



journal homepage: http://jac.ut.ac.ir

# 3-difference cordial labeling of some cycle related graphs

R. Ponraj,  $^{*1}$  and M.<br/>Maria Adaickalam $^{\dagger 2}$ 

<sup>1</sup>Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India. <sup>2</sup>Department of Mathematics, Kamarajar Government Arts College, Surandai-627859, India.

### ABSTRACT

Let G be a (p,q) graph. Let k be an integer with  $2 \leq k \leq p$  and f from V(G) to the set  $\{1, 2, \ldots, k\}$  be a map. For each edge uv, assign the label |f(u) - f(v)|. The function f is called a k-difference cordial labeling of G if  $|v_f(i) - v_f(j)| \leq 1$  and  $|e_f(0) - e_f(1)| \leq 1$ where  $v_f(x)$  denotes the number of vertices labelled with  $x (x \in \{1, 2, \ldots, k\}), e_f(1)$  and  $e_f(0)$  respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate the 3-difference cordial labeling of wheel, helms, flower graph, sunflower graph, lotus inside a circle, closed helm, and double wheel.

## ARTICLE INFO

Article history: Received 20, October 2015 Received in revised form 28, January 2016 Accepted 10, March 2016 Available online 10, April 2016

Keyword: Path, cycle, wheel, star.

AMS subject Classification: Primary 05C78,

<sup>\*</sup>Corresponding Author:R. Ponraj, Email:*ponrajmaths@gmail.com*; †E-mail: *mariaadaickalam@gmail.com* 

## 1 Introduction

Graphs considered here are finite and simple. Recently Ponraj, Maria Adaickalam and Kala [3] have introduced the k-difference cordial labeling of graphs. In [3], they investigate the k-difference cordial labeling behavior of star, m copies of star etc. Also they discussed the 3-difference cordial labeling behavior of path, cycle, complete graph, complete bipartite graph, star, bistar, comb, double comb, quadrilateral snake,  $C_4^{(t)}$ ,  $S(K_{1,n})$ ,  $S(B_{n,n})$ . In [4, 5], Ponraj and Maria Adaickalam studied the 3-difference cordial labeling behavior of union of graphs with the star, union of graphs with splitting graph of star, union of graphs with subdivided star, union of graphs with bistar,  $P_n \cup P_n$ ,  $(C_n \odot K_1) \cup (C_n \odot K_1)$ ,  $F_n \cup F_n$ ,  $mC_4$ ,  $K_{1,n} \odot K_2$ ,  $P_n \odot 3K_1$ , splitting graph of a star, double fan  $DF_n$  and some other graphs. In this paper we investigate 3-difference cordial labeling of wheel, helms, flower graph, sunflower graph, lotus inside a circle, closed helm, and double wheel. Terms not defined here follows from Harary [2] and Gallian [1].

## **2** 3-Difference cordial labeling

**Definition 2.1.** Let G be a (p,q) graph. Let f from V(G) to  $\{1, 2, \ldots, k\}$  be a map. For each edge uv, assign the label |f(u) - f(v)|. The map f is called a k-difference cordial labeling of G if  $|v_f(i) - v_f(j)| \leq 1$  and  $|e_f(0) - e_f(1)| \leq 1$  where  $v_f(x)$  denotes the number of vertices labelled with x,  $e_f(1)$  and  $e_f(0)$  denote the number of edges labelled with 1 and not labelled with 1, respectively. A graph with a k-difference cordial labeling is called a k-difference cordial graph.

**Theorem 2.1.** If  $n \equiv 0, 1 \pmod{3}$ , then the wheel  $W_n$  is 3-difference cordial.

Proof. Let n = 3t + r where  $0 \le r < 3$  and  $r \ne 2$ . Let  $W_n = C_n + K_1$  where  $C_n$  is the cycle  $u_1u_2 \ldots u_nu_1$  and  $V(K_1) = \{u\}$ . Assign the label 1 to the central vertex u. Then assign the labels 2,3,1 to the vertices  $u_1, u_2, u_3$  respectively. Then we assign the labels 2,3,1 to the vertices  $u_4, u_5, u_6$  resepctively. Continuing this way to assign the next six vertices and so on. Each time we have labeled three vertices. If r = 0 then we have labeled all the vertices. Otherwise, assign the label 2 to the last vertex. Note that in this process the vertex  $u_n$  received the label 1 or 2 according as  $n \equiv 0 \pmod{3}$  or  $n \equiv 1 \pmod{3}$ . Clearly  $e_f(0) = e_f(1) = n$  and the vertex condition is given in table 1.

| Nature of $n$         | $v_f(1)$          | $v_f(2)$        | $v_f(3)$        |
|-----------------------|-------------------|-----------------|-----------------|
| $n \equiv 0 \pmod{3}$ | $\frac{n}{3} + 1$ | $\frac{n}{3}$   | $\frac{n}{3}$   |
| $n \equiv 1 \pmod{3}$ | $\frac{n+2}{3}$   | $\frac{n+2}{3}$ | $\frac{n-1}{3}$ |

#### Table 1:

Hence f is a 3-difference cordial labeling.

Next we investigate the helm graph. The helm  $H_n$  is the graph obtained from the wheel by attaching the pendent edge at each vertex of the cycle  $C_n$ .

Theorem 2.2. Helms are 3-difference cordial.

Proof. Let  $W_n = C_n + K_1$  be the wheel where  $C_n$  is the cycle  $u_1 u_2 \dots u_n u_1$  and  $V(K_1) = \{u\}$ . Let  $V(H_n) = V(W_n) \cup \{v_i : 1 \le i \le n\}$  and  $E(W_n) \cup \{u_i v_i : 1 \le i \le n\}$ . Note that  $H_n$  has 2n + 1 vertices and 3n edges.

Case 1.  $n \equiv 0 \pmod{3}$ .

Subcase 1a.  $n \equiv 0 \pmod{6}$ .

Let n = 6t. Assign the labels 2,3,1,2,2,1 to the first six vertices  $u_1, u_2, u_3, u_4, u_5, u_6$  of the cycle  $C_n$ . Then assign the labels 2,3,1,2,2,1 to the next six vertices  $u_7, u_8 \dots u_{12}$ respectively. Proceeding like this, until we reach vertex  $u_n$ . Note that the vertex  $u_n$ received the label 1. Now our attention turn to the vertices  $v_i$   $(1 \le i \le n)$ . Assign the labels 2,3,1,3,3,1 to the pendent vertices  $v_1, v_2, v_3, v_4, v_5, v_6$  respectively. Then assign the labels 2,3,1,2,2,1 to the next six pendent vertices  $v_7, v_8 \dots v_{12}$  respectively. Continuing this way, until we reach the vertex  $v_n$ . It is easy to verify that the vertex  $v_n$  received the label 1. Finally assign the label 2 to the vertex u.

Subcase 1b.  $n \equiv 3 \pmod{6}$ .

As in subcase 1a, assign the label to the vertices  $u, u_i, v_i$   $(1 \le i \le n-3)$ . Finally assign the labels 2,3,1 and 2,3,1 to the vertices  $u_{n-2}, u_{n-1}, u_n$  and  $v_{n-2}, v_{n-1}, v_n$  respectively. We now give the edge and vertex condition of the labeling for subcase 1 and 2.  $v_f(1) = v_f(3) = \frac{2n}{3}$  and  $v_f(2) = \frac{2n}{3} + 1$ 

| Values of $n$         | $e_f(0)$         | $e_f(1)$         |
|-----------------------|------------------|------------------|
| $n \equiv 0 \pmod{6}$ | $\frac{3n}{2}$   | $\frac{3n}{2}$   |
| $n \equiv 3 \pmod{6}$ | $\frac{3n+1}{2}$ | $\frac{3n-1}{2}$ |

| Tal | ole | 2: |
|-----|-----|----|
|-----|-----|----|

Case 2.  $n \equiv 1 \pmod{3}$ .

Subcase 2a.  $n \equiv 4 \pmod{6}$ .

Fix the labels 2,2,3,3 to the vertices  $u_1, u_2, u_3, u_4$  respectively. Then assign the labels 2,1,3,2,2,3 to the next six vertices  $u_5, u_6 \dots u_{10}$  respectively. Assign the labels 2,1,3,2,2,3 to the next six vertices  $u_{11}, u_{12} \dots u_{16}$  respectively. Continuing this way assign the label to the next six vertices and so on. Next fix the labels 1,1,1,3 to the vertices  $v_1, v_2, v_3, v_4$  respectively. Then assign the labels 2,1,3,1,1,3 to the next six vertices  $v_5, v_6 \dots v_{10}$  respectively. Assign the labels 2,1,3,1,1,3 to the next six vertices  $v_{11}, v_{12} \dots v_{16}$  respectively. Continuing this way assign the label to the next six vertices  $v_{11}, v_{12} \dots v_{16}$  respectively. Continuing this way assign the label to the next six vertices and so on. Finally assign the label 2 to the vertex u. The vertex condition of this labeling is  $v_f(1) = v_f(2) = v_f(3) = \frac{2n+1}{3}$  and the edge condition is given in table 3.

#### Subcase 2b. $n \equiv 1 \pmod{6}$ .

As in subcase 2a, assign the label to the vertices  $u, u_i, v_i$   $(1 \le i \le n-3)$ . Finally assign the labels 2,1,3 and 2,1,3 to the vertices  $u_{n-2}, u_{n-1}, u_n$  and  $v_{n-2}, v_{n-1}, v_n$  respectively.

| Values of $n$         | $e_f(0)$         | $e_f(1)$         |
|-----------------------|------------------|------------------|
| $n \equiv 4 \pmod{6}$ | $\frac{3n}{2}$   | $\frac{3n}{2}$   |
| $n \equiv 1 \pmod{6}$ | $\frac{3n+1}{2}$ | $\frac{3n-1}{2}$ |

Table 3:

#### Case 3. $n \equiv 2 \pmod{3}$ .

Subcase 3a.  $n \equiv 5 \pmod{6}$ .

First fix the labels 1,3,2,2,3 to the vertices  $u_1, u_2, u_3, u_4, u_5$  respectively. Then assign the labels 2,3,1,2,2,3 to the next six vertices  $u_6, u_7 \dots u_{11}$  respectively. Then assign the labels 2,3,1,2,2,3 to the next six vertices of the cycle. Proceeding like this, assign the label to the next six vertices and so on. Clearly in this process the last vertex  $u_n$  received the label 3. Next fix the labels 2,1,1,1,3 to the vertices  $v_1, v_2, v_3, v_4, v_5$  respectively. Then assign the labels 2,3,1,1,1,3 to the next six vertices  $v_6, v_7 \dots v_{11}$  respectively and assign the labels 2,3,1,1,1,3 to the next six vertices. Continuing this way we assign the label to the next six vertices and so on. It is easy to verify that the last vertex  $v_n$  received the label 3. Finally assign the label 2 to the vertex u.

#### Subcase 3b. $n \equiv 2 \pmod{6}$ .

As in subcase 3a, assign the label to the vertices  $u, u_i, v_i$   $(1 \le i \le n-2)$ . Finally assign the labels 2,3 and 2,3 to the vertices  $u_{n-1}, u_n$  and  $v_{n-1}, v_n$  respectively.

In both subcases the vertex is  $v_f(1) = v_f(2) = \frac{2n+2}{3}$ ,  $v_f(3) = \frac{2n-1}{3}$  and edge condition is in table 4.

| Values of $n$         | $e_f(0)$         | $e_f(1)$         |
|-----------------------|------------------|------------------|
| $n \equiv 2 \pmod{6}$ | $\frac{3n}{2}$   | $\frac{3n}{2}$   |
| $n \equiv 5 \pmod{6}$ | $\frac{3n-1}{2}$ | $\frac{3n+1}{2}$ |

Table 4:

Next is the flower graph. A flower is the graph obtained from a helm  $H_n$  by joining each pendent vertices to the central vertex of the helm. It is denoted by  $Fl_n$ .

**Theorem 2.3.** The flower graph  $Fl_n$  is 3-difference cordial.

*Proof.* Take the vertex and edge set of the helm as in theorem 2.2. Case 1.  $n \equiv 0 \pmod{3}$ .

Assign the labels 1,3,2 to the first three vertices  $u_1, u_2, u_3$  respectively of the cycle  $C_n$ . Then assign the labels 1,3,2 to the next three vertices  $u_4, u_5, u_6$  respectively to the cycle. Proceeding in this way, assign the labels 1,3,2 to the next three vertices of the cycle and so on. Clearly in this process the last vertex  $u_n$  received the label 2. Now consider the vertices  $v_i$ . Assign the labels 2,3,1 to the vertices  $v_1, v_2, v_3$  respectively. Next we assign the labels 2,3,1 to the vertices  $v_4, v_5, v_6$  respectively. Continue in this pattern assign the labels to the next three vertices respectively and so on. It is easy to verify that in this process the vertex  $v_n$  received the label 1. Finally assign the label 3 to the central vertex vertex u. The fact that this labeling is a 3-difference cordial follows from  $e_f(0) = e_f(1) = 2n$ and  $v_f(1) = v_f(2) = \frac{2n}{3}$ ,  $v_f(3) = \frac{2n+3}{3}$ .

Case 2.  $n \equiv 1 \pmod{3}$ .

Assign the labels to the vertices  $u, u_i, v_i$   $(1 \le i \le n-1)$  as in case 1. Next assign the labels 1,2 to the vertices  $u_n, v_n$  respectively. Clearly in this case,  $e_f(0) = e_f(1) = 2n$  and  $v_f(1) = v_f(2) = v_f(3) = \frac{2n+1}{3}$ .

Case 3. 
$$n \equiv 2 \pmod{3}$$
.

Let n = 3t + 2. Assign the labels 1,2,3 to the vertices  $u_1, u_2, u_3$  respectively. Next we assign the labels 1,2,3 to the next three vertices  $u_4, u_5, u_6$  respectively. Continuing this process, until we reach the vertex  $u_{3t}$ . Note that in this process the vertex  $u_{3t}$  received the label 3. Then assign the labels 1,2 to the vertices  $u_{3t+1}, u_{3t+2}$  respectively. Now our attention turn to the vertices  $v_i$ . Fix the labels 3,1 to the vertices  $v_1, v_2$  respectively. Next we assign the labels 2,3,1 to the next three vertices  $v_3, v_4, v_5$  respectively. Next assign the labels 2,3,1 to the next three vertices  $v_6, v_7, v_8$  respectively. Proceeding like this, we assign the label to the next three vertices and so on. Clearly the vertex  $v_n$  received the label 1. Finally assign the label 3 to u. The vertex and edge condition of this labeling is given below  $e_f(0) = e_f(1) = 2n$  and  $v_f(1) = v_f(3) = \frac{2n+2}{3}, v_f(2) = \frac{2n-1}{3}$ .

**Illustration 1.** A 3-difference cordial labeling of the flower graph  $Fl_8$  is in FIGURE 1.



Figure 1:

The sunflower graph  $S_n$  is obtained by taking a wheel  $W_n = C_n + K_1$  where  $C_n$  is the cycle  $u_1u_2 \ldots u_nu_1$ ,  $V(K_1) = \{u\}$  and new vertices  $v_1, v_2 \ldots v_n$  where  $v_i$  is join by the vertices  $u_i, u_{i+1} \pmod{n}$ .

**Theorem 2.4.** The sunflower graph  $S_n$  is 3-difference cordial.

#### *Proof.* Case 1. $n \equiv 0 \pmod{3}$ .

Assign the labels 1,3,2 to the vertices  $u_1, u_2, u_3$  respectively. Next we assign the labels 1,3,2 to the next three vertices  $u_4, u_5, u_6$  respectively. In this sequence, assign all the vertices of the cycle  $C_n$ . Clearly the last vertex  $u_n$  of the cycle received the label 2. Next we move to the vertices  $v_i$ . Assign the labels to the vertices  $v_i$   $(1 \le i \le n)$  in the same technique as in  $u_i$   $(1 \le i \le n)$ . That is assign the labels 1,3,2 to the vertices  $v_1, v_2, v_3$  and 1,3,2 to the vertices  $v_4v_5, v_6$  respectively. Proceeding like this, assign the next three vertices and so on. Finally assign the label 2 to the central vertex u.

#### Case 2. $n \equiv 1 \pmod{3}$ .

Fix the labels 1,3,1,3 to the vertices  $u_1, u_2, u_3, u_4$  respectively. Now we assign the labels 1,3,2 to the next three vertices  $u_5, u_6, u_7$  respectively. Then assign the labels 1,3,2 to the next three vertices  $u_8, u_9, u_{10}$  respectively. Continuing this way, assign the label to the next three vertices and so on. Clearly in this process the vertex  $u_n$  received the label 2. Now our attention turn to the vertices  $v_i$ . Fix the label 2 to the vertex  $v_1$ . Then assign the labels 3,1,2 to the next three vertices  $v_2, v_3, v_4$  respectively. Next we assign the labels 3,1,2 to the next three vertices  $v_5, v_6, v_7$  respectively. Proceeding like this way, until we reach the vertex  $v_n$ . Note that 2 is the label of the last vertex  $v_n$ . Finally assign the label 2 to the central vertex.

#### Case 3. $n \equiv 2 \pmod{3}$ .

In this case fix the labels 1,3 to the vertices  $u_1$  and  $u_2$  respectively. Then assign the labels 1,3,2 to the next three vertices  $u_3, u_4, u_5$  respectively. Now we assign the labels 1,3,2 to the next three vertices  $u_6, u_7, u_8$  respectively. Continuing this pattern, until we reach the vertex  $u_n$ . It is obvious that, the label of the last vertex  $u_n$  is 2. Next our attention move to  $v_i$ . Fix the labels 3,2 to the vertices  $v_1, v_2$  respectively. Then we assign the labels 1,3,2 to the next three vertices  $v_3, v_4, v_5$  respectively. Now we assign the labels 1,3,2 to the next three vertices  $v_3, v_4, v_5$  respectively. Now we assign the labels 1,3,2 to the next three vertices  $v_6, v_7, v_8$  respectively. Proceeding like this we reach the vertex  $v_n$ . Clearly 2 is the label of the last vertex  $v_n$ . Finally assign the label 2 to the central vertex. The vertex and edge condition of this labeling is in table 5. In all the cases  $e_f(0) = e_f(1) = 2n$ .

We now investigate the graph lotus inside a circle. The lotus inside a circle  $LC_n$  is a graph obtained from the cycle  $C_n : u_1u_2 \ldots u_nu_1$  and the star  $K_{1,n}$  with central vertex u and the end vertices  $v_1v_2 \ldots v_n$  by joining each  $v_i$  to  $u_i$  and  $u_{i+1} \pmod{n}$ .

**Theorem 2.5.** The lotus inside a circle  $LC_n$  is 3-difference cordial.

| Values of $n$         | $v_f(1)$         | $v_f(2)$         | $v_f(3)$         |
|-----------------------|------------------|------------------|------------------|
| $n \equiv 0 \pmod{3}$ | $\frac{2n}{3}$   | $\frac{2n+3}{3}$ | $\frac{2n}{3}$   |
| $n \equiv 1 \pmod{3}$ | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$ |
| $n \equiv 2 \pmod{3}$ | $\frac{2n-1}{3}$ | $\frac{2n+2}{3}$ | $\frac{2n+2}{3}$ |

| Tal | ble | 5: |
|-----|-----|----|
|     |     | -  |

#### *Proof.* Case 1. $n \equiv 0 \pmod{3}$ .

Assign the label 1 to the vertices  $u_{3i-2}, v_{3i-2}$   $(1 \le i \le \frac{n}{3})$ . Then assign the label 3 to the vertices  $u_{3i-1}, v_{3i-1}$   $(1 \le i \le \frac{n}{3})$  and assign the label 2 to the vertices  $u_{3i}, v_{3i}$   $(1 \le i \le \frac{n}{3})$ . Finally assign the label 2 to the central vertex u.

#### Case 2. $n \equiv 1 \pmod{3}$ .

First we fix the label 3 to the vertex  $v_1$ . Then assign the labels 1,1,3 to the next three vertices  $v_2, v_3, v_4$  respectively. Now we assign the labels 1,1,3 to the next three vertices  $v_5, v_6, v_7$  respectively. Continuing in this pattern, unitl reach the vertex  $v_n$ . Clearly  $v_n$  received the label 3. Now we move to the cycle vertices  $u_i$ . Fix the label 2 to the vertex  $u_1$ . Then assign the labels 2,2,3 to the next three vertices  $u_2, u_3, u_4$  respectively. Then we assign the labels 2,2,3 to the next three vertices  $u_5, u_6, u_7$  respectively. Proceeding like this, until we reach the last vertex  $u_n$ . Then  $u_n$  received the label 3. Finally assign the label 1 to the central vertex u.

#### Case 3. $n \equiv 2 \pmod{3}$ .

Fix the labels 2,3 to the vertices  $u_1$  and  $u_2$  respectively. Then we assign the labels 2,2,3 to the next three vertices  $u_3, u_4, u_5$  respectively. We assign the labels 2,2,3 to the next three vertices  $u_6, u_7, u_8$  respectively. Continuing this way, we reach a last cycle vertex  $u_n$ . Clearly  $u_n$  received the label 3. Now we move to the vertices  $v_i$   $(1 \le i \le n)$ . Fix the labels 3,1 to the vertices  $v_1$  and  $v_2$  respectively. Then we assign the labels 1,1,3 to the next three vertices  $v_3, v_4, v_5$  respectively. Next we assign the labels 1,1,3 to the next three vertices  $v_6, v_7, v_8$  respectively. Proceeding like this, we assign the next three vertices and so on. Clearly 3 is the label of the last vertex  $v_n$ . Finally assign the label 1 to the central vertex u. Then f is a 3-difference cordial labeling follows from  $e_f(0) = e_f(1) = 2n$  and the table 6.

| Values of $n$         | $v_f(1)$         | $v_f(2)$         | $v_f(3)$         |
|-----------------------|------------------|------------------|------------------|
| $n \equiv 0 \pmod{3}$ | $\frac{2n}{3}$   | $\frac{2n+3}{3}$ | $\frac{2n}{3}$   |
| $n \equiv 1 \pmod{3}$ | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$ |
| $n \equiv 2 \pmod{3}$ | $\frac{2n+2}{3}$ | $\frac{2n-1}{3}$ | $\frac{2n+2}{3}$ |

Table 6:

**Illustration 2.** A 3-difference cordial labeling of lotus inside the circle  $LC_{11}$  is given in

FIGURE 2.



Figure 2:

Next investigation is about closed helm. Closed helm is the graph obtained from a helm by joining each pendent vertex to form a cycle.

**Theorem 2.6.** Closed helm  $CH_n$  is 3-difference cordial.

*Proof.* Let  $V(CH_n) = \{u, u_i, v_i : 1 \le i \le n\}$  and  $E(CH_n) = \{uu_i, u_iv_i : 1 \le i \le n\} \cup \{u_iu_{i+1}, v_iv_{i+1}, u_1u_n, v_1v_n : 1 \le i \le n-1\}.$ Case 1.  $n \equiv 0 \pmod{3}$ .

Assign the labels 2,2,3 to the first three vertices  $u_1, u_2, u_3$  respectively. Then assign the labels 2,2,3 to the next three vertices  $u_4, u_5, u_6$  respectively. Proceeding like this we assign the next three vertices and so on. In this process, the last vertex  $u_n$  received the label 3. Next we move to the vertices  $v_i$  and u. Assign the labels 1,1,3 to the first three vertices  $v_1, v_2, v_3$  respectively. Next we assign the labels 1,1,3 to the next three vertices  $v_4, v_5, v_6$  respectively. Continuing this process until we reach the last vertex  $v_n$ . It is clear that 3 is the label of the last vertex  $v_n$ . Finally assign the label 1 to the central vertex u.

Case 2. 
$$n \equiv 1 \pmod{3}$$
.

Assign the labels to the vertices  $u, v_i, u_i (1 \le i \le n-1)$  as in case 1. Next we assign the labels 2 and 3 to the vertices  $u_n$  and  $v_n$  respectively.

Case 3. 
$$n \equiv 2 \pmod{3}$$
.

As in case 2, assign the labels to the vertices  $u, v_i, u_i (1 \le i \le n-1)$ . Then we assign the labels 2 and 3 to the vertices  $u_n$  and  $v_n$  respectively. The fact that this labeling f is a 3-difference cordial labeling follows from the edge condition  $e_f(0) = e_f(1) = 2n$  and the vertex condition given in table 7.

The graph  $(C_n \cup C_n) + K_1$  is called the double wheel. It is denoted by  $DW_n$ . Let  $V(DW_n) = V(W_n) \cup \{v_i : 1 \le i \le n\}$  and edge set  $E(DW_n) = E(W_n) \cup \{uv_i : 1 \le i \le n\} \cup \{v_iv_{i+1} : 1 \le i \le n-1\} \cup \{v_1v_n\}$ 

| Values of $n$         | $v_f(1)$           | $v_f(2)$         | $v_f(3)$         |
|-----------------------|--------------------|------------------|------------------|
| $n \equiv 0 \pmod{3}$ | $\frac{2n}{3} + 1$ | $\frac{2n+3}{3}$ | $\frac{2n}{3}$   |
| $n \equiv 1 \pmod{3}$ | $\frac{2n+1}{3}$   | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$ |
| $n \equiv 2 \pmod{3}$ | $\frac{2n-1}{3}$   | $\frac{2n+2}{3}$ | $\frac{2n+2}{3}$ |

| <b>T</b> . 1 | 1  |     |       |
|--------------|----|-----|-------|
| 1.2          | n  | IP. | · · · |
| TO           | v. | Ľ   | •••   |

**Theorem 2.7.** The double wheel  $DW_n$  is 3-difference cordial.

*Proof.* Case 1.  $n \equiv 0 \pmod{3}$ .

Assign the labels 1,1,3 to the first three vertices  $u_1, u_2, u_3$  respectively. Then assign the labels 2,2,3 to the next three vertices  $u_4, u_5, u_6$  respectively. Next we assign the labels 1,1,3 to the next three vertices  $u_7, u_8, u_9$  respectively and assign the labels 2,2,3 to the next three vertices  $u_{10}, u_{11}, u_{12}$  respectively. Continuing this process we assign the next three vertices and so on. Note that in this case the last vertex  $u_n$  received the label 3. Next our attention move to the vertices  $v_i$ . Assign the labels 2,2,3 to the first three vertices  $v_1, v_2, v_3$  respectively. Then assign the labels 1,1,3 to the next three vertices  $v_4, v_5, v_6$  respectively. Then assign the labels 1,1,3 to the next three vertices  $v_7, v_8, v_9$  respectively and we assign the labels 1,1,3 to the next three vertices  $v_{10}, v_{11}, v_{12}$  respectively. Proceeding like this we assign the next three vertices and so on. In this case 3 is the label of the last vertex  $v_n$ . Finally assign the label 2 to the central vertex u.

Case 2.  $n \equiv 1 \pmod{3}$ .

Subcase 2a.  $n \equiv 1 \pmod{6}$ .

Fix the label 1 to the vertex  $u_1$ . Then assign the labels 2,2,3,1,1,3 to the next six vertices  $u_2, u_3, u_4, u_5, u_6, u_7$  respectively. Next we assign the labels 2,2,3,1,1,3 to the next six vertices  $u_8, u_9, u_{10}, u_{11}, u_{12}, u_{13}$  respectively. Proceeding like this we assign the next six vertices and so on. In this case the last vertex  $u_n$  received the label 3 according as  $n \equiv 4 \pmod{6}$  and  $n \equiv 1 \pmod{6}$ . Next we move to the vertices  $v_i$ . Fix the label 3 to the first vertex  $v_1$ . Then we assign the labels 1,1,3,2,2,3 to the next six vertices  $v_2, v_3, v_4, v_5, v_6, v_7$  respectively. Next we assign the labels 1,1,3,2,2,3 to the next six vertices  $v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}$  respectively. Continuing this way we reach the last vertex  $v_n$ . Finally assign the label 2 to the central vertex u.

Subcase 2b.  $n \equiv 4 \pmod{6}$ .

Assign the label to the vertices  $u, u_i, v_i$   $(1 \le i \le n-3)$  as in subcase 2a. Finally assign the labels 2,2,3 respectively to the vertices  $u_{n-2}, u_{n-1}, u_n$  and 1,1,3 to the vertices  $v_{n-2}, v_{n-1}, v_n$  respectively. Obviously this labeling pattern is a 3-difference cordial labeling.

Case 3.  $n \equiv 2 \pmod{3}$ .

Assign the labels to the vertices  $u, u_i, v_i$   $(1 \le i \le n-2)$  as in case 1. Then assign the labels 1,3 and 1,3 to the vertices  $u_{n-1}, u_n$  and  $v_{n-1}, v_n$  respectively. The edge condition for these three condition is  $e_f(0) = e_f(1) = 2n$  and the vertex condition given in table 8. Hence f is a 3-difference cordial labeling.

10 R. Ponraj, / Journal of Algorithms and Computation 47 (2016) PP. 1 - 10

| Values of $n$         | $v_f(1)$         | $v_f(2)$           | $v_f(3)$         |
|-----------------------|------------------|--------------------|------------------|
| $n \equiv 0 \pmod{3}$ | $\frac{2n}{3}$   | $\frac{2n}{3} + 1$ | $\frac{2n}{3}$   |
| $n \equiv 1 \pmod{3}$ | $\frac{2n+1}{3}$ | $\frac{2n+1}{3}$   | $\frac{2n+1}{3}$ |
| $n \equiv 2 \pmod{3}$ | $\frac{2n+2}{3}$ | $\frac{2n-1}{3}$   | $\frac{2n+2}{3}$ |

#### Table 8:

**Illustration 3.** A 3-difference cordial labeling of  $DW_8$  is given in FIGURE 3.



Figure 3:

Acknowledgement. The authors are very much grateful to the reviewers for rendering their help in correcting the manuscript and also for their critical suggestions and comments regarding the manuscript.

# References

- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18 (2015) #DS6.
- [2] F.Harary, Graph Theory, Addision Wesley, New Delhi (1969).
- [3] R.Ponraj, M.Maria Adaickalam and R.Kala, *k*-difference cordial labeling of graphs, (submitted).
- [4] R.Ponraj and R.Kala, 3-difference cordial labeling of some union of graphs, (submitted).
- [5] R.Ponraj and M.Maria Adaickalam, On 3-difference cordial graphs, (submitted).