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ABSTRACT ARTICLE INFO

Many graph theoretical parameters have been used to

describe the vulnerability of communication networks,

including toughness, binding number, rate of disruption,

neighbor-connectivity, integrity, mean integrity, edge-

connectivity vector, l-connectivity and tenacity. In this

paper we discuss Integrity and its properties in vulner-

ability calculation. The integrity of a graph G, I(G), is

defined to be min(| S | +m(G − S)) where S ⊂ V (G)

and m(G − S) is the maximum order of the compo-

nents of G − S. Similarly the edge-integrity of G is

I ′(G) := min(| S | +m(G − S)) where now S ⊆ E(G).

Here and through the remaining sections, by an I-set

(with respect to some prescribed graph G) we will mean

a set S ⊂ V (G) for which I(G) =| S | +m(G− S). We

define an I ′-set similarly.

In this paper we show a lower bound on the edge-

integrity of graphs and present an algorithm for its com-

putation.
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1 Introduction

The concept of integrity of a graph G was introduced in [3] as a useful measure of the

”vulnerability” of G. If we think of the graph as modeling a network, the vulnerability

measures the resistance of the network to disruption of operation after the failure of

certain stations. In [3] Barefoot, Entringer and Swart compared integrity, connectivity,

binding number and toughness for several classes of graphs. Their results suggested that

integrity is well suited to measuring vulnerability in that it is best able to distinguish

between graphs that intuitively should have different measures of vulnerability. In [9] we

also compared these measures with a new invariant for graphs. We also in [10] showed

some interesting and new results.

We use the terminology of Bondy and Murty [4] for the most part; any exceptions will be

noted. In particular, we require our graphs to be simple, i.e., no loops or multiple edges

are permitted. Here ⌊x⌋ and ⌈x⌉ are the usual greatest integer and least integer functions,

respectively.

Computational complexity of integrity

Clark, Entringer, and Fellows [5] showed that the vertex integrity problem is NP-complete

but that for each fixed value of k it is decidable in time O(n2) whether an arbitrary graph

G of order n satisfies I(G) ≤ k. This last result is obtained by a simple application of the

powerful results of Robertson and Seymour on graph minors.

All graphs considered in [5] are simple, without loops or multiple edges. A simple graph H

is a minor of the simple graph G if H can be obtained from G by a sequence of operations

of the following two kinds:

(a) replace a graph by a subgraph of itself or

(b) contract an edge.

If the minor H of G satisfies H 6∼= G then H is a proper minor of G. Clark, Entringer and

Swart used the following result of Robertson and Seymour [14].

Theorem 1. (Robertson and Seymour). Let F be a minor-closed class of graphs such

that some planar graph is not in F . Then there is an algorithm to determine membership

of G = (V,E) in F with running time O(| V |2).
Consider the following decision problem.

VERTEX INTEGRITY
Input: A graph G = (V,E) and an integer k.

Question: Is I(G) ≤ k?

Theorem 2. VERTEX INTEGRITY is NP-complete, even for input restricted to planar

graphs.

Proof. The problem is clearly in NP since it is easy to verify, given S ⊆ V , that
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| S | +m(G− S) ≤ k. �

To show that VERTEX INTEGRITY is NP-hard we reduce from the following decision

problem which is known to be NP-complete [7].

VERTEX COVER
Input: A planar graph G = (V,E) and an integer k.

Question: Is there a set V ′ ⊆ V with | V ′ |≤ k such that every edge of G is incident

with some vertex of V ′?

Let | V |= n. We can assume k ≤ n − 3. (Indeed, by the four-color theorem, G has an

independent set of at least n
4
vertices and so a vertex cover with at most 3n

4
vertices.)

Given G and k, we describe how to compute in polynomial time a graph G′ and integer

k′ such that I(G′) ≤ k′ if and only if G has a vertex cover of cardinality at most k.

Let W denote the wheel with 2n− 2 spokes. The order of W is then 2n− 1. The graph

G′ is obtained from G adding to each vertex v of G an edge to all the rim vertices of a

different copy of W . Let k′ = 2n+ k. The graph G′ is planar, since G is planar.

Assume G has a vertex cover S ⊆ V with | S |≤ k. Since every edge of G is incident with

some vertex of S, G−S has no edges andm(G′−S) ≤ 2n. This implies I(G′) ≤ k+2n = k′.

Conversely, suppose I(G′) ≤ k′ = k+2n. Then, for some set S ′ ⊆ V ′, | S ′ | +m(G′−S ′) ≤
k + 2n. In particular, | S ′ |≤ k + 2n < 3n ,so some component C of G′ − S ′ has order at

least 2n−2. This, in turn, implies that | S ′ |≤ k+2 < n and so, in fact, some component

C of G′ − S ′ has order at least 2n, which implies | S ′ |≤ k.

If any component C of G′−S ′ contains two or more vertices of G (considered as a subgraph

of G′) then C has order at least 4n− k > 2n+ k, a contradiction. We may conclude that

G′−S ′ contains no edge of G. But this implies that G− (S ′∩V ) has no edges, i.e. S ′∩V

is a vertex cover of G of no more than k vertices. �

In contrast to this result, the next theorem shows that it is easy to decide whether an

arbitrary graph of order n has integrity at most k, for each fixed value of k.

Clark, Entringer and Fellows first showed that the class of graphs Gk = {G | I(G) ≤ k}
is closed under the minor ordering. We remark that this is not true for edge-integrity.

Theorem 3. For every positive integer k, it is decidable in time O(n2) whether an arbi-

trary graph G of order n satisfies I(G) ≤ k.

The principal subject of [6] is the computational complexity of vertex and edge integrity,

two ”trade-off” metrics of network vulnerability. It has previously been shown that for

each positive integer k, the family of graphs Gk = {G | I(G) ≤ k} is a lower ideal in the

partial ordering of graphs by minors [5]. This has the consequence that for each fixed

value of k, membership in Gk can be decided in time O(n2) for a graph of order n, by

the deep results of Robertson and Seymour [11,12,13,14]. From a practical perspective,

the small degree polynomial-time bound is somewhat deceptive. The algorithms are only
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proven to exist (the proof is nonconstructive) and even if known, they would involve

astronomical constants. It is an important open probem for many of the applications

of the Robertson-Seymour theorems to determine whether alternative and ”reasonable”

small-degree polynomial-time algorithms can be found [8]. In [6] Fellows and Stueckle

showed that this is indeed the case for both vertex and edge integrity. It is shown that for

each positive integer k, the family of finite graphs G′
k of graphs G with I ′(G) ≤ k is a lower

ideal in the partial ordering of graphs by immersions. Some information on the obstruction

sets for these families is obtained. It is shown that for every fixed positive integer k it is

decidable in time O(n) for an arbitrary graph G of order n whether I(G) ≤ k, and also

whether I ′(G) ≤ k. For variable k, the problem of determining whether I ′(G) is at most

k is shown to be NP-complete, complementing a similar previous result concerning I(G).

The picture of the computational complexity of the vulnerability metrics of vertex and

edge integrity appears now to be quite complete. For fixed k, the vertex integrity class

is closed in the minor ordering, and the edge integrity class is closed in the immersion

ordering. Thus encouraged to look for small degree polynomial-time algorithms, we have

seen that constructive algorithms with time bound O(n) having reasonable hidden con-

stants exponential in k are to be had, while for variable k both problems are NP- complete.

Some bounds for the Edge - Integrity of Trees

In this section we show a lower bound on the edge-integrity of graphs and present an

algorithm for its computation.

In [2] Bagga, Beineke, Pippert, Sedlmeyer and Lipman derived a new lower bound on the

edge-integrity of graphs, but most of their results concern trees. After showing several

bounds on the edge-integrity of trees they presented an algorithm for its computation,

along with a proof of the correctness of the algorithm.

The following result in [2] provides a new lower bound for I ′(G):

Theorem 4. If G is a graph with edge connectivity λ, then I ′(G) ≥ min{⌈
√
2nλ⌉, n}.

Let T be a tree, and let z denote the largest number of end-vertices adjacent to a vertex

in T . As expected, the results in this section are improvements on the bounds on the

edge-integrity of arbitrary graphs.

Theorem 5. If T is a tree with ∆(T ) ≥ n
2
, then I ′(T ) = ∆(T ) + 1.

Proof. Let v be a vertex of degree ∆(T ) = d in T . Assume that T − v consists of r

trivial components and s nontrivial components. Let S consist of the s edges joining v

to the nontrivial components, and assume that the largest of these components has order

n1. Thus n ≥ n1 +2(s− 1)+ r+1. Since d = r+ s and d ≥ n
2
, it follows that n1 ≤ r+1.

Therefore, the largest component of T−S has order r+1. Hence I ′(T ) ≤ s+r+1 = d+1.

By Theorem 3, I ′(T ) = d+ 1. �

The next two theorems in [2] provide information when the maximum degree is less than
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n
2
.

Theorem 6. If T is a tree with ∆(T ) < n
2
, then I ′(T ) ≤ ⌊n+3

2
⌋.

Theorem 7. Let n ≥ 5 and let d satisfy n
4
≤ d < n

2
. Then there exists a tree T having

order n, maximum degree ∆(T ) = d, and edge-integrity I ′(T ) = ⌊n+3
2
⌋.

An immediate consequence of the definition of edge-integrity is that for any vertex v,

I ′(T ) ≤ m(T − v) + dG(v). Under certain circumstances we get a similar lower bound

which is sometimes an improvement on Theorem 3, I ′(G) ≥ ∆(G) + 1.

Theorem 8. Let v be a vertex of a tree T with dG(v) = d. If the smallest component of

T − v has order t ≤ d+ 1, then I ′(T ) ≥ t + d.

Proof. Let S be any set of edges of T , and let s =| S | andm = m(T−S). By considering

cases, we will show that s+m ≥ t + d.

First assume s < d. Then in T −S at least d− s of the components of T − v are adjacent

to v and have no edge removed from them. Hence m ≥ 1 + (d− s)t ≥ t + d − s, so that

the desired inequality holds in this case.

Now assume s ≥ d. Suppose that the conclusion does not hold, so that s+m < t+ d and

hence t > m. Let h denote the number of edges at v which are in s. Then the component

of T −S which contains v has order at least d−h+1. Therefore, d−h+1 ≤ m < t+d−s,

so that s < d+ h since t− 1 ≤ d by hypothesis. Consequently, some component of T − v

contains no edge of s. Such a component is contained in a component of T −S, so m ≥ t.

This contradicts our supposition and completes the proof. �

It seems reasonable that further restrictions on the maximum degree should yield im-

proved bounds on the edge-integrity of trees. The next theorem gives an example for

∆(T ) = 3.

Theorem 9. If ∆(T ) = 3, then I ′(T ) ≤ 15⌈
√
2n⌉

8
.

Clearly, Theorem 5 gives the precise value of I ′(T ). The upper bound in Theorem 6 is

exact for paths with n ≤ 8, and there are trees with ∆ = 3 which achieve the upper bound

for each value of n ≤ 10. However, since the bound of Theorem 6 is linear and that of

Theorem 9 is O(n
1

2 ), Theorem 9 gives better bounds for large values of n (approximately

the same near n = 20 and strictly better for n ≥ 28). With fine-tuning, the bound of

Theorem 9 can probably be improved, and it would be interesting to know whether the

least upper bound is still O(n
1

2 ). Similar results can be obtained for other values of ∆,

but the amount of effort required to increase with the magnitude of ∆.

An algorithm for the computation of I ′(T )

It will be convenient to have the following additional piece of terminology: The pruned

tree of T , denoted prT , is the subtree of T that remains when all end-vertices of T are

deleted. The algorithm presented here employs several facts about the values of | S | and
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m which satisfy | S | +m(T − S) = I ′(T ):

1. If S is a minimal set achieving I ′, then S does not contain any end-edges, so only edges

from prT are candidates for membership in S.

2. Let z denote the largest number of end-vertices adjacent to a vertex in T . From the

above, for any minimal S achieving I ′(T ), m ≥ 1 + z.

3. Each upper bound on I ′ yields upper and lower bounds for s =| S | and m = m(T −S)

such that s +m = I ′(T ), as follows. Suppose B ≥ I ′(T ). Deleting s edges from T leaves

exactly s + 1 components. Since each of them has at most m vertices, (s + 1)m ≥ n.

Since m+ s ≤ B, m+ n
m
− 1 ≤ B. Then m is constrained to lie between the roots of the

quadratic equation m2 − (B + 1)m + n = 0. For convenience, denote the larger root by

upper(B).

The algorithm successively computes a minimal set S for each candidate form = m(T−S),

and returns the minimum among all the values m+ | S |. Given an upper bound M for

m(T −S), we select S by pruning T from the end-vertices inwards, cutting only when we

must. Notice that this procedure produces I ′(T ) and a specific S which achieves I ′(T ),

and also tells how expensive it is to achieve each M inside a specified range. The algo-

rithm as we present it is in ”implementation-free” form.

The Algorithm:

Step 1: {check for application of Theorem 6.} Compute ∆(T ). If ∆(T ) ≥ n
2
, return

I ′(T ) = 1 + ∆(T ) and STOP. Otherwise , set ESTIMATE to ⌈n
2
⌉+ 1.

Step 2: { compute the initial upper bound for m(T − S).} Compute the largest number

of end-vertices of a vertex z. Let M = z + 1.

Step 3: {Assign initial weights.} Assign weight 1 to each end-vertex. For every vertex v

in prT , if v is adjacent to r end-vertices and has degree r + 1, assign weight r + 1 to v.

Some vertices will have no weight. Every initial weight is less than or equal to M .

Step 4: {Construct S.} Let S = φ. Until every vertex in prT has been assigned a weight

w ≤ M , do the following:

Step A: Select an unweighted vertex v in prT such that all of its neighbors except

possibly one are weighted. Let w = {w1, · · · , wr} be the weights of the neighbors of v,

listed in non-increasing order. Let F = {ej} be the set of edges incident to v, listed in

the same order. Assign to v weight w(x) = w1 + · · ·+ wr + 1.

Step B: {Update S.} If w(v) ≥ M , select the smallest i so that w = wi+· · ·+wr+1 ≤
M . For each j < i add edge ej to S. Assign to v the new weight w(v) = w.

Step 5: {Check whether finished.} The construction of S determines m(T − S). Set

ESTIMATE equal to the minimum of ESTIMATE and | S | +m(T −S). Compute upper

(ESTIMATE), the maximum possible m for ESTIMATE. If M < upper(ESTIMATE),

set M to M + 1, reset the weighting of T to the initial weighting, and go back to Step 4.
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Otherwise return I ′(T ) = ESTIMATE and STOP.

Theorem 10. The algorithm is of complexity O(n3).

Proof. We use as a measure of the complexity the number of vertices that must be

examined to compute I ′(T ). Each vertex is examined once to establish n, ∆, z, and the

initial weighting. Then, for each value of M , each vertex in prT is weighted and whenever

it is necessary to add an edge to S, the neighbors of a vertex are searched to find the

maximum weighting.

For a given value of M we consider the two parts of the algorithm separately. Each vertex

in prT must be examined, which requires some number of steps less than n. The number

of searches is at most upper(ESTIMATE)−M ≤ n+3
2

−M , and the number of vertices

in each search is at most ∆ < n
2
. Therefore, for each value of M the number of vertices

examined is fewer than
(n+n+3

2
−M)n

2
< n2

2
.

Since M ranges from z + 1 to at most n+1
2
, the total complexity of the algorithm is at

most
n+1

2∑

M=2

n2

2
≤ n3

4
�

It is natural to ask for the order of an optimal algorithm. In particular, since many

parameters can be determined for trees in linear time, it is possible that a linear algorithm

exists.

This algorithm implemented in LISP. A tree is stored as a list of lists, one list for each

vertex in prT . The list for v looks like (v e(v) y1 · · · yk), where e(v) is the number of

end-vertices adjacent to v and the rest of the entries in the list are the neighbors of v in

prT .

Step 4 is performed by means of a queue, vertices being put on the queue when they are

ready to be weighted, that is, when all but at most one of their neighbors has a weight.

The algorithm as described makes one pass through Step 4 for each value of M . In general

several values of M must be checked. Further, every pass through Step 4 produces a

potentially better upper bound for I ′(T ), which in turn reduces the maximum potential

value for M that needs to be checked. Therefore, a compromise must be made between

choosing an M which might prove to be larger than needed, and choosing M ′s too close

together and therefore generating the same set S more than once. We can modify Step 5

in our implementation by selecting values for M according to the following heuristic:

1. Start with M = z + 3.

2. If m is achieved and S for m− 1 has not been computed, let M = m− 1.

3. Otherwise let M = upper(ESTIMATE)+m+1
2

.

This is still a crude heuristic. Better starting values for M are certainly possible. It might

be more clever to select something other than the middle of the unexpected range to jump

to. Of course none of these choices affects the worst case complexity of the algorithm.
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