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The edge tenacity of a split graph
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ABSTRACT ARTICLE INFO

The edge tenacity Te(G) of a graph G is defined as:

Te(G) = min{ |X|+τ(G−X)
ω(G−X)−1 |X ⊆ E(G) and

ω(G−X) > 1}

where the minimum is taken over every edge-cutset X
that separates G into ω(G − X) components, and by
τ(G−X) we denote the order of a largest component of
G. The objective of this paper is to determine this quan-
tity for split graphs. Let G = (Z, I, E) be a noncomplete
connected split graph with minimum vertex degree δ(G)

we prove that if δ(G) ≥ |E(G)|
|V (G)|−1 then its edge-tenacity

is |E(G)|
|V (G)|−1 .
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1 Introduction

We consider only finite undirected graphs without loops and multiple edges. Let G be a
graph. Our terminology will be standard except as indicated. We denote by V (G), E(G)
and | V (G) | the set of vertices, the set of edges and the order of G, respectively.
A graph G = (V,E) is called a split graph if its vertex set V can be partitioned into a
clique Z and an independent set I. Usually, the split graph G is denoted by G = (Z, I, E).
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If N(I) 6= Z, where N(I) denote a neighborhood of vertices in I, then by choosing a ver-
tex v ∈ Z\N(I), and replacing Z by Z\{v} and I by I

⋃
{v}, G can be rewritten as

G = (Z\{v}, I
⋃
{v}, E), in which N(I

⋃
{v}) = Z\{v}. Hence, in the following we al-

ways assume that N(I) = Z for any split graph G = (Z, I, E).

Edge-tenacity of graphs was first studied by Moazzami and Salehian in [14] where they
defined the edge-tenacity of a graph G as

Te(G) = min
A⊂E(G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G−A) denotes the order (the number of edges) of a largest component of G−A
and ω(G− A) is the number of components of G− A.
Any undefined terms can be found in the standard references on graph theory, including
Bondy and Murty [1].

2 Edge-tenacity of split graphs

The concept of tenacity of a graph G was introduced in [2,3], as a useful measure of the
”vulnerability” of G. The results suggest that tenacity is a most suitable measure of
stability or vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability. In [4 -25], the authors
studied more about this new invariant. In the following, subject to some conditions, we
show that the edge-tenacity of split graphs can be obtained directly from a formula.

Theorem 1. Let G be a graph of order p and size q , Then Te(G) ≤ q
p−1 .

Proof: In the worst case of computing Te(G) of a graph, we should select all of its edges
to be in the cut .i.e |X| = q, in this case the number of components is p, and largest
component is 0 therefore Te(G) will be q

p−1 . In any other case (i.e |x| < q) Te(G) should
be less than or equal to q

p−1 . �

Theorem 2. Let G = (Z, I, E) be a noncomplete split graph with δ(G) ≥ |E(G)|
|V (G)|−1 then

Te(G) = |E(G)|
|V (G)|−1 .

Proof: Let u be a vertex of minimum degree. If u ∈ Z, then by our assumption N(I) = Z
and the definition of split graphs, we have d(u) ≥ |Z| ≥ δ(G). If d(u) = δ(G), then
δ(G) = |Z|, and u is adjacent to exactly one vertex v in I. Since G is noncomplete, there
must be another vertex w ∈ I such that uw 6∈ E(G). This implies that d(w) < δ(G), a
contradiction. So, if u is a vertex of minimum degree, then u ∈ I. Let X be an arbitrary
edge cut of G. In the following, we will prove that |X|+τ(G−X)

ω(G−X)−1 ≥
|E(G)|
|V (G)|−1 always holds. We

distinguish three cases.
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Case 1. X ⊆ [Z, I]

It is clear that the components of G − X can be divided into two classes. One class
contains only one component, which includes all vertices of C, while in the other class,
every component is a vertex of I. Suppose that there are f2 components in the second
class. Then |X| ≥ f2δ(G) and ω(G−X) = f2 + 1. Thus

|X|+τ(G−X)
ω(G−X)−1 ≥

f2δ(G)
(f2+1)−1 = δ(G) ≥ |E(G)|

|V (G)|−1

Case 2. X ⊆ E(Z)

Denote the components of G−X by G1, G2, ..., Gf and Zi = V (Gi)
⋂
Z for i = 1, 2, ..., f .

Since N(I) = Z, each component Zi must contain at least one vertex vi ∈ I. Clearly

N(vi) ⊆ Zi. So δ(G) ≤ d(vi) ≤ |Zi|. Then we have |X| ≥ f(f−1)
2

δ(G)2. Thus,

|X|+τ(G−X)
ω(G−X)−1 ≥

f(f−1)
2

δ(G)2

f−1 = f
2
δ(G)2 ≥ δ(G)2 ≥ δ(G) ≥ |E(G)|

|V (G)|−1

Case 3. X
⋂

[Z, I] 6= φ and X
⋂
E(Z) 6= φ.

As in the proof of Case 2, we denote the components of G−X by G1, G2, ..., Gf and let
Zi = V (Gi)

⋂
Z for i = 1, 2, ..., f .

Case 3.1. |Zi| ≥ δ(G) for some i with 1 ≤ i ≤ f .

Without loss of generality, we assume |Zi| ≥ δ(G) for i = 1, 2, ..., f1, 0 < |Zi| < δ(G) for
i = f1 + 1, f1 + 2, ..., f1 +f2 and |Zi| = 0 for i = f1 +f2 + 1, f1 +f2 + 2, ..., f1 +f2 +f3 = f .
It is easy to see that

|X| ≥ f1(f1−1)
2

δ(G)2 + f1f2δ(G) + f2(f2−1)
2

+ f3δ(G)

≥ f1(f1−1)
2

δ(G)2 + f1f2δ(G) + f3δ(G).

Then we have

|X|+τ(G−X)
ω(G−X)−1 ≥

f1(f1−1)
2

δ(G)2+f1f2δ(G)+f3δ(G)

(f1+f2+f3)−1
f1(f1−1)

2
δ(G)+f1f2+f3

(f1+f2+f3)−1 δ(G).

It is not difficult to check that the inequality f1(f1−1)
2

δ(G) + f1f2 + f3 ≥ (f1 + f2 + f3)− 1
holds for any positive integers f1 and δ(G), and any nonnegative integers f2 and f3. So
we have
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|X|+τ(G−X)
ω(G−X)−1 ≥ δ(G) ≥ |E(G)|

|V (G)|−1 .

Case 3.2. |Zi| < δ(G) for i = 1, 2, ..., f .

Suppose that |V (Gi)| ≥ 2 for i = 1, 2, ..., f1, |V (Gi)| = 1 and V (Gi) ⊆ C for i = f1+1, f1+
2, ..., f1+f2, and |V (Gi)| = 1 and V (Gi) ⊆ I for i = f1+f2+1, f1+f2+2, ..., f1+f2+f3 = f .
Then Gi must contain at least one vertex of Z when i = 1, 2, ..., f1.

If f1 = 0, then X = E(G) and ω(G−X) = |V (G)|. This implies that

|X|+τ(G−X)
ω(G−X)−1 ≥

|E(G)|
|V (G)|−1 .

So we assume f1 ≥ 1.
Let l = min |Ci| : i = 1, 2, ..., f1. Without loss of generality, assume |C1| = l and let
|V (G1)| = n1. Thus 0 < l < δ(G). So we have

|X| ≥ f1(f1−1)
2

l2 + f1f2l + f2(f2−1)
2

+ f3δ(G)

≥ f1(f1−1)
2

l2 + f1f2l + f3l

Set X1 = X
⋃
E(G1). Then |X1| ≤ |X|+ l(n1− l+1

2
) and ω(G−X1) = ω(G−X) +n1− 1

hold. Therefore,

|X|
ω(G−X)−1 −

|X1|
ω(G−X1)−1

≥ |X|
(f1+f2+f3)−1 −

|X|+l(n1− l+1
2

)

(f1+f2+f3)−1+n1−1

=
(n1−1)|X|−(f1+f2+f3−1)l(n1− l+1

2
)

(f1+f2+f3−1)(f1+f2+f3+n1−2)

≥ (n1−1)( f1(f1−1)
2

l2+f1f2l+f3l)−(f1+f2+f3−1)l(n1− l+1
2

)

(f1+f2+f3−1)(f1+f2+f3+n1−2)

=
(n1−1)( f1(f1−1)

2
l+f1f2+f3)−(f1+f2+f3−1)(n1− l+1

2
)

(f1+f2+f3−1)(f1+f2+f3+n1−2) l

Since f1 and l are positive integers, f2 and f3 are nonnegative integers, we have (n1−1) ≥
(n1 − l+1

2
). Therefore,

(n1 − 1)(f1(f1−1)
2

l + f1f2 + f3)− (f1 + f2 + f3 − 1)(n1 − l+1
2

) ≥ 0.

Thus, we get

|X|
ω(G−X)−1 ≥

|X1|
ω(G−X1)−1 .

If f1 = 1, then X1 = E(G) and ω(G−X1) = |V (G)|. Then
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|X|+τ(G−X)
ω(G−X)−1 ≥

|X1|
ω(G−X1)−1 ≥

|E(G)|
|V (G)|−1 .

If f1 > 1, then G−X1 has f1 − 1 components with at least two vertices, and each com-
ponent of G−X1 has less than δ(G) vertices. Repeating the above process, we can get a
sequence of edge cuts X1, X2, ..., Xk1 such that

|X|
ω(G−X)−1 ≥

|X1|
ω(G−X1)−1 ≥ ... ≥ |Xk1

|
ω(G−XK1

)−1 ,

Xk1 = E(G) and ω(G−Xk1) = |V (G)|. So we have

|X|+τ(G−X)
ω(G−X)−1 ≥

|E(G)|
|V (G)|−1

This completes the proof.
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