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ABSTRACT ARTICLE INFO

A special class of cubic graphs are the cycle permuta-

tion graphs. A cycle permutation graph Pn(α) is de-

fined by taking two vertex-disjoint cycles on n vertices

and adding a matching between the vertices of the two

cycles.

In this paper we determine a good upper bound for

tenacity of cycle permutation graphs.
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1 Introduction

We consider only finite undirected graphs without loops and multiple edges. Our ter-

minology will be standard except as indicated; a good reference for any undefined terms

is [1]. Throughout the paper G = (V,E) will denote a graph with vertex set V (G), edge

set E(G). The minimum degree δ(G), the maximum degree ∆(G), connectivity κ(G), the

independence number β(G), the number of components ω(G) and the toughness τ(G). If

no ambiguity is possible, the symbols will be used without reference to G. A cut-set of G
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is a proper subset S of V (G) such that ω(G− S) > 1. The toughness of a graph G was

introduced by Chvátal, [3], where he observed the relationships between this parameter

and the existence of Hamiltonian cycles in the given graph, and several results regarding

this invariant were obtained. The original approach to toughness, τ(G), as follows. A

connected graph G is called τ -tough if τω(G− A) ≤| A | for any subset A of V (G) with

ω(G− A) > 1.

A set S ⊂ V (G) is said to be a τ -set of G if τ(G) = |S|
ω(G−S)

.

The concept of graph tenacity was introduced by Cozzens, Moazzami and Stueckle in

[5, 6], as a measure of network vulnerability and reliability. Conceptually graph vulner-

ability relates to the study of graph intactness when some of its elements are removed.

The motivation for studying vulnerability measures is derived from design and analysis of

networks under hostile environment. Graph tenacity has been an active area of research

since the concept was introduced in 1992. Cozzens et al. introduced two measures of net-

work vulnerability termed the tenacity, T (G), and the Mix-tenacity, Tm(G), of a graph.

The tenacity T (G) of a graph G is defined as

T (G) = min
S⊂V (G)

{

|S|+m(G− S)

ω(G− S)

}

where m(G − S) denotes the order (the number of vertices) of a largest component of

G− S and ω(G− S) is the number of components of G− S. A set S ⊂ V (G) is said to

be a T -set of G if T (G) = |S|+m(G−S)
ω(G−S)

.

The Mix-tenacity Tm of a graph G is defined as

Tm = min
S⊂E(G)

{

|S|+m(G− S)

ω(G− S)

}

where m(G − S) denotes the order (the number of vertices) of a largest component of

G−S and ω(G−S) is the number of components of G−S. we called this parameter Mix-

tenacity. T (G) and Tm(G) turn out to have interesting properties. After the pioneering

work of Cozzens, Moazzami, and Stueckle several groups of researchers have investigated

tenacity, and related problems.

Permutation graphs were introduced by Chartrand and Harary [4]. For a labeled graph,

G with V (G) = {1, 2, · · · , n}, and a permutation α in symmetric group Sn, the α-

permutation graph, PG(α), is a graph with two disjoint copies of G, Ga = (Va, Ea) and

Gb = (Vb, Eb), with Vk = {k1, k2, · · · , kn} for k = {a, b}, and with the edges (ai, bα(i)), for
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1 ≤ i ≤ n. If G is an n-cycle, labeled consecutively around the cycle, then Pn(α) = PCn
(α)

is a cycle permutation graph. The copy of Cn labeled a1, a2, · · · , an will be called the outer

cycle, the copy of Cn labeled b1, b2, · · · , bn will be called the inner cycle, and the edges of

the form (ai, bα(i)) will be called permutation edges (This is the same definition used in

[10]). The permutation cycle graphs are a family of cubic graphs.

Figure 1: P5(1, 3, 5, 2, 4), Petersen Graph

For α = (1, 3, 5, 2, 4), Fig.[1] shows P5(α) that is Petersen graph.

Now, we list some known results on toughness and tenacity.

Proposition 1. [3, 8] For a non-complete graph G

κ(G)

∆(G)
≤ τ(G) ≤

κ(G)

2
.

Proposition 2. [5] For a non-complete graph G

τ(G) < T (G).

Piazza, Ringeisen and Stueckle in [9] conjectured that a permutation cycle graph has

τ ≤ 4/3. Goddard in [7] was very close to prove that this conjecture is true.

Proposition 3. [7] Let G be a cycle permutation graph on 2n vertices. Then

τ











≤ 4/3 n ≡ 0, 1 mod 4

< 4/3 n ≡ 2 mod 4

≤ 4/3 + 4/(9n− 3) n ≡ 3 mod 4

2 Upper Bound

In this section, we use a special vertex coloring for separate vertices into some independent

sets. Consider the outer cycle CO is a1a2 · · · ana1 in clockwise and the inner cycle CI is
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b1b2 · · · bnb1 in clockwise.

For the outer cycle, assume {a1, a3, · · · } are colored with black and {a2, a4, · · · } are col-

ored with white, now if n is an even, an will be white otherwise an is colored with gray.

For the inner cycle, suppose α(n) = m, so {bm+1, bm+3, bm+5, · · · } are colored with black

and {bm+2, bm+4, bm+6, · · · } are colored with white and if n is an odd so bm is colored with

gray otherwise bm is white.

Now we can separate all vertices of Pn(α) into nine subsets that eight of them are inde-

pendent sets. Abb is included all black vertices of outer cycle that they are connected

to black vertices of inner cycle, Abw is a subset of vertices of outer cycle that they are

black themselves and connected to white vertices of inner cycle. Bbw is included all

white vertices of inner cycle that they are connected to black vertices of outer cycle.

We can use these definitions same as above to declare Awb, Aww, Bwb, Bww and Bbb and if

n is an odd then D = {an, bα(n)} otherwise D = ∅.

Example 4. For n = 10 and α = (3, 9, 5, 4, 1, 2, 6, 8, 7, 10), in P10(α) (Fig.2a) we have:

Abb = {a1, a3, a5, a9} , Aww = {a4, a6, a8, a10} ,Abw = {a7} , Awb = {a2}

Bbb = {b1, b3, b5, b7} , Bww = {b2, b4, b8, b10} ,Bbw = {b6} , Bwb = {b9} .

D = ∅.

For n = 11 and α = (9, 4, 2, 5, 6, 1, 8, 10, 3, 7, 11), in P11(α) (Fig. 2b) we have:

Abb = {a1, a9} , Aww = {a2, a8} ,Abw = {a3, a5, a7} , Awb = {a4, a6, a10}

Bbb = {b3, b9} , Bww = {b4, b10} ,Bbw = {b2, b6, b8} , Bwb = {b1, b5, b7}

D = {a11, b11} .

Figure 2: Permutation cycle graphs
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Lemma 5. Let Pn(α) be a cycle permutation graph with 2n vertices, then:

|Abb| = |Aww| = |Bbb| = |Bww|

|Abw| = |Awb| = |Bbw| = |Bwb|.

Proof. Consider, |Abb| = abb, |Abw| = abw, |Awb| = awb, |Aww| = aww, |Bbb| = bbb, |Bbw| =

bbw, |Bwb| = bwb, |Bww| = bww and |D| = d.

It is clear that abb = bbb, aww = bww, abw = bbw and awb = bwb.

Assume to the contrary and abb 6= aww. Without loss of generality, suppose that abb ≤

aww − 1. k = ⌊n/2⌋ so:

abb ≤ aww − 1

=⇒abw ≥ k − aww + 1 ( by abb + abw = k)

=⇒bbw ≥ k − aww + 1 ( by abw = bbw)

=⇒bww ≤ aww − 1 ( by abw + bww = k)

=⇒aww ≤ aww − 1 ( by bww = aww)

that is inconsistency, So the result is desired.

Consider S1 = Abb

⋃

Abw

⋃

Bww, S2 = Aww

⋃

Awb

⋃

Bbb, S3 = Bbw and S4 = Bwb. Notice,

if bbw ≥ bbb we exchange Bbb with Bbw in S1 and S3, Bww with Bwb in S2 and S4. We know

that S3 and S4 are independent sets. For Example 4 we have:

a) S1 = Abb

⋃

Abw

⋃

Bww = {a1, a3, a5, a9, a7, b2, b4, b8, b10}

S2 = Aww

⋃

Awb

⋃

Bbb = {a4, a6, a8, a10, a2, b1, b3, b5, b7}

S3 = Bbw = {b6} , S4 = Bwb = {b9} , S5 = ∅.

b) S1 = Abb

⋃

Abw

⋃

Bwb = {a1, a9, a3, a5, a7, b1, b5, b7}

S2 = Aww

⋃

Awb

⋃

Bbw = {a2, a8, a4, a6, a10, b2, b6, b8}

S3 = Bbb = {b3, b9} , S4 = Bww = {b4, b10} , S5 = {a11, b11}.

Lemma 6. The set S1 and S2 are independent sets.

Proof. It is clear that there are no edges between vertices of Abb and Abw. Furthermore

vertices of Bww are connected to white vertices of outer cycle that means Aww and Aww *
S1, so, we have the desired result. For S2, proof is the same.

Lemma 7. Every vertex of S3 has exactly one neighbor in S1.

Proof. At first, every vertex of S3 = Bbw has at least one neighbor on S1, because each

vertex of S3 must be connected to a black vertex of outer cycle and all black vertices of



42 D. Jelodar, / Journal of Algorithms and Computation 48 (2016) PP. 37 - 44

outer cycle are in S1 . Now we prove that it is only one and no more. According to the

definition, each vertex of S3 has two black neighbors in inner cycle that they are not in

S1, so the lemma is proved.

This proof can be extended to S2 and S4. By lemma above, for the cut set of S =

S2 ∪ S4 ∪ S5, the largest component will be m(Pn(α)) ≤ 2 and ω(Pn(α)− S) = |S1|.

Theorem 8. Let Pn(α) be a cycle permutation with 2n vertices and b = min(bbb, bbw),

then:

T (Pn(α)) ≤

{

n+2
n−b

if n is even,
n+3

n−b−1
if n is odd.

Proof. Now, to prove the theorem we start with even n, let the cut set is S = S2 ∪ S4,

then:

T (Pn(α) ≤
|S|+m(Pn(α)− S)

ω(Pn(α)− S)

≤
abb + abw + bww + bwb + 2

aww + awb + bbb
by m(Pn(α)− S) ≤ 2

≤
n + 2

n− b

For odd n, let the cut set is S = S2 ∪ S4 ∪ S5, so:

T (Pn(α) ≤
|S|+m(Pn(α)− S)

ω(Pn(α)− S)

≤
abb + abw + bww + bwb + |S5|+ 2

aww + awb + bbb
by m(Pn(α)− S) ≤ 2

≤
n + 3

n− b− 1

so the theorem is proved.

For example 4, T (P10(α)) ≤
12
9
and T (P11(α)) ≤

14
8
.

When the number of vertices goes to infinity, if b is small enough, so the tenacity value

close to 1+. We next investigate the sharpness of the bounds provided above if b is less

than or equal 1.

Theorem 9. The above theorem provide the close answer.

Proof. The graph G = Pn(α) is defined as follows. Let the cycle of C1 with n vertices

is a1a2 · · ·ana1 in clockwise as outer cycle and C2 with n vertices is b1b2 · · · bnb1 in clockwise

as inner cycle. At first, suppose n be an even, let the vertices {a1, a3, · · · , an−1, b1, b3, · · · , bn−1}
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are colored black and the other vertices are colored with white. For permutation edges,

suppose each vertex of outer cycle except two optional vertices with opposite color is

connected to just one of the vertices of inner cycle of opposite color, and the exceptional

outer cycle vertices are matched to the identical color vertices of the inner cycle. By

theorem [8], |S| = n, m(G− S) = 2 and ω(G− S) = n− 1 therefore T ≤ n+2
n−1

.

For odd number n, suppose the vertices {a1, a3, · · · , an−2, b1, b3, · · · , bn−2} are colored with

black and the vertices {a2, a4, · · · , an−1, b2, b4, · · · , bn−1} are colored with white, an and bn
are gray. For permutation edges, let each vertex of outer cycle is connected to just one of

the vertices of inner cycle of opposite color, and at last an is connected to bn. By theorem

[8], |S| = n+ 1, m(G− S) = 2 and ω(G− S) = n− 1 therefore T ≤ n+3
n−1

.

The second result has obtained is β(G) ≥ n − 1. On the other hand, by preposition [1]

for each cut set S, |S| ≥ ω(G− S) so β ≤ n. The independent number β 6= n, since the

graph G is not 3− regular bipartite graph. So let S is an T -set of G, ω(G− S) = ω and

m(G− S) = m:

T =
|S|+m

ω
≥

ω +m

ω

≥ 1 +
2

ω

≥ 1 +
2

β

=
n+ 1

n− 1

for n is an odd number, proof is the same, so:

n + 1

n− 1
≤ T ≤











n+ 2

n− 1
n is even

n+ 3

n− 1
n is odd
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