor interaction), and linear model were suggested by central 

composited design for glucose, xylose, and total sugar yields respectively. The suggested model 

equations based on ANOVA analysis results were indicated in Eqs. 11 to 13. 

Final Equation in Terms of Coded Factor 

GY(%) = +63.98 + 0.84 A + 7.89 B − 0.83 C − 2.89 D + 3.54 AB − 6.89 AC
− 2.26 + 1.26 BC − 3.65 BD − 1.59 CD 

(11)         

XY (%) =  +63.98 + 0.84 A + 7.89 B − 0.83 C − 2.89 D + 3.54 AB − 6.89 AC
−   2.26 AD + 1.26 BC − 3.65 BD − 1.59 CD                                            

(12) 

TSY (
g

Kg
) = +368.68 + 0.11 ∗ A + 54.16 ∗ B − 14.70 ∗ C − 7.94 ∗ D (13)             

Where GY, XY  and TSY are glucose yield, xylose yield and total sugar yield respectively, A is 

residence time, (min), B is ammonia loading (g/g), C is water loading (g/g) and T is 

temperature (0C). 
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Table 4. ANOVA information for central composite design models 

Glucose yield 

Source SS DF MS F-value p-value  

Model 3072.13 14 219.44 27.14 < 0.0001 significant 

Residual 121.29 15 8.09    

Lack of Fit 105.21 13 8.09 1.01 0.6033 not significant 

Pure Error 16.08 2 8.04    

Total 3193.42 29     

Xylose yield 

Source SS DF MS F-value p-value  

Model 1489.54 10 148.95 46.64 < 0.0001 significant 

Residual 60.67 19 3.19    

Lack of Fit 47.06 17 2.77 0.406 0.8847 not significant 

Pure Error 13.62 2 6.81    

Total 1550.21 29     

Total sugar yield 

Source SM DF MS F-value p-value  

Model 51619.9 4 12904.9 150.21 < 0.0001 significant 

Residual 2147.77 25 85.91    

Lack of Fit 2004.54 23 87.15 1.22 0.5478 not significant 

Pure Error 143.23 2 71.62    

Total 53767.69 29     

Correlation coefficients  

Coefficients Glucose Xylose Total sugar   

R²-squared 0.962 0.961 0.960    

Adjusted R² 0.836 0.940 0.954    

Predicted R² 0.927 0.913 0.942    

Adeq Precision 19.978 28.552 38.460    

CV % 4.15 2.83 2.50    

CV is  coefficient of variation, SS is Sum of Squares, MS is Mean Square and DF is 

Degree of freedom 

 

Effect of pretreatment conditions on the responses  

Analysis of variance (Table 4) was carried out to measure the significance of the formulated 

model as well as each of the coefficients (p-value < 0.05). Ammonia loading had a highly 

significant effect on all the sugar yields. The effect of ammonia-to-biomass ratio was studied at 

0.4−4:1 g of anhydrous ammonia: g of dry biomass. Glucan and xylan transformation enhanced 

with enhancing ammonia stacking and achieved the higher value at ammonia to biomass ratio 

of 4:1 g/g.  The results indicated that the ammonia loading and temperature had more critical 

impacts than water loading and residence time on glucan transformation, which concurs well 

with the conclusion of [4].  

With increasing temperature, the expanding cleavage of inside bonds in biomass, and 

expanding dissolvability of biomass components encourage enzymatic hydrolysis. In addition, 

in raise temperatures, the maximum yields can be achieved using shorter residence time. The 

lower temperatures are not sufficient to penetrate the bonds between the biomass molecules 

within a short time to achieve higher sugar yields [24]. 

To promote the sugar yield well, certainly, the higher ammonia loading was benefitable. 

Since liquid ammonia pretreatment was anticipated to extend chemical availability to the 

polysaccharides and ammonia is capable to adhere to lignin-carbohydrate ester linkages, cause 

the swelling of cellulose, destruct the crystalline area, and alter the precious structure [14]. 
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Direct water stacking was useful to higher glucose discharge of liquid ammonia-treated 

substrate. This is confirmed with the results found from switchgrass and corn stover treated by 

ammonia fiber expansion [22]. 

Interactively, residence time and ammonia, as well as residence time and water loading had 

significant effects on the yield of glucose and xylose respectively at a 95% confidence interval.   

The impact of variables on glucose and xylose yields taking after enzymatic hydrolysis are 

displayed as 3D plots (Figs. 2a, and 2b) for highly significant variables. 

 

 
Fig. 2. Actual sugar yields versus predicted sugar yields from regression models: (a) glucose, (b) Xylose and (c) 

total sugar by RSM prediction 

 

Residence time is one of the factors affecting pretreatment effectiveness. Referring to Table 

1, the influence of residence time was studied at 10 to 30 min. Figs. 2a and 2b, show the effects 

of residence time on both xylose (2a) and glucose (2b) sugars yield. The sugar yield was 

maximum at 20 min of residence time. This indicated that the lower yield of sugar at higher 

residence time could have been due to the sugar's destruction into furfural. At more insufficient 

residence time, the degradation of lignocellulosic biomass to simple sugar could not effectively 

occur [25]. In addition, increasing the residence time slightly enhanced xylan and glucan 

transformation and in other cases diminished this transformation [26]. 

The maximize glucan transformation calculating by Eq. 12 was 89.1%, pretreated with 

prescribed conditions. Fig. 3 indicates the 3D plots for the (glucose and xylose) yield whereas 

holding the other two factors at center point esteem (zero, coded units). As viewed from Figs. 

2a and 2b, all sugar yields were highly sensitive to ammonia stacking. Water stacking had the 

slightest impact on glucose and xylose yield, even though it had a critical effect on total sugar 

yield, at higher, water loading, the yield of total sugars become lower while at lower water 

loading, the yield becomes higher. This fluctuation  
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Fig. 3. Glucose (a), Xylose (b), and Total sugar yield (c) by ANN prediction 

Artificial neural network (ANN) modeling and prediction  

The experimental results, utilized for ANN training and individual test, are shown in Table 

5. The ANN-multi-layer perceptron (MLP) has four inputs (time, ammonia loading, water 

loading, and temperature), a hidden layer, and three outputs (glucose, xylose, and total sugar 

yield). The ANN-based model was done by choosing the appropriate training algorithm, 

determining the optimum value of the neuron, and validating the model. 70% of samples of the 

data were used for training, 15% samples for testing, and 15% samples for validation. Using 

the available actual value, the Levenberg–Marquardt (LM) ANN fitting tool and TANSIG 

Transfer Function 4–10–3 (number of the input layer, neurons in the hidden layer, and output 

layer) model were implemented.   

Statistical parameters were used to determining the higher predictive power of the two model 

techniques using Eqs. 5 to 10 as shown in Table 4. The relationships among the parameters are 

specified by the correlation coefficient (R). A unit (1) value of R implies a perfect relationship 

between variables; while a zero (0), value is believed to be the absence of a linear relationship 

between the parameters.   

The actual value and anticipated values for each observation were plotted in Figs. 3a, 3b, 

and 3c. These graphs consist of the exact line shows y = x, meaning, the anticipated value is 

equivalent to the actual value with the highest level of correlations and highest coefficient of 

determination (R2) compared to RSM prediction indicated in Figs. 1a, 1b, and 1c. 

After assigning training information, transfer function, the number of the hidden layer, the 

number of the neuron, the performance of the ANN tool needed to be evaluated [25]. The best 

solution was chosen based on the highest coefficient of correlation and least MSE for training, 

testing, and validation. Therefore, ten neurons were selected depending on, best ANN 

performance evaluation. Figs. 4a to 4d indicate the regression plots of the training, validation, 

test, and all R-value with the LM algorithm. The correlation coefficients (R) between the actual 

and the expected values; 1 for training, 0.9993 for testing, 0.9978 for validation, and 0.9994 for 

overall correlation. Therefore, the ANN anticipation for training, validation, and testing is 

highly substantial and meritorious in terms of correlation and MSE.  
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Fig. 4. Correlation coefficients for mean sugar yield 

 

Comparison of RSM and ANN Performance  

To identify the best model that accurately predicts the effect of optimum parameters on the 

yield, the statistical parameter has been calculated using Eqs. 10 to 13. The statistical analysis 

results and comparison between RSM and ANN models are listed in AppendixTable 6. The 

result has shown that ANN has a lower RMSE and higher correlation values compared to the 

RSM model. Therefore, the ANN model is a superior modeling tool than the RSM 

demonstration due to its lower RMSE, high prediction of the correlation value. 
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Table 5. Result of RSM and ANN prediction on sugar yields. 

Run. Glucose yield (%) Xylose yield (%) Total sugar yield (%) 

 RSM ANN RSM ANN RSM ANN 

1 55.63 54.1384 65.33 64.018 414.9 405.9979 

2 44.31 45.79212 55.34 51.42702 322.47 314.4898 

3 63.35 61.10169 58.18 56.43171 329.22 320.0074 

4 64.14 66.83197 67.48 64.21016 422.73 409.6739 

5 68.64 66.08825 54 52.30104 299.83 301.561 

6 69.72 70.59853 71.44 72.0932 430.78 424.9858 

7 81.67 78.89818 57.1 58.0182 354.1 350.7988 

8 65.93 68.98285 59.66 60.32072 360.85 346.4544 

9 65.56 65.31761 58.66 59.41596 346.05 350.6958 

10 66.08 79.62241 63.77 69.632 376.51 396.1174 

11 64.95 62.59318 69.98 70.49514 376.73 370.0907 

12 70.08 73.50235 66.11 68.0461 391.32 405.8856 

13 72.6 70.90034 63.98 60.66659 368.68 365.0397 

14 77.8 77.8896 76.25 75.6958 422.95 433.0937 

15 84.46 86.45689 75. 54 76.00776 437.49 439.7053 

16 80.09 73.20735 69.2 58.22501 353.88 345.4346 

17 52.43 53.90294 56.84 57.88776 306.59 313.5717 

18 59.13 58.89263 62.51 61.29849 360.64 367.7932 

19 78.16 75.01486 63.5 56.6561 375.44 375.2802 

20 84.48 86.9983 75.41 76.78915 437.53 439.3232 

21 52.67 56.38946 53.39 53.70105 314.64 293.4242 

22 80.37 83.80626 57.08 59.03256 383.27 388.7599 

23 60.66 60.80118 58.79 58.66797 314.42 312.3385 

24 79.61 80.53932 67.63 66.5937 361.93 369.9795 

25 76.13 77.49898 72.3 73.09892 408.14 410.0975 

26 71.94 68.98422 62.85 61.99243 445.37 440.5547 

27 64.94 54.36141 57.48 60.44439 429.49 419.5385 

28 72.6 70.90034 63.98 60.66659 368.68 365.0397 

29 54.92 56.77855 47.51 49.04 307.88 316.5027 

30 72.6 70.90034 63.98 60.66659 368.68 365.0397 

 

Table 6: Relative statistical data information of RSM and ANN model 

 Glucose Xylose Total sugar 

Variables RSM ANN RSM ANN RSM ANN 

R2 0.962 0.9986 0.961 0.9987 0.960 0.9973 

RMSE 0.627368 0.568154 0.6412 0.5123 0.5831 0.51034 

SEP 0.007201 0.006576 0.0085 0.0051 0.0082 0.00612 

MAE 0.521 0.352 0.6214 0.4234 0.5889 0.4012 

AAD 0.547091 0.37780 0.5632 0.4012 0.51041 0.3505 

Conclusions 

Ammonia-based cornstover biomass pretreatment was applied using response surface 

methodology (RSM) and artificial neural network (ANN) models. The main compositions of 

cornstover biomass were glucan; 31.01 ± 0.07%, xylan; 17.1 ± 0.02%, lignin; 13.1 ± 0.29%. 

The optimum conditions for ammonia-based pretreatment of cornstover biomass were; at  20 

min of residence time, 4.0 g/g of ammonia to biomass ratio, 132.5 0C of temperature, and  0.5 

g/g of water to biomass ratio.  Under these conditions, 86.998 % of glucose, 76.789 % of xylose, 

and total sugar 439.323 g/Kg yields were achieved by predicting artificial neural networks 

compared to experimental and response surface methodology results.   
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The outcome from enzymatic hydrolysis of ammonia pretreated corn stover showed that 

liquid ammonia is a viable pretreatment method. 

The effect of parameters was studied and the result has shown that ammonia loading had a 

highly significant effect on the yield of all sugars. Whereas water loading had the slightest 

impact on the yield of glucose and xylose and in contrast, water loading had a critical effect on 

the total sugar yield. 

  In addition, the results indicated that the ammonia loading and temperature had more 

critical impacts than water loading and residence time on glucan transformation. This indicated 

that expanding temperature, the extending cleavage of interior bonds in biomass, and the 

dissolvability of biomass components empower enzymatic hydrolysis.  

The higher ammonia loading is benefitable to promote the sugar yield well since ammonia 

is capable to adhere lignin-carbohydrate ester linkages, cause the swelling of cellulose, and 

altering the biomass structure.  

Residence time is one of the variables affecting pretreatment conditions. Increasing the 

residence time slightly enhanced sugar transformation however, behind optimum value 

diminished this transformation, meaning behind this value, the sugar starts to form substance-

like furfural. 

ANN model predicted the maximum yields of all responses compared to RSM. Therefore, 

ANN model is a superior tool than that of the RSM demonstration, due to its higher prediction 

of the yield      
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Abbreviations 

0C Degree Celsius 

2 FI                   Two-factor interaction 

ANN Artificial neural network 

C.V Coefficient of variation 

CCD Central composite design 

Eq. Equation 

F Fisher test 

g    Gram 

g/g                                Gram/Gram 

kg kilogram 

mg Mill gram 
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min Minute 

mL Mill  liter 

P-value Probability value 

R2 Coefficient of determination 

R2
adj Adjusted coefficient of determination 

RMSE Root Mean Square Error 

RSM Response surface methodology 

SSE Sum of Squared Errors 

Std. Dev.               Standard deviation 

wt Weight 
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