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ABSTRACT ARTICLE INFO

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k}

be a map. For each edge uv, assign the label

gcd (f(u), f(v)). f is called k-prime cordial labeling

of G if |vf(i)− vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and

|ef (0)− ef (1)| ≤ 1 where vf (x) denotes the number of

vertices labeled with x, ef (1) and ef(0) respectively de-

note the number of edges labeled with 1 and not labeled

with 1. A graph with a k-prime cordial labeling is called

a k-prime cordial graph. In this paper we investigate 3-

prime cordial labeling behavior of union of a 3-prime

cordial graph and a path Pn.
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1 Introduction

All graphs in this paper are finite, simple and undirected. Let G be a (p, q) graph where

p refers the number of vertices of G and q refers the number of edge of G. For a graph
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G, the splitting graph of G, S ′(G), is obtained from G by adding for each vertex v of G

a new vertex v′ so that v′ is adjacent to every vertex that is adjacent to v, see Gallian

survey [2]. Note that if G is a (p, q) graph then S ′(G) is a (2p, 3q) graph. All graphs

considered here are finite simple and undirected. The number of vertices of a graph G is

called order of G, and the number of edges is called size of G. In 1987, Cahit introduced

the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram [6] have

introduced the notion of prime cordial labeling. A prime cordial labeling of a graph G

with vertex set V is a bijection f : V → {1, 2, . . . , |V |} such that if each edge uv is

assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, then the number

of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. Also

they discussed the prime cordial labeling behavior of various graphs. Recently Ponraj et

al. [8], introduced k-prime cordial labeling of graphs. In this paper we investigate the

3-prime cordial labeling behavior of union of a 3-prime cordial graph and a path Pn. Let

x be any real number. Then ⌊x⌋ stands for the largest integer less than or equal to x and

⌈x⌉ stands for smallest integer greater than or equal to x. Terms not defined here follow

from Harary [3].

2 Preliminaries

Definition 2.1. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k}

be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime

cordial labeling of G if |vf(i)− vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef(0)− ef(1)| ≤ 1

where vf(x) denotes the number of vertices labeled with x, ef(1) and ef (0) respectively

denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime

cordial labeling is called a k-prime cordial graph.

Theorem 2.1. [8] The path Pn is 3-prime cordial if and only if n 6= 3.

Proof. For n = 3, it is trivial that, for any labeling g, vg(1) = vg(2) = vg(3) = 1. But

eg(0) = 0. This implies |eg(0)− eg(1)| > 1. Assume n 6= 3. Let Pn be the path v1v2 . . . vn.

Case 1. n ≡ 0, 1 (mod 3).

Assign the label 2 to the vertices v1, v2, . . . , v⌈n

3
⌉. Then assign the label 3 consecutively

to the vertices v⌈n

3
⌉+1

, v⌈n

3
⌉+2

, . . . until we have received the
⌈

n
2

⌉

edges with the label 0. If

all the
⌊

n
3

⌋

3’s are exhausted then assign the label 1 to the remaining vertices; otherwise

consider the non labeled vertex vi such that vi−1 is labeled and assign the labels 1, 3 to

the vertices vi, vi+1, vi+2, . . . alternatively until
⌊

n
3

⌋

3’s are exhausted. Finally assign the

label 1 to the remaining vertices.

Case 2. n ≡ 2 (mod 3).

As in case 1, assign the labels to the vertices v1, v2, . . . , vn. Now, let i be the least positive

integer such that the label of vi−1 = the label of vi+1 = 3, and the label of vi = 1. Finally
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interchange the labels of vi and vi+1. Clearly this vertex labeling satisfies both vertex and

edge conditions.

3 Main Results

First we prove that union of any 3-prime cordial with Pn is also a 3-prime cordial if n > 12.

Theorem 3.1. If G is a (p, q) 3-prime cordial graph then G ∪ Pn also a 3-prime cordial

graph if n > 12.

Proof. Let f be a 3-prime cordial labeling of G and let g be a 3-prime cordial labeling

of Pn defined in theorem 2.1. Let v1, v2, . . . , vn be the vertices of Pn. We define a map

h : V (G ∪ Pn) → {1, 2, 3} by h(vi) = g(vi) where 1 ≤ i ≤ n and h(uj) = f(uj) for

1 ≤ j ≤ p. Then we have the following cases.

Case 1. p ≡ 0 (mod 3) and q ≡ 0 (mod 2).

Let p = 3t1 and q = 2r1. In this case vf(1) = vf (2) = vf(3) = t1 and ef(0) = ef (1) = r1.

Subcase 1a. n ≡ 0 (mod 3).

Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(1) = vh(2) = vh(3) =

t1 + t2. If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore

eh(0) = eh(1) = r1 + r2.

If n−1 ≡ 1 (mod 2) then put n−1 = 2r2+1. Here eg(0) = r2+1 and eg(1) = r2. Hence

eh(0) = r1 + r2 + 1 and eh(1) = r1 + r2.

Subcase 1b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(1) = vg(3) = t2, vg(2) = t2 + 1. This implies vh(1) = vh(3) =

t1+ t2, vh(2) = t1+ t2+1. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = eh(1) = r1 + r2.

If n−1 ≡ 1 (mod 2) then put n−1 = 2r2+1. Here eg(0) = r2+1 and eg(1) = r2. Hence

eh(0) = r1 + r2 + 1 and eh(1) = r1 + r2.

Subcase 1c. n ≡ 2 (mod 3).

Let n = 3t2 + 2. Here vg(2) = vg(3) = t2 + 1, vg(1) = t2. This implies vh(2) = vh(3) =

t1+ t2+1, vh(1) = t1+ t2. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = eh(1) = r1 + r2.

If n−1 ≡ 1 (mod 2) then put n−1 = 2r2+1. Here eg(0) = r2+1 and eg(1) = r2. Hence

eh(0) = r1 + r2 + 1 and eh(1) = r1 + r2.

Case 2. p ≡ 0 (mod 3) and q ≡ 1 (mod 2).

Let p = 3t1 and q = 2r1 + 1. In this case vf (1) = vf (2) = vf(3) = t1 and ef(0) = r1 + 1,

ef (1) = r1 or ef(0) = r1, ef (1) = r1 + 1.

Subcase 2a. n ≡ 0 (mod 3).
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Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(1) = vh(2) = vh(3) =

t1 + t2. If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. If

ef (0) = r1 + 1, ef(1) = r1 then consider the vertex vi such that g(vi−1) = g(vi) = 3 and

g(vi+1) = 1. Relabel the vertex vi and vn by 1 and 3 respectively. Then eg(0) = r2 and

eg(1) = r2 + 1. Now eh(0) = eh(1) = r1 + r2 + 1. If ef(0) = r1 and ef(1) = r1 + 1 then

eh(0) = eh(1) = r1 + r2 + 1.

Subcase 2b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(2) = t2 + 1, vg(1) = vg(3) = t2. This implies vh(1) = vh(3) =

t1+ t2, vh(2) = t1+ t2+1. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. If

ef (0) = r1 + 1, ef(1) = r1 then consider the vertex vi such that g(vi−1) = g(vi) = 3 and

g(vi+1) = 1. Relabel the vertex vi and vn by 1 and 3 respectively. Then eg(0) = r2 and

eg(1) = r2 + 1. Now eh(0) = eh(1) = r1 + r2 + 1. If ef(0) = r1 and ef(1) = r1 + 1 then

eh(0) = eh(1) = r1 + r2 + 1.

Subcase 2c. n ≡ 2 (mod 3).

Let n = 3t2 + 2. Here vg(2) = vg(3) = t2 + 1, vg(1) = t2. This implies vh(2) = vh(3) =

t1+ t2+1, vh(1) = t1+ t2. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. If

ef (0) = r1 + 1, ef(1) = r1 then consider the vertex vi such that g(vi−1) = g(vi) = 3 and

g(vi+1) = 1. Relabel the vertex vi and vn by 1 and 3 respectively. Then eg(0) = r2 and

eg(1) = r2 + 1. Now eh(0) = eh(1) = r1 + r2 + 1. If ef(0) = r1 and ef(1) = r1 + 1 then

eh(0) = eh(1) = r1 + r2 + 1.

Case 3. p ≡ 1 (mod 3) and q ≡ 0 (mod 2).

Let p = 3t1 + 1 and q = 2r1. In this case vf (1) = vf(2) = t1, vf (3) = t1 + 1 or vf (1) =

vf (3) = t1, vf(2) = t1 + 1 or vf (2) = vf(3) = t1, vf (1) = t1 + 1 and ef(0) = ef (1) = r1.

Subcase 3a. n ≡ 0 (mod 3).

Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(1) = vh(2) = t1 + t2,

vh(3) = t1+ t2+1 or vh(1) = vh(3) = t1+ t2, vh(2) = t1+ t2+1 or vh(2) = vh(3) = t1+ t2,

vh(1) = t1 + t2 + 1. If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

Subcase 3b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(2) = t2 + 1, vg(1) = vg(3) = t2. Then i) vh(1) = t1 + t2,

vh(2) = vh(3) = t1 + t2 + 1 or ii) vh(2) = t1 + t2 + 2, vh(1) = vh(3) = t1 + t2 or iii)
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vh(3) = t1 + t2, vh(1) = vh(2) = t1 + t2 + 1.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

For the case (ii), we consider the vertex vi such that g(vi−1) = 2 and g(vi) = 3. Now,

relabel the vertex vi−1 by 3. Then vg(1) = vg(2) = t2 and vg(3) = t2 + 1. Hence

vh(1) = t1 + t2, vh(2) = vh(3) = t1 + t2 + 1 and eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

Subcase 3c. n ≡ 2 (mod 3).

Let n = 3t2 + 2. Here vg(1) = t2, vg(2) = vg(3) = t2 + 1. Then i) vh(1) = t1 + t2,

vh(2) = t1 + t2 + 1, vh(3) = t1 + t2 + 2 or ii) vh(1) = t1 + t2, vh(2) = t1 + t2 + 2,

vh(3) = t1 + t2 + 1 or iii) vh(1) = vh(2) = vh(3) = t1 + t2 + 1.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

For the case (i), we consider the vertex vi such that g(vi−1) = g(vi+1) = 1 and g(vi) = 3.

Now, relabel the vertex vi by 1. Then vh(1) = vh(2) = vh(3) = t1 + t2 + 1 and the edge

condition is not affected.

Now we consider the case (ii). Here we interchange the labels of the vertices with labels

2 and 3 in Pn then proceed as above, we have the same case.

Case 4. p ≡ 1 (mod 3) and q ≡ 1 (mod 2).

Let p = 3t1 + 1 and q = 2r1 + 1. In this case vf (2) = vf (3) = t1, vf(1) = t1 + 1 or

vf (1) = vf (3) = t1, vf (2) = t1+1 or vf (1) = vf(2) = t1, vf (3) = t1+1 and ef(0) = r1+1,

ef (1) = r1 or ef(0) = r1, ef (1) = r1 + 1.

Subcase 4a. n ≡ 0 (mod 3).

Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(2) = vh(3) = t1 + t2,

vh(1) = t1+ t2+1 or vh(1) = vh(3) = t1+ t2, vh(2) = t1+ t2+1 or vh(1) = vh(2) = t1+ t2,

vh(3) = t1 + t2 + 1. If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2.

Therefore eh(0) = r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. If

ef (0) = r1, ef(1) = r1 + 1 then eh(0) = eh(1) = r1 + r2 + 1. If ef (0) = r1 + 1, ef (1) = r1

then consider the vertex vi such that g(vi−1) = g(vi) = 3, g(vi+1) = 1. Note that vn is

labeled by 1. Now interchange the labels of vi and vn. Then eh(0) = eh(1) = r1 + r2 + 1.

Subcase 4b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(2) = t2 + 1, vg(1) = vg(3) = t2. Then i) vh(3) = t1 + t2,

vh(2) = vh(3) = t1 + t2 + 1 or ii) vh(1) = vh(3) = t1 + t2, vh(2) = t1 + t2 + 2 or iii)

vh(1) = t1 + t2, vh(2) = vh(3) = t1 + t2 + 1.

Consider the case (ii). In this case, we find a vertex vi such that g(vi−1) = g(vi) = 2,
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g(vi+1) = g(vi+2) = 3. Now assign the label 3 to the vertex vi. Now vh(1) = t1 + t2,

vh(2) = vh(3) = t1 + t2 + 1.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n− 1 ≡ 1 (mod 2) then put n− 1 = 2r2 + 1. Here eg(0) = r2 + 1, eg(1) = r2. Suppose

ef (0) = r1, ef(1) = r1 + 1 then eh(0) = eh(1) = r1 + r2 + 1. If ef (0) = r1 + 1, ef (1) = r1

then consider the vertex vi such that f(vi) = f(vi−1) = 3, f(vi+1) = 1. Note that vn is

labeled by 1. Now interchange the labels of vi and vn then eh(0) = eh(1) = r1 + r2 + 1.

Subcase 4c. n ≡ 2 (mod 3).

Let n = 3t2 +2. Here vg(1) = t2, vg(2) = vg(3) = t2 +1. Then i) vh(1) = vh(2) = vh(3) =

t1+ t2+1 or ii) vh(1) = t1+ t2, vh(2) = t1+ t2+2, vh(3) = t1+ t2+1 or iii) vh(1) = t1+ t2,

vh(2) = t1 + t2 + 1, vh(3) = t1 + t2 + 3.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n− 1 ≡ 1 (mod 2) then put n− 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. For

the edge conditions of the labeling h we proceed as in subcase 4b.

For the case (ii), relabel the vertices with the label 3 by 2 and vice versa. Let the new

labeling be h′. Then Consider the vertex vi such that h′(vi−1) = h′(vi) = 2, h′(vi+1) =

h′(vi+2) = 2. Now, relabel the vertex vi+2 by 1. Clearly this vertex labeling h′ satisfy the

vertex and edge conditions.

The same case may be arised for the case (iii) when without interchanging the labels 3

and 2.

Case 5. p ≡ 2 (mod 3) and q ≡ 0 (mod 2).

Let p = 3t1 + 2 and q = 2r1. In this case vf (1) = vf(2) = t1 + 1, vf(3) = t1 or vf (1) =

vf (3) = t1 + 1, vf(2) = t1 or vf (2) = vf(3) = t1 + 1, vf (1) = t1 and ef(0) = ef (1) = r1.

Subcase 5a. n ≡ 0 (mod 3).

Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(1) = vh(2) = t1 + t2 + 1,

vh(3) = t1+ t2 or vh(1) = vh(3) = t1+ t2+1, vh(2) = t1+ t2 or vh(2) = vh(3) = t1+ t2+1,

vh(1) = t1+ t2. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2. Therefore

eh(0) = eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

Subcase 5b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(2) = t2 + 1, vg(1) = vg(3) = t2. Then i) vh(1) = t1 + t2 + 1,

vh(2) = t1 + t2 + 2, vh(3) = t1 + t2 or ii) vh(1) = vh(2) = vh(3) = t1 + t2 + 1 or iii)

vh(1) = t1 + t2, vh(2) = t1 + t2 + 2, vh(3) = t1 + t2 + 1.

For the case (i), we consider the vertex vi such that g(vi−1) = g(vi) = 2 and g(vi+1) =

g(vi+2) = 3. Now, relabel the vertex vi by 3. Then vh(1) = vh(2) = vh(3) = t1 + t2 + 1.

Consider the case (iii). Here relabel the vertices with the label 3 by 2 and vice versa.
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Let the new labeling be h′. Then consider the vertex vi such that h′(vi−1) = h′(vi) = 2

and h′(vi+1) = 1, h′(vi+2) = 2. Now relabel the vertex vi+2 by 1. Then vh′(1) = vh′(2) =

vh′(3) = t1 + t2 + 1.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

Subcase 5c. n ≡ 2 (mod 3).

Let n = 3t2 + 2. Here vg(1) = t2, vg(2) = vg(3) = t2 + 1. Then i) vh(2) = t1 + t2 + 2,

vh(1) = vh(3) = t1 + t2 + 1 or ii) vh(1) = vh(2) = t1 + t2 + 1, vh(3) = t1 + t2 + 2 or iii)

vh(1) = t1 + t2, vh(2) = vh(3) = t1 + t2 + 2.

For the case (iii), we consider the vertex vi such that g(vi−1) = g(vi) = 3, g(vi+1) = 1

and g(vi+2) = 3. Now, relabel the vertex vi+2 by 1. Then vh(1) = vh(3) = t1 + t2 + 1,

vh(2) = t1 + t2 + 2.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

eh(1) = r1 + r2.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2.

Case 6. p ≡ 2 (mod 3) and q ≡ 1 (mod 2).

Let p = 3t1 + 2 and q = 2r1 + 1. In this case vf (1) = vf (2) = t1 + 1, vf (3) = t1

or vf (1) = vf(3) = t1 + 1, vf (2) = t1 or vf (2) = vf (3) = t1 + 1, vf(1) = t1. Also

ef (0) = r1 + 1, ef (1) = r1 or ef (0) = r1, ef (1) = r1 + 1.

Subcase 6a. n ≡ 0 (mod 3).

Let n = 3t2. Here vg(1) = vg(2) = vg(3) = t2. This implies vh(1) = vh(2) = t1 + t2 + 1,

vh(3) = t1+ t2 or vh(1) = vh(3) = t1+ t2+1, vh(2) = t1+ t2 or vh(2) = vh(3) = t1+ t2+1,

vh(1) = t1+ t2. If n−1 ≡ 0 (mod 2) then n−1 = 2r2. Here eg(0) = eg(1) = r2. Therefore

eh(0) = r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1 and eg(1) = r2. So

eh(0) = eh(1) = r1 + r2 + 1, eh(1) = r1 + r2 + 2, eh(1) = r1 + r2. Now interchange the

labels of v1 and vn. Then eh(0) = eh(1) = r1 + r2 + 1.

Subcase 6b. n ≡ 1 (mod 3).

Let n = 3t2 + 1. Here vg(2) = t2 + 1, vg(1) = vg(3) = t2. Then i) vh(1) = t1 + t2 + 1,

vh(2) = t1 + t2 + 2, vh(3) = t1 + t2 or ii) vh(1) = vh(2) = vh(3) = t1 + t2 + 1 or iii)

vh(1) = t1 + t2, vh(2) = t1 + t2 + 2, vh(3) = t1 + t2 + 1.

Consider the case (i). In this case, we consider the vertex vi such that g(vi−1) = g(vi) = 2,

g(vi+1) = g(vi+2) = 3. Now assign the label 3 to the vertex vi. Now vh(1) = vh(2) =

vh(3) = t1 + t2 + 1. Consider the case (iii). Here interchange the labels 3 and 2. Now

consider the vertex vi such that g(vi−1) = g(vi) = 2, g(vi+1) = 1, g(vi+2) = 2. Now relabel

the vertex vi+2 by 1. Then vh(1) = vh(2) = vh(3) = t1 + t2 + 1.
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If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n − 1 ≡ 1 (mod 2) then put n − 1 = 2r2 + 1. Here eg(0) = r2 + 1, eg(1) = r2. Then

eh(0) = r1 + r2 + 2, eh(1) = r1 + r2 or eh(0) = eh(1) = r1 + r2 + 1. If eh(0) = r1 + r2 + 2,

eh(1) = r1 + r2 then interchange the labels of v1 and vn then eh(0) = eh(1) = r1 + r2 + 1.

Subcase 6c. n ≡ 2 (mod 3).

Let n = 3t2+2. Here vg(1) = t2, vg(2) = vg(3) = t2+1. Then i) vh(1) = vh(3) = t1+t2+1,

vh(2) = t1+t2+2 or ii) vh(1) = vh(2) = t1+t2+1, vh(3) = t1+t2+2 or iii) vh(1) = t1+t2,

vh(2) = vh(3) = t1 + t2 + 2.

For the case (iii), we consider the vertex vi such that g(vi−1) = g(vi) = 3, g(vi+1) = 1,

g(vi+2) = 3. Now, relabel the vertex vi+2 by 1. Then vh(1) = vh(3) = t1 + t2 + 1,

vh(2) = t1 + t2 + 2.

If n − 1 ≡ 0 (mod 2) then n − 1 = 2r2. Here eg(0) = eg(1) = r2. Therefore eh(0) =

r1 + r2 + 1, eh(1) = r1 + r2 or eh(0) = r1 + r2, eh(1) = r1 + r2 + 1.

If n− 1 ≡ 1 (mod 2) then put n− 1 = 2r2 +1. Here eg(0) = r2 +1 and eg(1) = r2. Then

eh(0) = eh(1) = r1 + r2 + 1 or eh(0) = r1 + r2 + 2, eh(1) = r1 + r2. Now interchange the

labels of the vertices v1 and vn. Then eh(0) = eh(1) = r1 + r2 + 1.

Thus G ∪ Pn is 3-prime cordial if n > 12.

Next we show that the splitting graph of a star is not a 3-prime cordial graph. Let

V (S ′(K1,n)) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(S ′(K1,n)) = {uui, vvi, uvi : 1 ≤ i ≤ n}.

Theorem 3.2. S ′(K1,n) is not 3-prime cordial.

Proof. Suppose there exists a 3-prime cordial labeling f , then we have the following

possible cases.

Case 1. f(u) = f(v) = 2.

Subcase 1a. n ≡ 0 (mod 3).

Let n = 3t. Then p = 6t + 2 and q = 9t. Here we have the following three cases:

(a) vf(1) = vf (2) = 2t + 1, vf (3) = 2t. (b) vf (1) = vf(3) = 2t + 1, vf(2) = 2t.

(c) vf (2) = vf (3) = 2t + 1, vf (1) = 2t. Consider the case (a) and (c). In this case

ef (0) ≤ 4t−2, a contradiction. Consider the case (b). Here ef(0) ≤ 4t−4, a contradiction.

Subcase 1b. n ≡ 1 (mod 3).

Let n = 3t + 1. Then p = 6t + 4 and q = 9t + 3. In this case we have the following

three cases: (a) vf(1) = vf(2) = 2t + 1, vf(3) = 2t + 2. (b) vf (1) = vf(3) = 2t + 1,

vf (2) = 2t + 2. (c) vf(2) = vf (3) = 2t + 1, vf (1) = 2t + 2. Consider the case (a) and (c).

In this case ef(0) ≤ 4t − 2, a contradiction. Consider the case (b). Here ef (0) ≤ 4t, a

contradiction.

Subcase 1c. n ≡ 2 (mod 3).

Let n = 3t + 2. Then p = 6t + 6 and q = 9t + 6. Here vf (1) = vf (2) = vf(3) = 2t + 2.

But ef(0) ≤ 4t, a contradiction.
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Case 2. f(u) = f(v) = 3.

Similar to case 1.

Case 3. f(u) = f(v) = 1.

Similar to case 1.

Case 4. f(u) = 2, f(v) = 1 or f(u) = 1, f(v) = 2.

Subcase 4a. n ≡ 0 (mod 3).

We consider the three cases as given in subcase 1a. For the cases (a) and (c), we have

ef (0) ≤ 2t − 1, a contradiction. If we consider the case (b), we get ef (0) ≤ 2t − 2, a

contradiction.

Subcase 4b. n ≡ 1 (mod 3).

Her also we have three cases as in subcase 1b. First we consider the cases (a) and (c).

Here ef (0) ≤ 2t− 1, a contradiction. For the case (b), we get ef (0) ≤ 2t, a contradiction.

Subcase 4c. n ≡ 2 (mod 3).

As in subcase 1c, we have vf (1) = vf(2) = vf (3) = 2t+2. But ef (0) ≤ 2t, a contradiction.

Case 5. f(u) = 3, f(v) = 1 or f(u) = 1, f(v) = 3.

Similar to case 4.

Case 6. f(u) = 2, f(v) = 3 or f(u) = 3, f(v) = 2.

Subcase 6a. n ≡ 0 (mod 3).

Consider the three cases given in subcase 1a. For the cases (a) and (b), we have ef(0) ≤

4t − 1, and for the case (b), we get ef(0) ≤ 4t, both gives a contradiction to a 3-prime

cordial labeling.

Subcase 6b. n ≡ 1 (mod 3).

In this case we consider the three cases given in subcase 1b. If we consider the cases (a)

and (b), we have ef(0) ≤ 4t+ 1, and for the case (b), we get ef(0) ≤ 4t, a contradiction.

Subcase 6c. n ≡ 2 (mod 3).

As in subcase 1c, we have vf(1) = vf(2) = vf (3) = 2t + 2. Here ef (0) ≤ 4t + 2, a

contradiction.

Hence the splitting graph of a star is not a 3-prime cordial graph.

Theorem 3.3. Let G be a graph obtained from the star K1,n by identifying each pendent

vertex to the central vertex of the star K1,m. Then G is 3-prime cordial.

Proof. Let V (K1,n) = {u, ui : 1 ≤ i ≤ n} and E(K1,n) = {uui : 1 ≤ i ≤ n}. Let

the vertex set of the ith K1,m be {vi, v
j
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and the edge set be

{viv
j
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Identify ui with vi. It is obvious that the graph G has

mn+ n+ 1 vertices and mn+ n edges. Assign the label 2 to the vertex u. We now move

to the first star K1,m. Assign the label 2 to the vertex v1. Then assign the label 2 to

the vertices v11, v
1
2, . . . etc, until we have used

⌈

mn+n+1

3

⌉

2’s as the vertex labels. If the

used 2’s is less than
⌈

mn+n+1

3

⌉

then we move to the next star K1,n. Assign the label 1

to the vertex v2. Then assign the label 2 to the vertices v21, v
2
2, . . . etc. If the number of
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vertices labeled with 2 is
⌈

mn+n+1

3

⌉

then stop. Otherwise, we move to the next step and

countinuing as in above. Suppose the process is stop in the ith star, then assign 3 to the

unlabeled pendent vertices of the ith star. We now move to (i+1)th star. Assign 3 to the

central vertex. Next assign 3 to the pendent pendent vertices of the (i + 1)th star. Each

time count the value of ef (0). If it is
⌈

mn+n
2

⌉

then assign 1 to the remaining vertices of

the ith star. Otherwise, assign 1 to the pendent vertices. This process is repeated until

we have
⌈

mn+n
2

⌉

edges with label 0.

Assign the label 1 to the central vertex of the non-labeled stars then move to its pendent

veritces corresponding to it and 1 to the pendent vertices. Count the value of vf(1). If it

is
⌊

mn+n+1

3

⌋

then stop. Finally assign 3 to the non-labeled vertices.

It is easy to verify that this vertex labeling is a 3-prime cordial labeling.

Jelly fish graphs J(m,n) obtained from a cycle C4 : uvxyu by joining x and y with an

edge and appending m pendent edges to u and n pendent edges to v.

Theorem 3.4. The jelly fish J(m,n) is 3-prime cordial if 10m ≥ n + 2.

Proof. Let the vertex set of J(m,n) be {u, v, x, y, ui, vj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the

edge set be {uui, vvj, ux, xv, uy, yv, xy : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We give the labeling

f to the vertices of J(m,n) as follows: Assign the label 2 to the vertices u, x, y. Then

assign the label 2 to all the vertices ui (1 ≤ i ≤ n). Then assign the label 3 to the vertex

v. Next assign the label 3 to the vertices vi
(

1 ≤ i ≤
⌈

m+n+4

3

⌉

− 1
)

. Next assign 1 to the

vertices vn−i

(

0 ≤ i ≤
⌊

m+n+4

3

⌋)

. Finally, assign the label 2 to the non-labeled vertices

vi. We now count the edges with label 0 and 1. If the number of edges with label 0 is

2 more than the number of edges labeled with 1, then we relabel the vertices u1 and v1.

Clearly, thus the relabeled graph J(m,n) is 3-prime cordial; otherwise f is automatically

a 3-prime cordial labeling.
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