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ABSTRACT

ARTICLE INFO

Let G be a (p,q) graph. Let f: V(G) — {1,2,...,k}
be a map. For each edge wv, assign the label
ged (f(u), f(v)). f is called k-prime cordial labeling
of G if |vs(i) —vs(4)| < 1, 4,5 € {1,2,...,k} and
lef(0) —ef(1)] < 1 where vg(x) denotes the number of
vertices labeled with z, e;(1) and e;(0) respectively de-
note the number of edges labeled with 1 and not labeled
with 1. A graph with a k-prime cordial labeling is called
a k-prime cordial graph. In this paper we investigate 3-
prime cordial labeling behavior of union of a 3-prime
cordial graph and a path P,.
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1 Introduction

All graphs in this paper are finite, simple and undirected. Let G be a (p, q) graph where

p refers the number of vertices of G and q refers the number of edge of G. For a graph
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G, the splitting graph of G, S’(G), is obtained from G by adding for each vertex v of G
a new vertex v’ so that v’ is adjacent to every vertex that is adjacent to v, see Gallian
survey [2]. Note that if G is a (p,q) graph then S'(G) is a (2p,3q) graph. All graphs
considered here are finite simple and undirected. The number of vertices of a graph G is
called order of GG, and the number of edges is called size of G. In 1987, Cahit introduced
the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram [6] have
introduced the notion of prime cordial labeling. A prime cordial labeling of a graph G
with vertex set V is a bijection f : V — {1,2,...,|V|} such that if each edge uv is
assigned the label 1 if ged (f(u), f(v)) =1 and 0 if ged (f(u), f(v)) > 1, then the number
of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. Also
they discussed the prime cordial labeling behavior of various graphs. Recently Ponraj et
al. [8], introduced k-prime cordial labeling of graphs. In this paper we investigate the
3-prime cordial labeling behavior of union of a 3-prime cordial graph and a path P,. Let
x be any real number. Then |z ] stands for the largest integer less than or equal to x and
[x] stands for smallest integer greater than or equal to x. Terms not defined here follow
from Harary [3].

2 Preliminaries

Definition 2.1. Let G be a (p,q) graph and 2 < p < k. Let f : V(G) — {1,2,...,k}
be a function. For each edge uv, assign the label ged (f(u), f(v)). f is called a k-prime
cordial labeling of G if |vp(t) —vp(j)] < 1, 4,7 € {1,2,...,k} and |ef(0) —ef(1)] < 1
where ve(z) denotes the number of vertices labeled with x, ef(1) and ef(0) respectively
denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime
cordial labeling s called a k-prime cordial graph.

Theorem 2.1. /8] The path P, is 3-prime cordial if and only if n # 3.

Proof. For n = 3, it is trivial that, for any labeling g, v,(1) = v4(2) = v,(3) = 1. But
eg(0) = 0. This implies |e,(0) — e,(1)| > 1. Assume n # 3. Let P, be the path vvs ... v,.
Case 1. n=0,1 (mod 3).

Assign the label 2 to the vertices vy, vs, . .. U] Then assign the label 3 consecutively

.. until we have received the {ﬂ edges with the label 0. If

to the vertices Uf"-| 3

2410 V2] 420 -
all the L%J 3’s are exhatEsJed then assign the label 1 to the remaining vertices; otherwise
consider the non labeled vertex v; such that v;_; is labeled and assign the labels 1, 3 to
the vertices v;, Vi1, Vira, ... alternatively until L%J 3’s are exhausted. Finally assign the
label 1 to the remaining vertices.

Case 2. n =2 (mod 3).

As in case 1, assign the labels to the vertices vy, v, ..., v,. Now, let i be the least positive

integer such that the label of v;_; = the label of v;,; = 3, and the label of v; = 1. Finally
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interchange the labels of v; and v;;,. Clearly this vertex labeling satisfies both vertex and
edge conditions. O

3 Main Results

First we prove that union of any 3-prime cordial with P, is also a 3-prime cordial if n > 12.

Theorem 3.1. If G is a (p,q) 3-prime cordial graph then G U P, also a 3-prime cordial
graph if n > 12.

Proof. Let f be a 3-prime cordial labeling of G and let g be a 3-prime cordial labeling
of P, defined in theorem 2.1. Let vy, vs,...,v, be the vertices of P,. We define a map
h :V(GUDP,) — {1,2,3} by h(v;) = g(v;) where 1 < i < n and h(u;) = f(u;) for
1 < j < p. Then we have the following cases.

Case 1. p=0 (mod 3) and ¢ =0 (mod 2).

Let p = 3t; and g = 2r;. In this case vy(1) = vy(2) = vf(3) =t; and ef(0) = ef(1) = ry.

Subcase 1la. n =0 (mod 3).

Let n = 3ty. Here vy(1) = v4(2) = v4(3) = to. This implies v, (1) = v,(2) = vu(3) =
ti +t2. If n—1 =0 (mod 2) then n —1 = 2ry. Here ¢,(0) = ¢,(1) = ry. Therefore
en(0) = ep(1) = ry + ro.

Ifn—1=1 (mod 2) then put n —1 = 2ry+1. Here e,(0) = r2+1 and e4(1) = ro. Hence
en(0) =1 +ry+ 1 and ey(1) = r + 1ro.

Subcase 1b. n =1 (mod 3).

Let n = 3ty + 1. Here v,(1) = v4(3) = to, v4(2) = to + 1. This implies v,(1) = v,(3) =
ti+ta, vp(2) = t1+t2+1. fn—1=0 (mod 2) then n—1 = 2ry. Here ,(0) = ey4(1) = o.
Therefore e,(0) = ep(1) =11 + ro.

Ifn—1=1 (mod 2) then put n —1 = 2ry+ 1. Here e,(0) =r2+1 and e4(1) = ro. Hence
en(0) =71 +ry+ 1 and e, (1) = ry + 1ro.

Subcase 1c. n =2 (mod 3).

Let n = 3ty + 2. Here v,(2) = v,(3) = t2 + 1, vy(1) = to. This implies v,(2) = v,(3) =
ti+ta+1, vp(1) =t1+t2. fn—1=0 (mod 2) then n—1 = 2ry. Here e,(0) = e,(1) = 5.
Therefore e;(0) = ep(1) =11 + ro.

Ifn—1=1 (mod 2) then put n—1 = 2ry+ 1. Here e,(0) = r,+1 and e,(1) = ro. Hence
en(0) =ry+ry+ 1 and ey (1) = ry + 1ro.

Case 2. p=0 (mod 3) and ¢ =1 (mod 2).

Let p = 3t; and ¢ = 2r; + 1. In this case vy(1) = v4(2) = v4(3) = t; and e;(0) = r; + 1,
ef(1) =ryoref(0) =7y, ef(1) =7 + 1.

Subcase 2a. n =0 (mod 3).
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Let n = 3ty. Here vy(1) = vy(2) = v4(3) = to. This implies v, (1) = vp(2) = vu(3) =
t1+t3. Ifn—1=0 (mod 2) then n — 1 = 2ry. Here €,(0) = e,(1) = ro. Therefore
en(0)=ri+r+1,e,(l) =ry +ry0r en(0) =11 + 719, ep(1) =11 + 12+ 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here ¢,(0) = 7o+ 1 and e,(1) = ro. If
er(0) =71 +1, ef(1) = ry then consider the vertex v; such that g(v,_1) = g(v;) = 3 and
g(viz1) = 1. Relabel the vertex v; and v, by 1 and 3 respectively. Then e,(0) = ry and
eg(l) =ro+ 1. Now e,(0) = ep(1) =r; +ro+ 1. If 4(0) = r; and ef(1) = r; + 1 then
en(0) =ep(1) =ry +ry+ 1.

Subcase 2b. n =1 (mod 3).

Let n = 3ty + 1. Here v,(2) = t2 + 1, vy(1) = v4(3) = to. This implies vj,(1) = v,(3) =
ti+te, vp(2) =ti+t2+1. Ifn—1 =0 (mod 2) then n—1 = 2ry. Here e,(0) = ¢e,(1) = 5.
Therefore e;,(0) =r; +ro+ 1, ex(1) = r1 + 19 or €,(0) =11 + 19, (1) =71 +1r9 + 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here ¢,(0) = 7o + 1 and e,(1) = ro. If
er(0) =71 +1, ef(1) = ry then consider the vertex v; such that g(v,_;) = g(v;) = 3 and
g(viz1) = 1. Relabel the vertex v; and v, by 1 and 3 respectively. Then e,(0) = ry and
eg(l) =ro+ 1. Now e,(0) = ep(1) =r; +ro+ 1. If 4(0) = r; and ef(1) = r; + 1 then
en(0) =en(1) =r1 +ry+ 1.

Subcase 2c. n =2 (mod 3).

Let n = 3ty + 2. Here v,(2) = v4(3) = to + 1, vy(1) = to. This implies vj,(2) = v,(3) =
ti+ta+1, vp(1) =t1+t2. fn—1=0 (mod 2) then n—1 = 2ry. Here e,(0) = ¢e,(1) = 5.
Therefore e;,(0) =r; +ro+ 1, ex(1) = r1 + 19 or €,(0) =11 + 19, ex(1) =71 +r2 + 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here ¢,(0) = 7o+ 1 and e,(1) = ry. If
er(0) =r1 +1, ef(1) = ry then consider the vertex v; such that g(v,_;) = g(v;) = 3 and
g(viy1) = 1. Relabel the vertex v; and v, by 1 and 3 respectively. Then e,(0) = ry and
eg(l) =r2+ 1. Now e,(0) = ep(1) =r; +ro+ 1. If 4(0) = r; and ef(1) = r; + 1 then
en(0) =ep(l) =1 + 79 + 1.

Case 3. p=1 (mod 3) and ¢ =0 (mod 2).

Let p = 3t; + 1 and ¢ = 2ry. In this case vy(1) = v4(2) = t1, vr(3) = t1 + 1 or vp(1) =
vp(3) =t1, vp(2) =ti + 1L or vs(2) = vp(3) =t1, vp(1) =t; + 1 and e(0) = ey(1) = ry.
Subcase 3a. n =0 (mod 3).

Let n = 3ty. Here v,(1) = v4(2) = v,(3) = to. This implies v, (1) = vx(2) = t1 + to,
vp(3) = ti+ta+1or vp(l) = vp(3) = t1 +to, vp(2) =t +ta+ 1 or vp(2) = vu(3) = t1 +ta,
vp(l) =t +t2+1. If n—1 =0 (mod 2) then n — 1 = 2r,. Here e4(0) = ey4(1) = ro.
Therefore e,(0) = ep(1) =11 + r9.

If n—1=1 (mod 2) then put n —1 = 2ry, + 1. Here €,(0) =7, + 1 and e,(1) = r2. So
en(0)=ri+r+1, ex(1) =11 + 1o

Subcase 3b. n =1 (mod 3).

Let n = 3ty + 1. Here v,(2) = to2 + 1, vy,(1) = v,(3) = ta. Then i) vy(1) = t; + to,
vp(2) = vp(3) =t +ta + 1 oorii) va(2) = t1 +t2 + 2, vp(l) = va(3) = 1 + to or iii)
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Uh(g) = tl + tg, Uh(l) = Uh(Q) = tl + tg + 1.

If n—1=0 (mod 2) then n — 1 = 2ry. Here €,(0) = e,(1) = ry. Therefore e,(0) =
en(l) =ry +ro.

If n—1=1 (mod 2) then put n — 1 = 2r, + 1. Here ¢,(0) = r5 + 1 and e,(1) = r5. So
en(0) =ri+ra+1, ep(l) =1 + 1o

For the case (ii), we consider the vertex v; such that g(v;—;) = 2 and g(v;) = 3. Now,
relabel the vertex v;_; by 3. Then v,(1) = v4(2) = t5 and v,(3) = t2 + 1. Hence
vp(1) =t; +to, vp(2) = vp(3) =t +ta + 1 and e,(0) =1 + 12+ 1, ep(1) = r1 + 1.
Subcase 3c. n =2 (mod 3).

Let n = 3ty + 2. Here v,(1) = ta, v4(2) = v4(3) = to + 1. Then i) v,(1) = t; + to,
vp(2) =t +ta+ 1, vp(3) =ty +ta+ 2 or il) vu(l) = ¢t + ta, va(2) =t + 2 + 2,
vp(3) =t1 +ta+ 1 oriii) vp(l) = vp(2) = vp(3) =t + 2 + 1.

If n—1=0 (mod 2) then n — 1 = 2ry. Here ¢4(0) = e4(1) = r5. Therefore e,(0) =
en(l) =ry +ro.

If n—1=1 (mod 2) then put n —1 = 2ry + 1. Here €,(0) =7, + 1 and e,(1) = r2. So
en(0)=ri+r+1, ep(1) =11 + 1o

For the case (i), we consider the vertex v; such that g(v;_1) =
Now, relabel the vertex v; by 1. Then v, (1) = v,(2) = vu(3)
condition is not affected.

g(vi1) =1 and g(v;) = 3.
=11+t + 1 and the edge

Now we consider the case (ii). Here we interchange the labels of the vertices with labels
2 and 3 in P, then proceed as above, we have the same case.

Case 4. p=1 (mod 3) and ¢ =1 (mod 2).

Let p = 3t; + 1 and ¢ = 2y + 1. In this case v;(2) = v4(3) = t1, vp(l) = t; +1 or
vr(l) =v(3) =t1, vp(2) =t1+1orvp(l) = vs(2) =t1, v4(3) =t1+1 and e;(0) = r; + 1,
er(1) =ryoref(0) =7y, ef(1) =7 + 1.

Subcase 4a. n =0 (mod 3).

Let n = 3ty. Here vy(1) = v,(2) = vy4(3) = t5. This implies v,(2) = vp(3) = t1 + to,
vp(l) =t +ta+1or vp(1) = vp(3) = t1 +t2, va(2) =t +ta+ 1 or vp(1) = v, (2) = ¢ + 1o,
vp(3) =t +ta+1. If n—1=0 (mod 2) then n — 1 = 2ry. Here e4(0) = ey4(1) = ro.
Therefore e;,(0) =r; +ro+ 1, ex(1) = r1 + 19 or €,(0) =11 + 19, (1) =71 +1r2 + 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here e4(0) = ro + 1 and e (1) = ro. If
er(0) =11, ef(1) =ry + 1 then e,(0) =ep(1) = +ro+ 1. Ifef(0) = + 1, ep(1) =14
then consider the vertex v; such that g(v;_1) = g(v;) = 3, g(vi11) = 1. Note that v, is
labeled by 1. Now interchange the labels of v; and v,,. Then e,(0) = e,(1) =r; +ro + 1.
Subcase 4b. n =1 (mod 3).

Let n = 3ty + 1. Here v,(2) = t2 + 1, vy(1) = v4(3) = to. Then i) v,(3) = t; + to,
vp(2) = vp(3) =t +te + 1 or ii) va(1) = vu(3) = t1 + to, Vu(2) = t1 + t2 + 2 or iii)
vp(1l) =t + to, vp(2) = vp(3) =t + 1o + 1.

Consider the case (ii). In this case, we find a vertex v; such that g(v;—1) = g(v;) = 2,
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g(vit1) = g(viy2) = 3. Now assign the label 3 to the vertex v;. Now w,(1) = t; + to,
Uh(2) = Uh(g) = tl —|— tg —f- 1

If n—1=0 (mod 2) then n — 1 = 2ry. Here ¢,(0) = e4(1) = ry. Therefore e,(0) =
r1+re+ 1, ep(1) =71 +ro0r e,(0) =1y + 19, ep(1) =11 + 19 + 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here €,(0) =3 + 1, €,(1) = ry. Suppose
er(0) =ry, ef(l) =r1 + 1 then ep(0) =ep(l) =r +ro+ 1. If e (0) =71 + 1, ep(1) =14
then consider the vertex v; such that f(v;) = f(vi—1) = 3, f(vit1) = 1. Note that v, is
labeled by 1. Now interchange the labels of v; and v,, then e,(0) = e, (1) =r; + 79 + 1.
Subcase 4c. n =2 (mod 3).

Let n = 3ty 4+ 2. Here vy(1) = t2, v4(2) = v4(3) = t2 + 1. Then i) v, (1) = vu(2) = v,(3) =
ti+to+1oril) vy(1) =t +to, vpa(2) = t1 +ta+2, vp(3) =ty +ta+ 1 oriil) vy (1) = t; + 1o,
vp(2) =t +ta+ 1, vp(3) =t1 + 12 + 3.

If n—1=0 (mod2) then n — 1 = 2ry. Here ¢4(0) = e4(1) = ry. Therefore e,(0) =
r1+re+ 1, ep(1) =71 +ro0r e,(0) =1y + 19, (1) =11 + 19+ 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here ¢,(0) =7, + 1 and e,4(1) = ry. For
the edge conditions of the labeling h we proceed as in subcase 4b.

For the case (ii), relabel the vertices with the label 3 by 2 and vice versa. Let the new
labeling be h'. Then Consider the vertex v; such that h'(v;—1) = h'(v;) = 2, K (vit1) =
h'(vi12) = 2. Now, relabel the vertex v; o by 1. Clearly this vertex labeling b’ satisfy the
vertex and edge conditions.

The same case may be arised for the case (iii) when without interchanging the labels 3
and 2.

Case 5. p=2 (mod 3) and ¢ =0 (mod 2).

Let p = 3t; + 2 and ¢ = 2ry. In this case vy(1) = v5(2) = t1 + 1, v(3) = t; or vp(1) =
vr(3) =t + 1, vp(2) =t1 or vy(2) = vp(3) =t1 + 1, vy(1) =t and ef(0) = ef(l) = ry.
Subcase 5a. n =0 (mod 3).

Let n = 3ty. Here vy(1) = v4(2) = v,(3) = to. This implies v;,(1) = vp(2) = t; +t2 + 1,
vp(3) = ti+ta or vp(l) = vp(3) =ti +ta+ 1, vp(2) =t +t2 or v (2) = vi(3) =ty +ta + 1,
vp(1) =t +1t5. Ifn—1=0 (mod 2) then n—1 = 2ry. Here e,(0) = e,4(1) = r5. Therefore
en(0) = en(1) = ry + ro.

If n—1=1 (mod 2) then put n —1 = 2ry + 1. Here €,(0) =7, + 1 and e,(1) = r2. So
en(0) =ri+r+1, ep(l) =r + 9.

Subcase 5b. n =1 (mod 3).

Let n = 3ty + 1. Here vy(2) = t3 + 1, vy(1) = v4(3) = t5. Then i) vy(1) = t; + 5 + 1,
vp(2) = t1 +ta + 2, vp(3) =ty +to or ii) vu(l) = va(2) = vp(3) = t1 + t2 + 1 or iii)
vp(1) =t +to, vp(2) =t1 +ta+ 2, vu(3) =t +to + 1.

For the case (i), we consider the vertex v; such that g(v;—1) = g(v;) = 2 and g(vi41) =
g(vis2) = 3. Now, relabel the vertex v; by 3. Then v, (1) = v,(2) = vp(3) = t1 + t2 + 1.
Consider the case (iii). Here relabel the vertices with the label 3 by 2 and vice versa.
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Let the new labeling be h'. Then consider the vertex v; such that h'(v;_1) =
and ' (viy1) = 1, A/ (viy2) = 2. Now relabel the vertex v; 1o by 1. Then v/ (1) =
’Uh/(?)) =t +to+ 1.

If n—1=0 (mod 2) then n — 1 = 2ry. Here ¢4(0) = e4(1) = ry. Therefore e,(0) =
en(l) =ry + .

If n—1=1 (mod 2) then put n —1 = 2ry + 1. Here €,(0) = 7, + 1 and e,(1) = ry. So
en(0) =ri+ra+1, ep(l) =r + 9.

Subcase 5¢c. n =2 (mod 3).

Let n = 3ty + 2. Here vy(1) = t2, v,(2) = v,(3) = ta + 1. Then i) v,(2) = t1 + t2 + 2,
vp(1) = vp(3) = t1 +ta + 1 orii) vp(l) = vp(2) = t; +to + 1, va(3) = t1 + t2 + 2 or iii)
Uh(l) = tl + tg, Uh(Q) = Uh(3) = tl + tg + 2.

For the case (iii), we consider the vertex v; such that g(v;—1) = g(v;) = 3, g(vit1) =1
and g(viy2) = 3. Now, relabel the vertex v;1o by 1. Then v,(1) = v,(3) = t1 + to + 1,
vp(2) =t + ta + 2.

If n—1=0 (mod 2) then n — 1 = 2ry. Here €,(0) = e,(1) = ry. Therefore e,(0) =
en(l) =r +ro.

If n—1=1 (mod 2) then put n —1 = 2ry + 1. Here €,(0) =7, + 1 and e,(1) = r2. So
en(0) =ri+r+1, ep(l) =r + 7o

Case 6. p=2 (mod 3) and ¢ =1 (mod 2).

Let p = 3t; + 2 and ¢ = 2r; + 1. In this case vp(l) = vp(2) = t1 + 1, v4,(3) = 4
or vp(l) = vp(3) = t1 + 1, vp(2) = t1 or vp(2) = vs(3) = t1 + 1, ve(1) = t;3. Also
er(0)=r1+1,ep(l) =7y 0ref(0) =11, ep(l) =7 + 1.

Subcase 6a. n =0 (mod 3).

Let n = 3ty. Here vy(1) = vy(2) = v,(3) = to. This implies vp(1) = v5(2) = t1 +t2 + 1,
vp(3) =ti+taor vp(l) = vp(3) =ti+ta+ 1, vp(2) =t +t or v(2) = va(3) =ty + 2+ 1,
vp(l) =t +15. If n—1=0 (mod 2) then n—1 = 2ry. Here e,(0) = e,4(1) = ry. Therefore
en(0)=ri+mr+1,e,(l) =ry +ry0ren(0) =11 + 719, ep(1) =11 + 19+ 1.

If n—1=1 (mod 2) then put n — 1 = 2, + 1. Here ¢,(0) = r; + 1 and e,(1) = ry. So
en(0) =ep(l) =r +ra+ 1, ep(l) =ry + 19+ 2, e5(1) = r1 + r5. Now interchange the
labels of vy and v,,. Then e,(0) = en(1) =r; + 12+ 1.

Subcase 6b. n =1 (mod 3).

Let n = 3ty + 1. Here vy(2) = to + 1, vy(1) = v4(3) = to. Then i) vp(1) = t1 +t5 + 1,
vp(2) =t +ta 4+ 2, vp(3) = t1 + 3 or ii) va(l) = vu(2) = vu(3) = t1 + t2 + 1 or iii)
vp(1) =t +tg, vp(2) =t1 +ta+ 2, vu(3) =t + to + 1.

Consider the case (i). In this case, we consider the vertex v; such that g(v;—1) = g(v;) = 2,

W (vi) = 2
o (2) =

g(vit1) = g(vige) = 3. Now assign the label 3 to the vertex v;. Now wvy(1) = vp(2) =

vp(3) = t1 + to + 1. Consider the case (ii

consider the vertex v; such that g(v;—1) = g(v;) = 2, g(vi11) = 1, g(viy2) = 2. Now relabel
)=vn(3) =11+t + 1.

i). Here interchange the labels 3 and 2. Now

the vertex v;12 by 1. Then v, (1) = vy(2



52 R. Ponraj, / Journal of Algorithms and Computation 48 (2016) PP. 45 - 55

If n—1=0 (mod 2) then n — 1 = 2ry. Here €,(0) = e,(1) = ry. Therefore e,(0) =
ri4+ra+ 1, ex(1) =1 +r9 or ep(0) =1y + 179, ep(l) =71 + 19+ 1.

If n—1=1 (mod 2) then put n — 1 = 2ry + 1. Here €,(0) = ro + 1, €4(1) = 72. Then
en(0)=ri+ro+2,e5(1) =r; +rgor ey (0) =ep(l) =r1 + 19+ 1. If €,(0) =11 + 19+ 2,
en(1) = 11 + ro then interchange the labels of v; and v, then e,(0) = e, (1) = r; + 72 + 1.
Subcase 6¢. n =2 (mod 3).

Let n = 3ty3+2. Here v,(1) = t3, v4(2) = v4(3) = to+1. Then i) vy(1) = vu(3) = t1+t2+1,
vp(2) = ti+ta+2orii) vp(l) = vp(2) = ti+ta+ 1, vp(3) = t1+ta+2 or iii) vu(1) = ¢+,
vp(2) = vp(3) =t + Lo + 2.

For the case (iii), we consider the vertex v; such that g(v;_1) = g(v;) = 3, g(viy1) = 1,
g(viza) = 3. Now, relabel the vertex v;12 by 1. Then vy(1) = vp(3) = t; + t2 + 1,
vp(2) =t + 1o + 2.

If n—1=0 (mod 2) then n — 1 = 2ry. Here ¢4(0) = e4(1) = ry. Therefore e,(0) =
r1+re+ 1, ep(1) =11 +ro0r e,(0) =1y + 19, ep(1) =11 + 79+ 1.

Ifn—1=1 (mod 2) then put n —1 = 2ry + 1. Here ¢,(0) = ro+1 and e,(1) = r5. Then
en(0) =en(l) =ri+ra+1orey,(0) =ry +re+2, en(l) = r; + ro. Now interchange the
labels of the vertices v, and v,,. Then e,(0) = en(1) = r1 + 19 + 1.

Thus G U P, is 3-prime cordial if n > 12. O

Next we show that the splitting graph of a star is not a 3-prime cordial graph. Let
V(S (K1) = {u,v,u;,v;: 1 <i<n}and E(S'(Ky,)) = {uu,;, vv;, uv; : 1 <i < n}.

Theorem 3.2. S'(K;,,) is not 3-prime cordial.

Proof. Suppose there exists a 3-prime cordial labeling f, then we have the following
possible cases.

Case 1. f(u) = f(v) = 2.

Subcase la. n =0 (mod 3).

Let n = 3t. Then p = 6t + 2 and ¢ = 9¢. Here we have the following three cases:
(a) vp(1) = vp(2) = 2t + 1, vp(3) = 2t. (b) ve(l) = v4(3) = 2t + 1, vy(2) = 2t
(c) vf(2) = vp(3) = 2t + 1, vy(1) = 2t. Consider the case (a) and (c). In this case
er(0) < 4t—2, a contradiction. Consider the case (b). Here ef(0) < 4t—4, a contradiction.
Subcase 1b. n =1 (mod 3).

Let n = 3t +1. Then p = 6t + 4 and ¢ = 9¢ + 3. In this case we have the following
three cases: (a) vy(1) = vp(2) = 2t + 1, vp(3) = 2t + 2. (b) vs(1) = vp(3) = 2t + 1,
vp(2) =2t 4+ 2. (c) vp(2) = vp(3) =2t + 1, vp(1) = 2t + 2. Consider the case (a) and (c).
In this case ef(0) < 4t — 2, a contradiction. Consider the case (b). Here e;(0) < 4¢, a
contradiction.

Subcase 1c. n =2 (mod 3).

Let n = 3t + 2. Then p = 6t + 6 and ¢ = 9t + 6. Here vy(1) = v4(2) = v4(3) = 2t + 2.
But e;(0) < 4¢, a contradiction.
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Case 2. f(u) = f(v) = 3.

Similar to case 1.

Case 3. f(u) = f(v) =1

Similar to case 1.

Case 4. f(u)=2, f(u)=1or f(u) =1, f(v)=2.

Subcase 4a. n =0 (mod 3).

We consider the three cases as given in subcase la. For the cases (a) and (c), we have
er(0) < 2t — 1, a contradiction. If we consider the case (b), we get e;(0) < 2t — 2, a
contradiction.

Subcase 4b. n =1 (mod 3).

Her also we have three cases as in subcase 1b. First we consider the cases (a) and (c).
Here e;(0) < 2t — 1, a contradiction. For the case (b), we get ef(0) < 2¢, a contradiction.
Subcase 4c. n =2 (mod 3).

As in subcase 1c, we have vy(1) = v4(2) = v4(3) = 2t+2. But e;(0) < 2t, a contradiction.
Case 5. f(u)=3, f(v)=1or f(u) =1, f(v)=3.

Similar to case 4.

Case 6. f(u) =2, f(v)=3or f(u) =3, f(v)=2.

Subcase 6a. n =0 (mod 3).

Consider the three cases given in subcase la. For the cases (a) and (b), we have ef(0) <
4t — 1, and for the case (b), we get ef(0) < 4t, both gives a contradiction to a 3-prime
cordial labeling.

Subcase 6b. n =1 (mod 3).

In this case we consider the three cases given in subcase 1b. If we consider the cases (a)
and (b), we have ef(0) < 4t + 1, and for the case (b), we get e;(0) < 4¢, a contradiction.
Subcase 6¢. n =2 (mod 3).

As in subcase lc, we have vp(1) = vs(2) = vp(3) = 2t + 2. Here e;(0) < 4t + 2, a
contradiction.

Hence the splitting graph of a star is not a 3-prime cordial graph. O

Theorem 3.3. Let G be a graph obtained from the star K, by identifying each pendent
vertex to the central vertex of the star Ki,,. Then G is 3-prime cordial.

Proof. Let V(K1,) = {u,u; : 1 < i < n} and E(K;,) = {uw; : 1 < i < n}. Let

the vertex set of the i K, be {'Ui,vg :1 <i<mn1<j<m} and the edge set be
{vw] 11 <i<n,1<j<m}. Identify u; with v;. It is obvious that the graph G has
mn +n + 1 vertices and mn + n edges. Assign the label 2 to the vertex u. We now move

to the first star K ,,. Assign the label 2 to the vertex v;. Then assign the label 2 to

the vertices vi,vl,... etc, until we have used (%’”W 2’s as the vertex labels. If the

mn+n+1
3

to the vertex vy. Then assign the label 2 to the vertices v}, v3, ... etc. If the number of

used 2’s is less than { W then we move to the next star K ,. Assign the label 1
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vertices labeled with 2 is (%"HW then stop. Otherwise, we move to the next step and
countinuing as in above. Suppose the process is stop in the it star, then assign 3 to the
unlabeled pendent vertices of the i star. We now move to (i + 1) star. Assign 3 to the
central vertex. Next assign 3 to the pendent pendent vertices of the (i + 1) star. Each
time count the value of e;(0). If it is [“™2%] then assign 1 to the remaining vertices of
the i'" star. Otherwise, assign 1 to the pendent vertices. This process is repeated until

we have (%ﬂﬂ edges with label 0.
Assign the label 1 to the central vertex of the non-labeled stars then move to its pendent
veritces corresponding to it and 1 to the pendent vertices. Count the value of vy(1). If it
is L%"HJ then stop. Finally assign 3 to the non-labeled vertices.

It is easy to verify that this vertex labeling is a 3-prime cordial labeling. U

Jelly fish graphs J(m,n) obtained from a cycle Cy : uvzyu by joining x and y with an
edge and appending m pendent edges to u and n pendent edges to v.

Theorem 3.4. The jelly fish J(m,n) is 3-prime cordial if 10m > n + 2.

Proof. Let the vertex set of J(m,n) be {u,v,z,y,u;,v; : 1 <i<m,1 <j<n} and the
edge set be {uu;, vv;, uzr, zv,uy,yv,zy : 1 < i < m,1 < j < n}. We give the labeling
f to the vertices of J(m,n) as follows: Assign the label 2 to the vertices u,z,y. Then
assign the label 2 to all the vertices u; (1 < i < n). Then assign the label 3 to the vertex
v. Next assign the label 3 to the vertices v; (1 << (%’”ﬂ — 1). Next assign 1 to the
vertices v;,_; (0 <1< L%”HJ) Finally, assign the label 2 to the non-labeled vertices
v;. We now count the edges with label 0 and 1. If the number of edges with label 0 is
2 more than the number of edges labeled with 1, then we relabel the vertices u; and v;.
Clearly, thus the relabeled graph J(m,n) is 3-prime cordial; otherwise f is automatically
a 3-prime cordial labeling. O
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