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Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k}

be a map. For each edge uv, assign the label

gcd (f(u), f(v)). f is called k-prime cordial labeling

of G if |vf(i)− vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and
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note the number of edges labeled with 1 and not labeled
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a k-prime cordial graph. In this paper we investigate 4-

prime cordial labeling behavior of complete graph, book,

flower, mCn and some more graphs.
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1 Introduction

All graphs in this paper are finite, simple and undirected. Let G be a (p, q) graph where

p refers the number of vertices of G and q refers the number of edge of G. The number of

vertices of a graph G is called order of G, and the number of edges is called size of G. In

1987, Cahit introduced the concept of cordial labeling of graphs [1]. Sundaram, Ponraj,

Somasundaram [6] have introduced the notion of prime cordial labeling. A prime cordial

labeling of a graph G with vertex set V is a bijection f : V (G) → {1, 2, . . . , |V |} such that

if each edge uv is assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1,

then the number of edges labeled with 0 and the number of edges labeled with 1 differ

by at most 1. Also they discussed the prime cordial labeling behavior of various graphs.

Recently Ponraj et al. [4], introduced k-prime cordial labeling of graphs. In this paper we

investigate 4-prime cordial labeling behavior of complete graph, book, flower, mCn and

some more graphs. Let x be any real number. Then ⌊x⌋ stands for the largest integer less

than or equal to x and ⌈x⌉ stands for smallest integer greater than or equal to x. Terms

not defined here follow from Harary [3] and Gallian [2].

2 Preliminaries

Remark 1. A 2-prime cordial labeling is a product cordial labeling. [7]

Definition 2.1. The Join of two graphs G1 +G2 is obtained from G1 and G2 and whose

vertex set is V (G1 +G2) = V (G1)∪V (G2) and edge set E (G1 +G2) = E (G1)∪E (G2)∪

{uv : u ∈ V (G1) , v ∈ V (G2)}.

Definition 2.2. The graph Cn +K1 is called a wheel. In a wheel, the vertex of degree n

is called the central vertex and the vertices on the cycle Cn are called rim vertices. The

helm Hn is the graph obtained from a wheel by attaching a pendent edge at each vertex

of the n-cycle. A flower F ln as the graph obtained from a helm by joining each pendent

vertex to the central vertex of the helm.

Definition 2.3. The Cartesian product graph G1�G2 is defined as follows: Consider any

two points u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in

G1�G2 whenever [u1 = v1 and u2v2 ∈ E (G2)] or [u2 = v2 and u1v1 ∈ E (G1)].

Definition 2.4. The graph Cn�P2 is called a prism. Let V (Cn�P2) = {ui, vi : 1 ≤ i ≤ n}

and E(Cn�P2) = {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {unu1, vnv1} ∪ {uivi : 1 ≤ i ≤ n}.

Definition 2.5. The book Bm is the graph Sm�P2 where Sm is the star with m+1 vertices.

Theorem 2.1. [4] The cycle Cn, n 6= 3 is k-prime cordial where k is even.
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3 Main results

First we look into the complete graph Kn.

Theorem 3.1. Th complete graph Kn is 4-prime cordial if and only if n ≤ 3.

Proof. It is easy to verify that K1, K2, K3 are 4-prime cordial graphs. On the other hand

suppose there exists a 4-prime cordial labeling f for n ≥ 4 then we have the following

cases.

Case 1. n ≡ 0 (mod 4).

Let n = 4t. In this case vf (1) = vf(2) = vf(3) = vf (4) = t. But ef (0) = 3
(

t

2

)

+ t2 = 5t2−3t
2

and ef(1) =
(

t

2

)

+ 5t2 = 11t2−t
2

. Then ef(1)− ef(0) = 3t2 + t, a contradiction.

Case 2. n ≡ 1 (mod 4).

Let n = 4t+ 1. We have the following cases.

① vf(1) = t + 1, vf (2) = vf (3) = vf(4) = t

② vf(2) = t + 1, vf (1) = vf (3) = vf(4) = t

③ vf(3) = t + 1, vf (1) = vf (2) = vf(4) = t

④ vf(4) = t + 1, vf (1) = vf (2) = vf(3) = t

In the case ①, ef(1) =
(

t+1

2

)

+ 3t(t + 1) + 2t2 = 11t2+7t
2

and ef (0) = 3
(

t

2

)

+ t2 = 5t2−3t
2

.

Then ef(1)− ef(0) = 3t2 + 5t, a contradiction.

Consider the case ②. Here ef(1) =
(

t

2

)

+ 2t(t + 1) + 3t2 = 11t2+3t
2

and ef (0) =
(

t+1

2

)

+

2
(

t

2

)

+ t(t+ 1) = 5t2+t
2

. Then ef(1)− ef(0) = 3t2 + t, a contradiction.

For the case ③, ef (1) =
(

t

2

)

+3t(t+1)+2t2 = 11t2+5t
2

and ef (0) =
(

t+1

2

)

+2
(

t

2

)

+ t2 = 5t2−t
2

.

Then ef(1)− ef(0) = 3t2 + 3t, a contradiction.

In the case ④, ef (1) =
(

t

2

)

+2t(t+1)+3t2 = 11t2+3t
2

and ef (0) =
(

t+1

2

)

+2
(

t

2

)

+t(t+1) = 5t2+t
2

.

Then ef(1)− ef(0) = 3t2 + t, a contradiction.

Case 3. n ≡ 2 (mod 4).

Let n = 4t+ 2. Here we consider the following cases.

① vf(1) = vf (2) = t+ 1, vf (3) = vf(4) = t

② vf(1) = vf (3) = t+ 1, vf (2) = vf(4) = t

③ vf(1) = vf (4) = t+ 1, vf (2) = vf(3) = t

④ vf(2) = vf (3) = t+ 1, vf (1) = vf(4) = t

⑤ vf(2) = vf (4) = t+ 1, vf (1) = vf(3) = t
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⑥ vf(3) = vf (4) = t+ 1, vf (1) = vf(2) = t

In the case ①, ef(1) =
(

t+1

2

)

+ (t + 1)2 + 3t(t + 1) + t2 = 11t2+11t
2

+ 1 and ef (0) =
(

t+1

2

)

+ 2
(

t

2

)

+ t(t+ 1) = 5t2+3t
2

. Then ef (1)− ef (0) = 3t2 + 4t+ 1, a contradiction.

Consider the case ②. Here ef (1) =
(

t+1

2

)

+ (t + 1)2 + 4t(t + 1) = 11t2+13t
2

+ 1 and

ef (0) =
(

t+1

2

)

+ 2
(

t

2

)

+ t2 = 5t2−t
2

. Then ef(1)− ef(0) = 3t2 + 7t+ 1, a contradiction.

Consider the case ③. Here ef (1) =
(

t+1

2

)

+ (t + 1)2 + 3t(t + 1) + t2 = 11t2+11t
2

+ 1 and

ef (0) =
(

t+1

2

)

+2
(

t

2

)

+ t(t+1) = 5t2+3t
2

. Then ef (1)− ef(0) = 3t2+4t+1, a contradiction.

In the case ④, ef (1) =
(

t

2

)

+ (t + 1)2 + 3t(t + 1) + t2 = 11t2+9t
2

+ 1 and ef(0) = 2
(

t+1

2

)

+
(

t

2

)

+ t(t+ 1) = 5t2+3t
2

. Then ef (1)− ef (0) = 3t2 + 3t + 1, a contradiction.

For the case ⑤, ef (1) =
(

t

2

)

+4t(t+1)+ t2 = 11t2+7t
2

and ef (0) = 2
(

t+1

2

)

+
(

t

2

)

+ (t+1)2 =
5t2+5t

2
+ 1. Then ef (1)− ef (0) = 3t2 + t− 1, a contradiction.

For the case ⑥, ef (1) =
(

t

2

)

+ 3t(t+ 1) + t2 + (t+ 1)2 = 11t2+9t
2

+ 1 and ef (0) = 2
(

t+1

2

)

+
(

t

2

)

+ t(t+ 1) = 5t2+3t
2

. Then ef (1)− ef (0) = 3t2 + 3t + 1, a contradiction.

Case 4. n ≡ 3 (mod 4).

Let n = 4t+ 3. We have the following cases.

① vf(1) = t, vf (2) = vf(3) = vf(4) = t + 1

② vf(2) = t, vf (1) = vf(3) = vf(4) = t + 1

③ vf(3) = t, vf (1) = vf(2) = vf(4) = t + 1

④ vf(4) = t, vf (1) = vf(2) = vf(3) = t + 1

In the case ①, ef(1) =
(

t

2

)

+3t(t+1)+2(t+1)2 = 11t2+13t
2

+2 and ef (0) = 3
(

t+1

2

)

+(t+1)2 =
5t2+7t

2
+ 1. Then ef (1)− ef (0) = 3t2 + 3t+ 1, a contradiction.

Consider the case ②. Here ef(1) =
(

t+1

2

)

+ 2t(t + 1) + 3(t + 1)2 = 11t2+1t
2

+ 3 and

ef (0) = 2
(

t+1

2

)

+
(

t

2

)

+ t(t+1) = 5t2+3t
2

. Then ef (1)− ef(0) = 3t2+7t+3, a contradiction.

For the case ③, ef(1) =
(

t+1

2

)

+ 3t(t + 1) + 2(t + 1)2 = 11t2+15t
2

+ 2 and ef (0) = 2
(

t+1

2

)

+
(

t

2

)

+ (t+ 1)2 = 5t2+5t
2

+ 1. Then ef (1)− ef (0) = 3t2 + 5t+ 1, a contradiction.

In the case ④, ef (1) =
(

t+1

2

)

+ 2t(t + 1) + 3(t + 1)2 = 11t2+17t
2

+ 3 and ef (0) = 2
(

t+1

2

)

+

2
(

t

2

)

+ t(t+ 1) = 5t2+3t
2

. Then ef (1)− ef (0) = 3t2 + 7t+ 3, a contradiction.

mCn denote the m copies of the cycle Cn.

Theorem 3.2. The graph mCn is 4-prime cordial for all values of m and n ≥ 3.

Proof. We consider the following cases.

Case 1. m is even.

Subcase 1a. n is even.

Assign the label 2, 4 to the first two vertices of the first cycle, then assign 2, 4 to the

next two vertices of the first two cycles and so on. In this process the last vertex of the
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cycle received the label 2. Next we move to second cycle and assign the label as in first

cycle. Proceeding like this until we assign the label to the m
2

th cycle. We now move to the
m+2

2

th
cycle. Assign the labels 1, 3 to the first two vertices of the m+2

2

th
cycle and assign

1, 3 to the next two vertices and so on. Clearly 3 is the label of the last vertex of the
m+2

2

th
, . . . , mth cycle vertices.

Subcase 1b. n is odd.

As in subcase 1a, assign the label to the n− 1 vertices of the first cycle. Then assign the

label 2 to the last vertex of the first cycle. Now we move to the second cycle. Assign the

labels 4, 2 to the first two vertices of the second cycle and 4, 2 to the next two vertices

and so on. This process is stopped at the (n−1)th vertex. Then assign 4 to the nth vertex

of the second cycle. Next we move to the third cycle and assign the label to the vertices

as in first cycle. Similarly assign the label to the 4th cycle as in second cycle. That is

the ith cycle vertices is labeled as in (i − 2)th cycle. Proceeding like this until we reach

the m
2

th cycle. We now consider the m+2

2

th
cycle. Assign the label to the first, second,

. . . (n− 1)th values of the m+2

2

th
cycle as in subcase 1a. Then assign 3 to the last vertex

of the m+2

2

th
cycle. Next we move to the m+4

2

th
cycle and assign assign the labels 3, 1 to

the first two vertices and assign 3, 1 to the next two vertices and so on. In this process

the (n− 1)th vertex received the label 1. Then assign the label 3 to the last vertex of the
m+4

2

th
cycle. Next assign the label to the vertices of the m+4

2

th
cycle. Next assign the label

to the vertices of m+6

2

th
cycle as in m

2

th cycle and m+8

2

th
cycle as in m+4

2

th
cycle. That is

the ith cycle is labeled as in (i− 2)th cycle.

Case 2. m is odd.

As in case 1, assign the label to the first, second, . . ., (m − 1)th cycle vertices. We now

consider the mth cycle. By theorem 2.1, any cycle has a 4-prime cordial labeling. Let g

be such a labeling. Assign the label to the mth cycle as in g. It is easy to verify that this

vertex labeling is a 4-prime cordial labeling.

Next we consider the One point union of m paths.

Theorem 3.3. One point union of m paths Pn is 4-prime cordial.

Proof. Let the common vertex be u.

Case 1. n is odd.

Subcase 1a. m is odd.

Assign the label 2 to the common vertex u. Next we move to the first row. Assign the

labels 2, 4 to the first two vertices of the first row. Then assign 2, 4 to the next two vertices

and continue in this pattern. Note that in this process the last vertex of the first row

received the label 2. We now move to the second row. Assign the labels 4, 2 to the first

two vertices and 4, 2 to the next two vertices and so on. Clearly, the last vertex of the

second row received the label 4. Next we move to the third row and assign the label 2, 4
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to the first two vertices of the third row, and 2, 4 to the next two vertices and so on. Note

that 2 is the label of the last vertex. Next consider the fourth row and assign the labels

to the first two vertices by 4, 2 and so on. Proceed like this until we have labeled n−2

2
row

vertices.

Next consider the n+1

2

th
row. Assign the labels 1, 3 to the first two vertices and 1, 3 to

the next two vertices and so on. Clearly 1 is the label of the last vertex. Next we move

to the n+3

2

th
row. Assign the labels 3, 1 to the first two vertices and 3, 1 to the next two

vertices and so on. The label of the last vertex is 3. Proceed like this till the nth row.

Subcase 1b. m is even.

As in subcase 1a, assign the labels to the first two vertices of the first row by 2, 4 and

next two vertices by 2, 4 and so on. In this case the last vertex received the label 4. We

now move to next row and assign the label to the first two vertices by 2, 4 and next two

vertices by 2, 4 and so on. Proceed like this till n−1

2

th
row.

Next we move to n+1

2

th
row. Assign the labels to the first row vertices by 1, 3 and next

two vertices by 1, 3 and so on. The last vertex receives the label 3. Next we move on to

the n+3

2

th
row. Assign the labels 3, 1 to th first two vertices and next two vertices by 3, 1

and so on. The last vertex receives the label 1. Proceed in this fashion to the next row

and assign the labels 1, 3 to the first two vertices and next two vertices by 1, 3 and so on.

Proceeding in this fashion to the nth row, clearly the vertices of the nth row are labeled

as 1, 3, 1, 3, 1, . . . , 1, 3.

Note that the labeling pattern in this case is such that the label of the last vertex of the
n+1

2

th
row and the label of the first vertex of n+3

2

th
row are the same. Also, the nth row

vertices are labeled in the same pattern as in n+1

2

th
row vertices.

Case 2. n is even.

Assign the labels to the vertices of the first, second, . . . n−2

2

th
rows as in case 1. Next we

move to the n+2

2

th
row. Assign the labels to the n+2

2

th
row and subsequent rows as in case

1. We consider the n
2

th row. Assign the labels to the first
⌊

m
2

⌋

vertices as in the n−2

2

th

row corresponding vertices and assign the
⌊

m
2

⌋

,
⌊

m
2

⌋

+1, . . ., mth vertex of the n
2

th row as

in the corresponding vertices of the nth row. Obviously this vertex labeling is a 4-prime

cordial labeling.

Example 3.1. A 4-prime cordial labeling of one point union of 8 paths P6 is given in

figure 1.

Now we investigate the 4-prime cordiality of K2 +mK1.

Theorem 3.4. K2 +mK1 is 4-prime cordial if and only if m ≡ 0, 1, 3 (mod 4).

Proof. Let V (K2+mK1) = {u, v, ui : 1 ≤ i ≤ m} and E(K2+mK1) = {uv, uui, vui : 1 ≤

i ≤ m}. Clearly K2 +mK1 has m+2 verices and 2m+1 edges. We divide the proof into

four cases.
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Figure 1:

Case 1. m ≡ 0 (mod 4).

Let m = 4t. We define a labeling f : V (K2 +mK1) → {1, 2, 3, 4} by f(u) = 2, f(v) = 4

and
f(ui) = 2, 1 ≤ i ≤ t

f(ut+i) = 3, 1 ≤ i ≤ t

f(u2t+i) = 4, 1 ≤ i ≤ t

f(u3t+i) = 1, 1 ≤ i ≤ t.

In this case vf(1) = vf (3) = t, vf (2) = vf(4) = t+ 1 and ef (0) = 4t+ 1, ef (1) = 4t.

Case 2. m ≡ 1 (mod 4).

Let m = 4t + 1. Assign the labels to the vertices u, v, ui (1 ≤ i ≤ 4t) as in case 1.

Then put the label 3 to u4t+1. Let g be the above vertex labeling. Here vg(1) = t,

vg(2) = vg(3) = vg(4) = t + 1 and eg(0) = 4t+ 1, eg(1) = 4t+ 2.

Case 3. m ≡ 2 (mod 4).

Let m = 4t+ 2. Suppose there exists a 4-prime cordial labeling φ.

Subcase 3.1. φ(u) = φ(v) = 1.

Here eφ(0) = 0 and eφ(1) = 8t+ 5. Then eφ(1)− eφ(0) = 8t+ 5, a contradiction.

Subcase 3.2. φ(u) = 1, φ(v) = 2.

Here eφ(0) = 2t + 1 and eφ(1) = 6t+ 4. Then eφ(1)− eφ(0) = 4t+ 3, a contradiction.

Subcase 3.3. φ(u) = 1, φ(v) = 3.

Here eφ(0) = t and eφ(1) = 7t+ 5. Then eφ(1)− eφ(0) = 6t+ 5, a contradiction.
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Subcase 3.4. φ(u) = 1, φ(v) = 4.

Similar to subcase 3.2.

Subcase 3.5. φ(u) = φ(v) = 2.

In this case eφ(0) = 4t+ 1 and eφ(1) = 4t+ 4. Then eφ(1)− eφ(0) = 3, a contradiction.

Subcase 3.6. φ(u) = φ(v) = 3.

In this case eφ(0) = 2t−1 and eφ(1) = 6t+6. Then eφ(1)−eφ(0) = 4t+5, a contradiction.

Subcase 3.7. φ(u) = φ(v) = 4.

Similar to subcase 3.5.

Subcase 3.8. φ(u) = 2, φ(v) = 3.

In this case eφ(0) = 3t+1 and eφ(1) = 5t+4. Then eφ(1)−eφ(0) = 2t+3, a contradiction.

Subcase 3.9. φ(u) = 2, φ(v) = 4.

Similar to subcase 3.5.

Subcase 3.10. φ(u) = 3, φ(v) = 4.

Similar to subcase 3.8.

Case 4. m ≡ 3 (mod 4).

Let m = 4t + 3. Assign the labels to the vertices u, v, ui (1 ≤ i ≤ 4t + 1) as in case 2.

Then put the label 2, 1 to u4t+2, u4t+3 respectively. If ψ be the above vertex labeling then

vψ(1) = vψ(3) = vψ(4) = t+ 1, vψ(2) = t+ 2 and eψ(0) = 4t+ 3, eψ(1) = 4t+ 4.

Next investigation is about the prism Cn�P2.

Theorem 3.5. The prism Cn�P2 is 4-prime cordial if and only if n 6= 4.

Proof. First we observe that Cn�P2 has 2n vertices and 3n edges. We consider the

folowing cases.

Case 1. n ≡ 0 (mod 4).

Let n = 4t. It is easy to see that C4�P2 is not 4-prime as it has number of edges not

labeled with 1 is not more than 5. So we may assume that t > 1. First we consider the

vertices u1, u2, . . . , un. Put the integer 2 to the first 24 vertics, namely, u1, u2, . . . , u2t.

For the vertices u2t+1, u2t+2, u2t+3, we allocate the integer 3. The remaining vertices from

u2t+4 to u4t are labeled by 1, 3 alternatively so that u4t receive the label 1. Now we move

to the vertices v1, v2, . . . , vn. Assign the label 4 to the vertices v1, v2, . . . , v2t. Then put the

label 1 to the vertices v2t+1, v2t+2, v2t+3. The remaining vertices vi where 2t+ 4 ≤ i ≤ 4t

are labeled with 3 or 1 according as i is even or odd. One can easily check that each label

1, 2, 3, 4 used to the vertices of the prism is exactly n
2
. Also the number of edges labeled

with 1 and not labeled with 1 are each 3n
2
.

Case 2. n ≡ 1 (mod 4).

Let n = 4t + 1. Assign the labels to the vertices ui, vi, (1 ≤ i ≤ 4t) as in case 1. Then

relabel the vertices u2t+1, u2t+2, v2t+1, v2t+2 by 2, 1, 4, 3 respectively. Finally we use the

labels 3, 1 to assign the vertices u2t+1, v2t+1 respectively. If f denote the above labeling

then vf (1) = vf(3) = 2t, vf(2) = vf (4) = 2t + 1 and ef(0) = 6t+ 1, ef(1) = 6t+ 2.
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Case 3. n ≡ 2 (mod 4).

Let n = 4t + 2. Assign the labels to the vertices ui, vi, (1 ≤ i ≤ 4t) as in case 1. Then

relabel the vertices u2t+2, u2t+4, v2t+2, v2t+4, ui, vi, (2t+5 ≤ i ≤ 4t+1) with 1 if they are

already labeled by 3 or relabel with 3 if they are already labeled with 1. If we denote g

as this labeling then vg(1) = vg(2) = vg(3) = vg(4) = 2t+ 1 and eg(0) = eg(1) = 6t+ 3.

Case 4. n ≡ 3 (mod 4).

Let n = 4t+3. Assign the labels to the vertices ui, vi, (1 ≤ i ≤ 2t+1) as in case 3. Then

put the integers 3, 4 to the vertices u2t+2, v2t+4 respectively. Then assign the label 1 to

the vertices ui, (2t + 3 ≤ i ≤ 4t + 3). If i is odd and put the label 3 if i is even. For he

vertices vi, (2t+ 3 ≤ i ≤ 4t+ 3) assign 3 or 1 according as i is odd or even. If φ denotes

the above labeling then vφ(1) = vφ(3) = 2t, vφ(2) = vφ(4) = 2t + 1 and eφ(0) = 6t + 4,

eφ(1) = 6t+ 5.

Finally we look into the flower and book graphs.

Theorem 3.6. Flowers F ln are 4-prime cordial for all n.

Proof. Let V (F ln) = {u, ui, vi : 1 ≤ i ≤ n} and E(F ln) = {uiui+1 : 1 ≤ i ≤ n − 1} ∪

{unu1} ∪ {uui, uivi, vvi : 1 ≤ i ≤ n}. Clearly F ln has 2n+ 1 vertices and 4n edges.

Case 1. n ≡ 0 (mod 4).

Let n = 4t. Define a labeling f : V (F ln) → {1, 2, 3, 4} by f(u) = 2, f(u2t+1) = 3,

f(u2t+2) = 1 and

f(ui) = 2, 1 ≤ i ≤ 2t

f(u2t+2i−1) = 3, 1 ≤ i ≤ t

f(u2t+2i) = 1, 1 ≤ i ≤ t

f(vi) = 4, 1 ≤ i ≤ 2t

f(v2t+2i+1) = 1, 1 ≤ i ≤ t− 1

f(v2t+2i+2) = 3, 1 ≤ i ≤ t− 1.

Here vf (1) = vf(3) = vf (4) = 2t, vf (2) = 2t+ 1 and ef(0) = ef (1) = 8t.

Case 2. n ≡ 1 (mod 4).

Let n = 4t + 1. Define a function g : V (F ln) → {1, 2, 3, 4} by g(u) = 2, g(u2t+1) = 4,

g(v2t+1) = g(v2t+2) = 3, g(v2t+3) = 1 and

g(ui) = 2, 1 ≤ i ≤ 2t

g(u2t+2i) = 3, 1 ≤ i ≤ t

g(u2t+2i+1) = 1, 1 ≤ i ≤ t

g(vi) = 4, 1 ≤ i ≤ 2t

g(v2t+2i+2) = 1, 1 ≤ i ≤ t− 1

g(v2t+2i+3) = 3, 1 ≤ i ≤ t− 1.

Here vg(1) = 2t, vg(2) = vg(3) = vg(4) = 2t + 1 and eg(0) = eg(1) = 8t+ 2.
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Case 3. n ≡ 2 (mod 4).

Let n = 4t + 2. Define a function φ : V (F ln) → {1, 2, 3, 4} by φ(u) = 2, φ(u2t+2) = 3,

φ(v2t+3) = 1 and

φ(ui) = 2, 1 ≤ i ≤ 2t+ 1

φ(u2t+2i) = 3, 1 ≤ i ≤ t+ 1

φ(u2t+2i+1) = 1, 1 ≤ i ≤ t

φ(vi) = 4, 1 ≤ i ≤ 2t+ 1

φ(v2t+2i+2) = 1, 1 ≤ i ≤ t

φ(v2t+2i+3) = 3, 1 ≤ i ≤ t− 1.

Here vφ(2) = 2t + 2, vφ(1) = vφ(3) = vφ(4) = 2t+ 1 and eφ(0) = eφ(1) = 8t+ 4.

Case 4. n ≡ 3 (mod 4).

Let n = 4t + 3. For F l3, put the labels 2, 3, 4 to the vertices u1, u2, u3 respectively

and 2 for the vertex u. For the vertices v1, v2, v3 respectively, assign the labels 4, 1, 3.

Obviously this labeling is a 4-prime cordial labeling of F l3. Let t > 0. We define a

map ψ : V (F ln) → {1, 2, 3, 4} by ψ(u) = 2, ψ(u2t+2) = 4, ψ(v2t+2) = ψ(v2t+3) = 3,

ψ(v2t+4) = 1 and

ψ(ui) = 2, 1 ≤ i ≤ 2t + 1

ψ(u2t+2i+1) = 3, 1 ≤ i ≤ t + 1

ψ(u2t+2i+2) = 1, 1 ≤ i ≤ t

ψ(vi) = 4, 1 ≤ i ≤ 2t + 1

ψ(v2t+2i+3) = 1, 1 ≤ i ≤ t

ψ(v2t+2i+4) = 3, 1 ≤ i ≤ t− 1.

Here vψ(1) = 2t+ 1, vψ(2) = vψ(3) = vψ(4) = 2t+ 2 and eψ(0) = eψ(1) = 8t+ 6.

Hence F ln is 4-prime cordial for all n.

Theorem 3.7. The book Bm is 4-prime cordial if and only if m > 1.

Proof. Let V (Bm) = {u, v, ui, vi : 1 ≤ i ≤ m} and E(Bm) = {uv, uui, uivi, vi : 1 ≤ i ≤

m}. Clearly, the number of vertices and edges in Bm are 2m+ 2, 3m+ 1 repectively. It

is easy to see that B1
∼= C4 is not a 4-prime cordial graph.

Case 1. m is even.

Let m = 2t. Define a map f : V (Bm) → {1, 2, 3, 4} by f(u) = 2, f(v) = 4 and

f(ui) = 2, 1 ≤ i ≤ t

f(ut+i) = 3, 1 ≤ i ≤ t

f(vi) = 4, 1 ≤ i ≤ t

f(vt+i) = 1, 1 ≤ i ≤ t.

Here vf (1) = vf(3) = t, vf(2) = vf (4) = t+ 1 and ef (0) = 3t+ 1, ef (1) = 3t.

Case 2. m is odd.
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Let m = 2t + 1. Define a function g : V (Bm) → {1, 2, 3, 4} by g(u) = 2, g(v) = 4,

g(u2t+1) = 1, g(vt+1) = 3 and

g(ui) = 2, 1 ≤ i ≤ t

g(ut+i) = 3, 1 ≤ i ≤ t

g(vi) = 4, 1 ≤ i ≤ t

g(vt+1+i) = 1, 1 ≤ i ≤ t.

Here vg(1) = vg(2) = vg(3) = vg(4) = t+ 1 and eg(0) = eg(1) = 3t+ 2.
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