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DEFINITION:
Since we are primarily interested in the case where disruption of the graph is caused
by the removal of a vertex or vertices (and the resulting loss of all edges incident with
the removed vertices), we shall restrict our discussion to vertex stability measures. In
the interest of completeness, however, we have included several related measures of edge
stability.
The first two measures provide information about how easily the graph can be broken-up
by the removal of specific sets of vertices.
The vertex connectivity [18-21], κ = κ(G), of a finite, undirected, connected, simple graph
G (without loops or multiple edges) is the minimum number of vertices whose removal
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results in a disconnected graph or results in the trivial graph K1. Graph G is called
n-connected if κ ≥ n. Analogously, the edge-connectivity [18-21], λ = λ(G), of a finite,
undirected, connected simple graph G is the minimum number of edges whose removal
results in a disconnected or trivial graph K1. A graph G is called n-edge- connected if
λ(G) ≥ n.
A collection of vertices in V(G) is called a cutset if their removal disconnects G, and a
collection of edges in V(G) is called an edge-cutset if their removal disconnects G.
The binding number of a graph G was defined by Woodall in [45] as

bind(G) = min
A
{| N(A) |
| A |

}

where φ 6= A ⊆ V (G) and N(A) 6= V (G). In [46,47] the binding number was called the
melting-point of the graph. the reason for the name ”binding number” is that, roughly
speaking, if bind(G) is large, then the vertices of G are bound tightly together, in the
sense that G has many edges fairly well distributed. We stat some of the results in [45].
(1) bind(Kn) = n− 1 for n ≥ 1.
(2) bind(Ka,b) = min(a

b
, b
a
) for (a ≥ 1, b ≥ 1).

(3) If G = Cn, with n ≥ 3, then bind(G) =

{
1, for n even,
n−1
n−2

, for n odd.

(4) If G = Pn, with n ≥ 1, then bind(G) =

{
1, for n even
n−1
n+1

, for n odd.
Kane, Mohanty and Hales [28], studied the binding numbers of four types of product
graphs : cartesian product, tensor product, strong cartesian product and lexicographic
product. Since it is difficult to determine the binding numbers of products of arbitrary
graphs, they restricted themselves to products of two graphs which could be any one of
the following types of graphs : complete graph (Kn), complete bipartite graph (Km,n),
cycle (Cn) and path (Pn).

In [45] Woodall proved that, if bind(G) ≥ c, then G contains at least |V (G)|c
c+1

disjoint edges

if 0 ≤ c ≤ 1
2
, at least |V (G)|(3c−2)

3c
− 2(c−1)

c
disjoint edges if 1 ≤ c ≤ 4

3
, a Hamiltonian circuit

if c ≥ 3
2
, and a circuit of length at least 3(|V (G)|−1)(c−1)

c
if 1 < c ≤ 3

2
.

The next set of measures also take into consideration the structure of the graph G-A. In
particular, they reflect how badly the graph G-A has been disconnected. Since we must
ultimately face the reconnection problem - repairing a broken network - these measures
could prove to be very useful.
The concept of integrity of a graph G was introduced in [9] as a useful measure of the
vulnerability of a graph G. If we think of the graph as modeling a network, vulnerability
parameters measure the resistance of the network to disruption of operation after the
failure of certain stations. The vertex integrity of a graph G, is defined as I(G) = min{|
A | +τ(G − A)}, where the minimum is taken over all A ⊆ V (G) and τ(G − A) is the
maximum order of a component of G-A.
In [9], Barefoot, Entringer and Swart compared integrity, connectivity, binding number
and toughness for several classes of graphs. The integrities of the several classes of graphs
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calculated in [9] were determined using ad hoc methods. Any set A with the property that
| A | +τ(G−A) = I(G) is called an I-set of G. The corresponding edge version called the
edge-integrity I’(G) is defined as I ′(G) = min{| E ′ | +τ(G − E ′)}, where the minimum
is taken over all E ′ ⊆ E(G). Thus, for instance, a small edge-integrity is in some sence a
measure of how a graph can be split into ”small pieces” by the removal of a ”few” edges.
Bagga, Beineke, Lipman and Pippert in [6], first listed some basic facts about the edge
integrity : In [24] Fellows and Stuekle studied the computational complexity of edge -
integrity. In [1] a new lower bound on the edge integrity of graphs in general is given, but
most of the results concern trees.
The toughness of a graph G was introduced by Chvátal in [13], who observed the relation-
ship between this parameter and the existence of Hamilton cycles in the given graph, and
several results regarding this invariant were obtained. The original approach to toughness
is as follows. A connected graph G is called t-tough if tω(G − A) ≤| A | for any subset
A of V(G) with ω(G−A) > 1, [13,23,37,38]. If G is not complete, then there is a largest
t such that G is t-tough; this number is the toughness of G and denoted by t(G). Thus

t(G) = min{ |A|
ω(G−A)

}, where A is a cutset of G. Since a complete graph has no cutset A,

we set t(Kn) =∞ for all n ≥ 1.
An alternate definition is easier to apply in some cases. Let G be an (n,e) gragh of
connectivity κ, G 6= Kn, ωp = max{ω(G − A)},where | A |= p, and tp = p

ωp
. Then G is

t-tough for 0 ≤ t ≤ min(tp), where κ ≤ p.
There exist other stability measures such as the edge-connectivity vector [39], the ratio of
disruption [32], the complement of disruption, the cut frequency vector, cohesion [41,43],
and neighbor-connectivity [21].
Tenacity and its Properties:
The tenacity is a new invariant for graphs. It is another stability measure, incorporating
ideas of both toughness and integrity. The tenacity of a graph G, T(G) is defined by

T (G) = min{ |A|+τ(G−A)
ω(G−A)

}, where the minimum is taken over all vertex cutset A of G. We

define G-A to be the graph induced by the vertices of V-A, τ(G − A) is the number of
vertices in the largest component of the graph induced by G-A and ω(G−A)is the number
of components of G-A. A connected graph G is called T-tenacious if | A | +τ(G − A) ≥
Tω(G − A) holds for any subset A of vertices of G with ω(G − A) > 1. If G is not
complete, then there is a largest T such that G is T-tenacious; this T is the tenacity of G.
On the other hand, a complete graph contains no vertex cutset and so it is T-tenacious
for every T. Accordingly, we define T (Kp) = ∞ for every p (p ≥ 1). A set A ⊆ V (G) is

said to be a T-set of G if T (G) = |A|+τ(G−A)
ω(G−A)

.

We also consider the edge-tenacity, T’(G), defined by T ′(G) = min{ |F |+τ(G−F )
ω(G−F )

}, where

the minimum is taken over all edge cutset F of G. A set F ⊆ E(G) is said to be a T’-set

of G if T ′(G) = |F |+τ(G−F )
ω(G−F )

.
In this paper we will prove a number of basic results about tenacity. We can prove the
following propositions:
Proposition 1: If G is a spanning subgragh of H, then T (G) ≤ T (H).

Proposition 2: For any graph G, T (G) ≥ κ(G)+1
α(G)

.
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Proposition 3: If G is not complete, then T (G) ≤ n−α(G)+1
α(G)

, where n is the number of
vertices in G.
Proposition 4: If m ≤ n then T (Km,n) = m+1

n
.

Without attempting to obtain the best possible result, we can prove the following relation
between T(G) and t(G). This result gives us a number of corollaries.

Theorem 1: For any graph G, T (G) ≥ t(G) + 1
α(G)

.

Proof: Let A ⊆ V (G) be a t-set and B ⊆ G be a T-set. Then |B|+τ(G−B)
ω(G−B)

≥ |B|
ω(G−B)

+
1

ω(G−B)
≥ |A|

ω(G−A)
+ 1

α(G)
.

Corollary 1: For any graph G, T (G2) > κ(G).
Corollary 2: Let G be a non-empty graph and let m be the largest integer such that
K1,m is an induced subgraph of G. Then T (G) ≥ κ(G)

m
+ 1

α(G)
.

Theorem 2: If G is connected and a noncomplete K1,3-free graph then T (G) > κ(G)
2

.
Theorem 3: For any nontrivial noncomplete graph G on n vertices and any vertex v,
T (G− v) ≥ T (G)− 1

2
.

We next obtain some bounds on the tenacity of a graph.

Proposition 5: If G is connected, then T (G) ≥ 1
∆(G)

.
Proof: Kn is a speacial case, otherwise the removal of any vertex of a connected graph G
yields at most ∆(G) components. Similarly, the removal of any n verices yields at most
n∆(G) components. Then, from the definition we have T (G) ≥ n+1

n∆(G)
≥ 1

∆(G)
.

Lemma 1: If A is a minimal T-set for the graph G then, for each vertex v of A, the
induced subgraph < V (G)− A+ v > has fewer components than does G-A.
Proof: Let A′ = A − v. If G-A’ has at least as many components as G-A, then |
A′ |=| A | −1 and τ(G − A′) ≤ τ(G − A) + 1. Therefore |A

′|+τ(G−A′)
ω(G−A)

= |A|−1+τ(G−A′)
ω(G−A)

≤
|A|−1+τ(G−A)+1

ω(G−A)
= T (G), contrary to our choice of A.

Theorem 4: Let G = G1 + G2, where | V (G) |= n, | V (Gi) |= pi, T (G) = T and
T (Gi) = Ti for i = 1, 2. Then if G 6= Kn we have

min{ [n+ τ(G1 − A1)]T1

p1 + τ(G1 − A1

,
[n+ τ(G2 − A2)]T2

p2 + τ(G2 − A2)
} < T ≤ min{n− α1 + 1

α1

,
n− α2 + 1

α2
},

where αi is the independence number of Gi, and Ai is a disconnecting set of Gi for i = 1, 2.
Theorem 5: Let G be a graph with n vertices and G 6= Kn, then T (G) + T (G) ≥ 1

n−1
.

Proof: We observe that at least one of G or G is connected. Suppose G is not connected.
We proved (Proposition 5) that T (G) ≥ 1

∆(G)
≥ 1

n−1
for any graph G. Thus, T (G)+T (G) ≥

1
n−1

. Now suppose G is not connected but G is connected. Again by Proposition 5, we

have T (G) ≥ 1
n−1

. Therefore T (G) + T (G) ≥ 1
n−1

.

Theorem 6: Let G be a graph with 0 < T (G) <∞, and let λ(G) = λ, then T (L(G)) > λ
2
.

Theorem 7: For any graph G, T (G) ≥ bind(G)− 1.
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Proof: Let bind(G) = c. If c < 1, then c − 1 < 0 and the result follows since T(G)
is nonnegative. Consider c ≥ 1. Suppose that A is a subset of V(G) such that ω =

ω(G − A) ≥ 2. We want to prove that |A|+1
ω

> (c − 1). If each of the ω components of
G-A has at least two vertices, let S consist of the vertices in all the components except
the smallest, so that

| S |≥ | V (G)− A | (ω − 1)

ω
≥ 2ω(ω − 1)

ω
= 2(ω − 1) ≥ ω.

If, on the other hand, V(G)-A contains an isolated vertex, let S = V (G) − A. So that
| S |=| V (G)− A |≥ ω. In either case N(S) 6= V (G), and since bind(G) = c ≥ 1,

| S | + | A | +1 >| S | + | A |≥| N(S) |≥ c | S | .

It follows that | A | +1 > (c− 1) | S |≥ (c− 1)ω. Therefore |A|+1
ω

> c− 1, so T > c− 1.

In [36] Moazzami showed the Hamiltoinan Properties of tenacity. The results follows for
a graph G:
1) 1 < κ(G)

α(G)
< κ(G)+1

α(G)
≤ T (G)

2) κ(G)+1
α(G)

≤ T (G) < 1.
Graphs satisfying the second inequality are not Hamiltonian-connected. Graphs satisfy-
ing the first inequality are Hamiltonian-connected.
3) 1 + n+1

α(G)
≤ κ(G)+1

α(G)
≤ T (G)

4) κ(G)+1
α(G)

≤ T (G) < 1 + n+1
α(G)

If G satisfies the forth inequality it is not n-Hamiltonian. If G satisfies the third inequality
then G is n-Hamiltonian.

In [36], Moazzami also obtained some bounds on the tenacity of products of graphs. Note
that the first inequality in the following theorem, is a corollary to Theorem 1

In [35], Moazzami compared integrity, connectivity, binding number, toughness and tenac-
ity for several classes of graphs. The results suggest that tenacity is a most suitable
measure of stability or vulnerability in that for many graphs it is best able to distinguish
between graphs that intuitively should have different levels of vulnerability.
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