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ABSTRACT ARTICLE INFO

The tenacity of a graph G, T (G), is defined by T (G) =

min{ |S|+τ(G−S)
ω(G−S) }, where the minimum is taken over all

vertex cutsets S of G. We define τ(G − S) to be the
number of the vertices in the largest component of the
graph G−S, and ω(G−S) be the number of components
of G − S.In this paper a lower bound for the tenacity
T (G) of a graph with genus γ (G) is obtained using the
graph’s connectivity κ(G). Then we show that such a
bound for almost all toroidal graphs is best possible.
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1 Introduction

The concept of tenacity of a graph G was introduced in [4,5], as a useful measure of the
”vulnerability” of G. In [5] Cozzens et al. calculated tenacity of the first and second
case of the Harary Graphs but they didn’t show the complete proof of the third case.
In [17] they showed a new and complete proof for case three of the Harary Graphs. In
[11], they compared integrity, connectivity, binding number, toughness, and tenacity for
several classes of graphs. The results suggest that tenacity is a most suitable measure of
stability or vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability. In [7 - 27], the authors
studied more about this new invariant. We consider only graphs without loops or multiple
edges. We use V (G), and ω(G) to denote the vertex set and number of components in
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a graph G, respectively. We consider only finite undirected graphs without loops and
multiple edges. Let G be a graph. We denote by V (G), E(G) and | V (G) | the set of
vertices, the set of edges and the order of G, respectively.
The tenacity of a graph G, T (G), is defined by T (G) = min{ |S|+τ(G−S)

ω(G−S) }, where the

minimum is taken over all vertex cutsets S of G. We define τ(G−S) to be the number of
the vertices in the largest component of the graph G − S, and ω(G − S) be the number
of components of G− S. A connected graph G is called T -tenacious if | S | +τ(G− S) ≥
Tω(G−S) holds for any subset S of vertices of G with ω(G−S) > 1. If G is not complete,
then there is a largest T such that G is T -tenacious; this T is the tenacity of G. On the
other hand, a complete graph contains no vertex cutset and so it is T -tenacious for every
T . Accordingly, we define T (Kp) =∞ for every p (p ≥ 1). A set S ⊆ V (G) is said to be

a T -set of G if T (G) = |S|+τ(G−S)
ω(G−S) .

The Mix-tenacity Tm(G) of a graph G is defined as

Tm(G) = min
A⊂E(G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G − A) denotes the order (the number of vertices) of a largest component of
G − A and ω(G − A) is the number of components of G − A. Cozzens et al. in [4],
called this parameter Edge-tenacity, but Moazzami changed the name of this parameter
to Mix-tenacity in [15]. It seems Mix-tenacity is a better name for this parameter. T (G)
and Tm(G) turn out to have interesting properties.
After the pioneering work of Cozzens, Moazzami, and Stueckle in [4,5], several groups of
researchers have investigated tenacity, and its related problems. In [19] and [20] Piazza
et al. used the Tm(G) as Edge-tenacity. But this parameter is a combination of cutset
A ⊂ E(G) and the number of vertices of a largest component, τ(G − A). It may be
observed that in the definition of Tm(G), the number of edges removed is added to the
number of vertices in a largest component of the remaining graph. Also this parameter
didn’t seem very satisfactory for Edge-tenacity. Thus Moazzami and Salehian introduced
a new measure of vulnerability, the Edge-tenacity, Te(G), in [15]. The Edge-tenacity
Te(G) of a graph G is defined as

Te = min
A⊂E(G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G−A) denotes the order (the number of edges) of a largest component of G−A
and ω(G−A) is the number of components of G−A. This new measure of vulnerability
involves edges only and thus is called the Edge-tenacity. Since 1992 there were several
interesting questions. But the question ” How difficult is it to recognize T -tenacious
graphs? ” has remained an interesting open problem for some time. The question was
first raised by Moazzami in [10]. Our purpose in [18] was to show that for any fixed
positive rational number T , it is NP -hard to recognize T -tenacious graphs. To prove this
we showed that it is NP -hard to recognize T -tenacious graphs by reducing a well-known
NP -complete variant of INDEPENDENT SET.
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The toughness of a graph G was defined in [1] as t(G) = min{ |A|
ω(G−A)}, where the mini-

mum is taken over all cut-sets A of G. A subset A of V (G) is said to be a t-set of G if

t(G) = |A|
ω(G−A) . Note that if G is disconnected then the set A may be empty.

2 Preliminary results

Let G be a simple non-complete graph, we know that

κ =

{
2g(1 + 2γ/ν − 2/ν)

g − 2

}
(1)

ε(G) ≤ g(ν + 2γ − 2)

g − 2
(2)

W. Goddard et al. [6] proved that

t (G) >
κ

2
− 1 ifγ = 0 (3)

t (G) ≥ κ(κ− 2)

2(κ− 2 + 2γ)
ifγ = 1 (4)

3 Lower bounds

Theorem 1. For all graphs we have the following:

T (G) ≥ 1

2 (κ− 2 + 2γ)

(
κ (κ− 2) +

κ2 + 4 (γ − 1)

ν

)
ifγ ≥ 1 (5)

T (G) ≥ κ (κ− 2)

2 (κ− 2 + 2γ)
+

κ

2ν
ifγ ≥ 0 (6)

Proof. If γ = 1, from the definition of toughness

t (G) = min

{
|S|

ω(G− S)
| S ⊂ V (G) , ω (G− S) ≥ 2

}
(7)

Now we know that
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∀S ⊂ V (G) :
|S|

ω(G− S)
≥ t (G) ≥ κ (κ− 2)

2 (κ− 2 + 2γ)
(8)

ν(G) ≥ |S|+ ω (G− S)

≥ ω (G− S)

(
κ (κ− 2)

2 (κ− 2 + 2γ)
+ 1

)
= ω (G− S)

(
κ2 + 4(γ − 1)

2 (κ− 2 + 2γ)

)
(9)

using [5] and knowing τ(G− S) ≥ 1

⇒|S|+ τ (G− S)

ω (G− S)
≥ |S|
ω (G− S)

+
1

ω (G− S)

≥ κ (κ− 2)

2 (κ− 2 + 2γ)
+

κ2 + 4 (γ − 1)

2ν (G)× (κ− 2 + 2γ)
(10)

If γ = 0 :

∀S ⊂ V (G) :
|S|

ω(G− S)
≥ t (G) ≥ κ

2
− 1

⇒ ν(G) ≥ |S|+ ω (G− S) ≥ ω (G− S)
κ

2

⇒ T (G) ≥ κ (κ− 2)

2 (κ− 2 + 2γ)
+

κ

2ν
(11)

Considering toroidal graphs, it is known that for such a graph,

T (G) ≤ (κ− 2)

2
+

κ

2ν(G)
and κ ≤ 2g

g − 2
⇔ g ≤ 2κ

κ− 2

Thus a toroidal graph (G) has connectivity no more than 6 and girth of anything from 3
to 2κ

κ−2 . Interestingly, all example graphs given in [6] for κ ≥ 4 for toughness equal to the
lower bound, leave all remaining components after the cut with a lone vertex. I use these
examples with others for κ = 3 and study graphs by their connectivity with the formula
mentioned previously.

3.1 Connectivity 6

κ = 6 ⇒ g = 3 By Euler’s formula,

δ ≥ κ⇒ νκ ≤ 2ε, Fg ≤ 2ε

⇒ 0 = ν(G)− ε(G) + F ≤ 2ε(G)

6
− ε(G) +

2ε(G)

3
= 0 (12)

⇒ ν(G) =
2ε(G)

κ
and F =

2ε(G)

g
(13)
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(where ν(G) is the number of vertices of the graph, ε(G) the number of edges and F the
number of faces when embedded on the torus). Thus the graph is 6-regular with every
face a triangle.
Imagine the bipartite ‘honeycomb’ graph (G) embedded on the torus. By Euler’s formula
this graph is 3-connected, 3-regular with every face a hexagon. By inserting a vertex in
each face and joining to all surrounding vertices to this vertex, we have a toroidal graph
(H) with connectivity 6 and girth 3.
By deleting all vertices of the original honeycomb |S| = ν(G) we leave ω (H −G) =

ν (H −G) = 1
2
ν(G) components each containing a single vertex. Thus, T (H) = ν(G)+1

1/2ν(G)
=

2 + 2
ν(G)

= 2 + 3
ν(H)

which is equal to the lower bound thus this lower bound is best
possible.

3.2 Connectivity 5

κ = 5⇒ g = 3 Let us consider graph G where

V (G) = { ai, bi, ci, di, ei, fi |i = 0, 1, 2, . . . , n− 1} and (14)

E (G) = {aibi, aici, bidi, ciei, eifi, difi, aiai+1, dibi+1, eici+1,

fifi+1 |i = 0, 1, . . . , n− 1} (15)

It is clear that this graph embedded on the torus has every face a pentagon, by inserting
a vertex into each face and joining it to all vertices surrounding the face, we have a
5-connected toroidal graph (H) with girth 3.

S = {u |u ∈ ν(G)}

⇒ ω (H −G) = ν (H −G) =
2

3
ν (G) =

2

5
ν (H) , τ (H −G) = 1

⇒ T (G) =
3

2
+

5/2

ν(H)
(16)

3.3 Connectivity 4

κ = 4⇒ g = 3 or 4. If g=4, by Euler’s formula we know this graph is 4-regular with
every face a quadrilateral. Consider Hn = C4 × Cn, as it is also mentioned in [6], this
graph is bipartite and so has toughness 1. It is clear that both parts must have an equal
number of vertices so by deleting all of one part we have:

ω (Hn) =
ν(Hn)

2
, |S| = ν(Hn)

2
, τ (Hn) = 1 ⇒ T (G) = 1 +

2

ν(Hn)
(17)

By adding one edge to two opposite corners of one of the faces, (two corners which are in
the part which is our cutset), we have a graph with the same tenacity with girth 3.
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3.4 Connectivity 3

κ = 3⇒ g ≤ 6. If g=6, W. Cao and M. J. Pelsmajer [1] proved that all such graphs
are bipartite and as they are also 6-regular have toughness exactly 1. We know this graph
is bipartite with both parts of equal order, so by deleting all vertices in one we again have
equation {18}, a higher number than the lower bound suggested by the theorem.
If g = 4, we know that k3,6 has girth 4, connectivity 3 and genus 1, [21], and also by
deleting the 3 vertices with degree 6, we have 6 lone vertices in 6 components so

T (G) =
1

2
+

1

6
=
κ− 2

2
+

κ

2n
(18)

If g=3, consider the graph k3,6 to which one edge has been added joining 2 of the vertices
with degree 6. The graph still is toroidal and the tenacity is equal to the above (if g=4)
and so for g=3, the lower bound is also best possible.
If g=5, the example given in [2] results in components, the number of which are double
the number of vertices cut, but which are each dodecahedrons and have 20 vertices. So

20ω (G− S) +
1

2
ω (G− S) = ν (G)

⇒ 20

ω (G− S)
=

410

ν (G)

⇒ T (G) =
1

2
+

20

ω(G− S)
=

1

2
+

410

ν (G)
(19)

However, the lower bound is T (G) = 1
2

+ 3
2ν(G)

which is only possible if all components
after the cut contain 1 vertex only. I claim this is not possible

Theorem 2. The lower bound for the tenacity cannot be reached if g=5 and T (G) ≥
1
2

+ 21
2(ν−6)

Proof. Suppose we have achieved the lower bound, then we have cut S vertices and there
are now 2 |S| components remaining each containing a single vertex thus 3 |S| = ν(G).
Each remaining component has at least 3 adjacent vertices in S and so 3×2 |S| ≤ ε (G) ≤
g(ν+2γ−2)

g−2 = 5(3|S|+2−2)
3

= 5 |S| which is a contradiction.

Generally I can say τ(G− S) ≥ 7. Let τ be the order of the largest component. Let for
every 1 = i = τ , ei be the number of edge with both ends in a component with i vertices,
Ei be the number of edges with at least one end in this component and xi be the number
of components with i vertices.
We know that as in this component the girth is at least 5. So for every 4 vertices, there
are a maximum of 3 edges, if there were more, there would definitely be a cycle of length
4 or less. So if we count the number of “groups of 4 vertices” multiplied by 3, we have
definitely counted each edge at least the number of times it can appear in a “group of 4”
so
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3×
(
i
4

)
≥ ei ×

(
i− 2

2

)
(20)

⇒ 3× i!
4!× (i− 4)!

≥ ei × (i− 2) (i− 3)

2

⇒ i(i− 1)

4
≥ ei

δ ≥ 3⇒ (Ei − ei) + 2ei ≥ 3i⇒ Ei ≥ 3i− ei ≥ 3i− i(i− 1)

4
=

13

4
i− i2

4
(21)

ε (G) ≤ g (ν + 2γ − 2)

g − 2
=

5ν

3
and |S| = 1

2
ω (G− S) =

1

2

τ∑
i=1

xi

⇒
τ∑
1

(
13

4
i− i2

4

)
xi ≤

τ∑
1

Eixi ≤ ε (G) ≤ 5ν

3
=

5

3

(
τ∑
i=1

ixi +
1

2

τ∑
i=1

xi

)

⇒ ∃i :
13

4
i− i2

4
≤ 5i

3
+

1

2
⇒ 3i2 − 19i+ 6

12
≥ 0⇒ i ≥ 6 (22)

But for i = 6, ei is at most 6 (because if more, there will be a cycle shorter than 5) and
so Ei is at least 12 and 5

3

(
i+ 1

2

)
= 10 + 5

6
< 12, so there has to exist one component with

i ≥ 6 but i 6= 6 which means i ≥ 7, meaning that τ ≥ 7.
Therefore, for a toroidal graph with connectivity 3 and girth 5, T (G) ≥ 1

2
+ 21

2(ν−6)
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