
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

On the optimization of Hadoop MapReduce default
job scheduling through dynamic job prioritization

Narges Peyravi∗1 and Ali Moeini†2

1Department of Computer Engineering and Information Technology, Faculty of Engineering,
University of Qom.

2Department of Algorithms and Computation, School of Engineering Science, College of
Engineering, University of Tehran.

ABSTRACT ARTICLE INFO

One of the most popular frameworks for big data pro-
cessing is Apache Hadoop MapReduce. The default
Hadoop scheduler uses queue system. However, it does
not consider any specific priority for the jobs required
for MapReduce programming model. In this paper, a
new dynamic score is developed to improve the per-
formance of the default Hadoop MapReduce scheduler.
This dynamic priority score is computed based on effec-
tive factors such as job runtime estimation, input data
size, waiting time, and length or bustle of the waiting
queue. The implementation of the proposed schedul-
ing method, based on this dynamic score, not only im-
proves CPU and memory performance, but also reduced
waiting time and average turnaround time by approxi-
mately 45% and 40% respectively, compared to the de-
fault Hadoop scheduler.

Article history:
Received 12 February 2020
Received in revised form 22 Oc-
tober 2020
Accepted 11 November 2020
Available online 30 December
2020
Research paper

Keyword: Hadoop MapReduce, Job scheduling, prioritiza-
tion, dynamic priority score.

AMS subject Classification: 05C78.

∗narges.peyravi@gmail.com
†Corresponding author: A. Moeini E-mail: moeini@ut.ac.ir

Journal of Algorithms and Computation 52 issue 2, December 2020, PP.109 - 126

110 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

1 Introduction

Nowadays, various new systems such as wireless sensor networks, remote health moni-
toring, smart home, IOT (The Internet of Things), social networks, and stock markets,
generate growing data known as the big data. Management, storage, retrieval, process-
ing, and analysis of this data type requires special infrastructure systems and algorithms,
due to the volume, velocity, variety, and veracity. One of the well-known open-source
frameworks used in storing and processing big data is Apache Hadoop [11]. Hadoop is
scalable and reliable framework for big data storage and process. It divides the big input
data into fixed-size pieces which is known as splits. These splits are stored and processed
on cluster of machines. In Hadoop 2, the default size of each split is 128MB. In order
to manage error and fault tolerance, each split is copied three times and transferred to
different machines.
Distributed Hadoop file system -HDFS- uses MapReduce programming system which in
turn exploits parallelism in cluster computing [2, 11, 17, 22]. For job scheduling Hadoop
uses queue system. Considering priority in this queue is a challenging issue, in order to
determine which job takes possession of the resources. Since proper prioritized scheduling
has significant impact on system performance, such as CPU and memory consumption,
load balancing, shorter response time, shorter waiting time, and fairness, this paper pro-
poses a prioritizing jobs module for the default scheduler Hadoop. In this module, some
effective parameters like runtime, input data size, entry time, waiting time, and the length
or bustle of the waiting queue are considered to compute a score for each job. Based on
this score the priority of each job is determined. A higher score yields a higher priority.
The remaining of this paper is as follows: Section 2 describes the statement of the problem;
Section 3 presents an overview of earlier researches; Section 4 describes the proposed
method. Section 5 states the evaluation and finally, the conclusion is discussed in Section
6.

2 Statement of the problem

Scheduling is a policy in which a system deals with job selection and system resource
assignment and allocation. Due to processing and resource storage limitation, applications
that work on massive datasets will often wait to run. It is the labor of the scheduler
to allocate resources to applications according to some defined policy [22]. By default,
Hadoop has three types of job scheduling policies: FIFO, Fair, and Capacity [2, 11, 17, 22].
In FIFO (First In First Out) scheduling model, executable jobs are in the waiting queue,
based on entry time. As soon as the system resources are released, they execute in order
of priority. Although FIFO has been considered a simple algorithm, it fails to meet the
fairness among jobs and it does not consider any priority more than the order in which
the job is entered. So, short jobs are sacrificed for longer jobs; so, runtime and waiting
time will be long and unacceptable. However, FIFO has been deprecated and is no longer
directly used.

111 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

In Fair scheduling model, all jobs or applications get an equal share of resources during
their course of running. In this model, one or more pools are defined in order that the
existing resources are distributed equitably among pools so that several jobs can be run
simultaneously. It can run small jobs first without starving the big job. It is simple to
configure. However, when more jobs enter, each job’s runtime and turnaround time is
increased tremendously.
In Capacity scheduling model, multiple hierarchical queuing techniques are used. Each
queue is assigned to a user, group, or organization. In other word, the system resource
usage percentage is predefined by the administrator in each system. By default, FIFO
techniques are utilized in each queue to prioritize jobs. However, there is no priority
sequence and none of the jobs have any priority over the other, then, there are FIFO
challenges in each queue.
The aim of this paper is to propose a new method to prioritize the jobs and improve
the performance of the default scheduler (Fair and Capacity) for Hadoop. The main
advantage of this method is to reduce average waiting and turnaround time for the jobs
and reduce CPU and Memory consumption. To do this, we need some effective factors
like runtime, input data size, waiting time, the length or the bustle of the waiting queue
to determine a score for each job. The highest score shows the most prominent priority.

3 Review of Related Work

The matter of scheduling, is a challenging problem that has been tackled by researchers
from different aspects. Some researchers try to manage and optimize the resources; others
try to shorten the waiting and turnaround times.
A multi-queue scheduling approach of heterogeneous jobs in a hybrid cloud environment
is proposed by Li Chunlin et al. [5]. They applied genetic algorithm, and neural networks
for Map and Reduce tasks to predict the runtime of a job. High priority tasks with
minimum finishing time are allocated to the resources.
Chen He [9] suggested a real-time scheduling g algorithm based on QoS in heterogeneous
Hadoop MapReduce clusters. His aim is to energy minimization, data locality, and QoS
control. He developed a matchmaking scheduling algorithm for improving the data locality
of MapReduce applications. The author achieved a higher cluster utilization without a
deadline missing.
Fei Teng et al. [20] used the Paused Rate Monotonic algorithm for real-time tasks pri-
oritized scheduling on Hadoop MapReduce. This prioritized algorithm schedules jobs
according to their time constraints, and the pauses between the Map and Reduce stages.
HAT- history-based auto-tuning- MapReduce in heterogeneous environments is proposed
by Quan Chen et al. [3, 4]. This scheduler works on historical information saved on every
node and it divided slow nodes into Map and Reduce tasks. Once a Map or Reduce task
finishes on a node, proper parameters are updated according to the new values. During
the run of a MapReduce application, HAT computes the progress scores of all the running
jobs periodically.

112 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Chun Lin et al. [14] introduced four scheduling-policy combinations derived from the de-
fault schedulers and proposed three different queue-structures: Fair-DRF, Fair-FIFO, and
Capacity-FIFO. The experiments show that employing the merged-queue scenario is the
best choice because it enables almost all combinations to gain high workload completion
rates and shorten workload turnaround time.
Size-based scheduling for Hadoop, schedules tasks by shortening completion times [13, 16].
It also implements an aging policy, where the cost of a job in the queue becomes gradually
decremented as it waits for resources. The technique is called the Shortest Remaining
Virtual Time-SRVT. At the benefit of virtual error elimination and starvation in the
queue, SRVT results in a slight increase in the average throughout time.
Leveraging size patterns scheduler, calculates the number of slots and resources of each
based on the history of the job completion time [24]. The completion time will be predicted
in regard to the job size. The Job Tracker continually sorts users instead of jobs, and
allows the most efficient users to receive the most slots, without starving other users. If
new users enter jobs to the cluster, the similar job profiles is assigned to these new users
based on some similarity criteria among users.
Wenhong Tian et al. [21] designed a job scheduler that aims to minimize the makespan
of a set of MapReduce jobs. The authors combine the features of both Johnson’s classical
algorithm and MapReduce to minimize the runtime for both online and offline jobs. They
considered the Offline and Online HScheduler with the best-known constant ratio for
decreasing the runtime.
Abaker Targio Hashem et al. [7] investigated the field of scheduling in big data platforms,
which was a comparison among Hadoop, Mesos, and Corona frameworks. The proposed
scheduling algorithms have covered the strategies, resources, workload, optimization ap-
proaches, requirements, and speculative execution.
Y. Yao et al. [23] proposed two new schedulers named HaSTE and HaSTE-A, for Hadoop
YARN systems. Their schema can improve the usage of resources and reduce the runtime
of MapReduce jobs based on each task’s fitness and urgency. HaSTE dynamically sched-
ules jobs for running when resources become available. By further considering each job’s
alignment, HaSTE-A addresses the long issue caused by iterative jobs.
Zhou et al. [25] proposed a fine-grained method to improve the allocation granularity
of resource. This method estimates resource information and divides jobs into execution
stages according to the actual requirements. Then, job resource requirements are matched
with the available server resources. They considered two aspects of allocation granularity:
duration and quantity.
Praveen M. Dhulavvagol et al. [6] discussed different scheduling techniques and their
performance on multimode clusters. They considered some parameters for performance
evaluation: CPU time, physical memory, and virtual memory. Their results showed that
a capacity-based scheduling algorithm is more efficient than FIFO and FAIR in terms of
CPU cycles, physical and virtual memory utilization.
Akhtar et al. [1] have presented a comparative study of job scheduling algorithms which
could be used in various big data-based image processing application. They have also
proposed a tipping point scheduling algorithm to optimize the workflow for job execution

113 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

on multiple nodes. Their algorithm considered job execution time, CPU usage, and
workflow optimization. Another purpose of their work is to determine the essentialities
of job scheduling and resource allocation.
Hashem, I. A. T. et al. [8] proposed multi-objective MapReduce job scheduling based on
the reduction of the completion of time and cost. Their scheduling algorithm considered
the earliest finishing time to resource allocation. They compered experimental results
with other well-known schedulers, such as FIFO and Fair in different scenarios.
In this paper, the prioritization of jobs is done dynamically by considering effective pa-
rameters, which have not been addressed in previous researches. The goal is to reduce
waiting and turnaround time, resulting in optimal resource consumption.

4 The proposed method - dynamic job prioritization

In Hadoop platform, several jobs which may be shown as a vector J can enter into the
cluster at the same or different times J = {j1, j2, j3, · · · , jn}. Each job ji is divided
into some tasks, the size of each task depends on the size of the splits in Hadoop. In
Hadoop 2, the default value size of each split is 128 MB, so each job ji is a set of several
tasks or splits: ji = {t1, t2, t3, · · · , tm}. Tasks are performed on a cluster of machines like
M = {m1,m2,m3, · · · ,mt} and each machine can run them simultaneously [2, 11, 17, 22].
The default Hadoop’s scheduling algorithm does not consider any precedence over the
selection of jobs. Here, we present a new method to assign dynamic prioritized score
to jobs which are ready to run. To calculate this score for job i shown as Pt(i), many
parameters which affect the priority are considered. These parameters are: waiting time
for job i shown as Tw(i), runtime for job i shown as Tr(i), the number of jobs in the
waiting queue or the bustle of the waiting queue shown as l. When the queue is crowded
and the length of it is increased, the priority of the earlier jobs should be increased. It
means that the score of job i is proportional to (l− i)k1, where k1 is a constant coefficient
between zero and one that diminishes the impact of (l − i).
Tr(i) is the runtime of job i. Considering the fact that big jobs should not be starved and
small jobs should not be sacrificed for big jobs, we can conclude that the score of job i is
proportional to the ratio of the sum of its runtime and waiting time to its runtime divided
by a constant coefficient k2 which is the number of splits of each i. The discussion above
can be summarized in Equation (1) as follows:

pt(i) =
(
(l − i) ∗ k1

)
+

Tr(i) + Tw(i)

Tr(i) ∗ k2
or pt(i) =

(
(l − i) ∗ k1

)
+

1

k2
∗
(

1 +
Tw(i)

Tr(i)

)
(1)

In Equation (1), the waiting time for each job i at time t can be calculated from Equation
(2).

Tw(i) = Tc(i)− Te(i) (2)

In Equation (2), Tw(i) is the waiting time of job i at time t, Tc(i) is the system’s current
time, and Te(i) is the time which job i enters the system.
The algorithm (1) shows the pseudo-code to calculate the score of jobs.

114 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Algorithm (1)- pseudo-code of the proposed job scheduling policy

Input: Job set J //J is a set of jobs

Output: scheduled jobs
1. For each application do
2. L←− 0; // L is the length of queue

3. For each job do
4. id←− Job’s id; //each Job has a unique id

5. Dinput ←− the size of input data;
6. Nm ←− Dinput/Dsplit; // Dsplit is the default value of each split

(128MB)

7. Call EstimatingRunTime // EstimatingRunTime is a function for estimating

runtime of a Job

8. Return (Tr) ;
9. Ji ←− (id,Dinput, Nm, Tr) ;
10. ADD Ji to queue
11. Te(Ji)←− Time(); // Te(Ji) is the time that a Job enters in a

queue

12. L←− L + 1;
13. For each job in queue do
14. Tc ←− Time(); // Tc is the current time

15. Tw(Ji)←− Tc − Te(Ji); // Tw(Ji) is waiting time of job i

16. k1 ←− 0.3; // k1 is Constant coefficient (k1 = 0.3 is considered experi-

mentally tested)

17. k2 = Nm; // k2 is The coefficient is proportional to the

number of splits

18. Pt(Ji)←−
[
(L− i) ∗ k1

]
+
[
(Tr(Ji) + Tw(Ji))/(Tr(Ji) ∗ k2)

]
; // Pt(Ji) is priority score

of job i at time t

19. Then
20. Send for Running (Max(Pt(Ji)); // Run a Job with Maximum

value of Pt

In Algorithm (1), each job has a unique id. In line 5, the size of the input data is computed
and is placed into Dinput. In line 6, the number of splits are obtained by dividing Dinput to
Dsplit. The value of Dsplit is 128MB by default. In line 7, the EstimatingRunTime func-
tion is called to return the estimate runtime of a job as Tr. This function works according
to the job processing anatomy in Hadoop MapReduce. Two cases are considered: when
a job runs for the first time or a job has been previously run. In the first case, based on
the Hadoop execution pipeline, each phase formulates and runtime is calculated. In the
second case, by referring to the profile or the history of the job presented in the database,
and by using a weighting mechanism the runtime is estimated. For more explanations on
the runtime estimation of a job in Hadoop MapReduce refer to our other paper [18].

115 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Ji includes id, Dinput, Nm, and Tr of each job that enters the queue for execution. When
a job is added to the queue, the length of the queue (L) is increased. The time that a job
enters a queue is assigned to Te(Ji).
Tc shows the current time. For each job in the queue, waiting time (Tw(Ji)) is obtained
from the difference between Tc and Te(Ji). k1 is a constant coefficient that is obtained
through several experiments. The results of those experiments revealed that the value
should be 0.3. Also, k2 is a coefficient that is proportional to the number of splits.
Based on Equation (1), the priority score of each job (Pt(Ji)) is determined.

5 Evaluation

For clarity, the evaluation is done in two parts. First, we justify the proposed method the-
oretically with hypothetical values, then test our method in a Hadoop cluster environment
and compare it with the default state.

5.1 Theoretical evaluation of the proposed scheduling method

Since both default Hadoop scheduling algorithms (Fair, Capacity) use the FIFO method
to enforce prioritization in their queues, first, we compare the proposed algorithm with
FIFO. Assuming that six jobs with their respective information presented in Table 1
enter a Hadoop cluster where their arrival times and run times are displayed in seconds
in columns 2 and 3, respectively.

Table 1: jobs information
Jobs Arrival Time(S) Run Time(s)
J1 6 2
J2 10 30
J3 3 20
J4 0 10
J5 12 15
J6 11 2

In FIFO method, the Gantt chart will be:

J4 J3 J1 J2 J6 J5

0 10 30 32 62 64 79

Therefore, the average waiting time and the turnaround time in FIFO method can be
obtained from the formula below respectively:

Avgwait =
24 + 22 + 7 + 0 + 52 + 51

6
= 26

116 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Avgturnaround =
26 + 52 + 27 + 10 + 67 + 53

6
= 39.16

In the proposed method, the priority of each job is determined dynamically based on
Equation (1).
At zero time, the only available work is J4, which runs and engages the system resources.
At time 10; J3, J1, and J2 have competition together. The priority of each one may be
computed as follows: (For simplicity in this example, we consider k1 = 1)

J1 : 1 +
2 + 4

2
= 4 J2 : 0 +

30 + 0

450
= 0.066 J3 : 2 +

20 + 7

200
= 2.135

The highest score belongs to J1, so it has the highest priority. Similarly, the priority of
other jobs is determined according to the following Gantt chart:

J4 J3J1 J2J6 J5

0 10 12 32 34 64 79

The average waiting time and the average turnaround time in the proposed method are:

Avgwait =
4 + 24 + 9 + 0 + 52 + 21

6
= 18.33

Avgturnaround =
6 + 54 + 29 + 10 + 67 + 23

6
= 31.5

Similar to the example above, the other five-set are theoretically tested. The results are
shown in Figures 1 and 2. According to Fig. 1 and Fig. 2, the proposed method is better
than FIFO both in average waiting time and turnaround time.

��

�����

�����

	����

���	�

���

�
��

��

����

���	

�

��

��

��

��

��

	�

��

� � � � �

�

�
��
�
��
��
�
��
��
�

������������

����������� !� �����������

Figure 1: average waiting time

117 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

48/91

69/43
74

44/26

58

39/12

54/84

61/42

35/85

46/4

0

10

20

30

40

50

60

70

80

1 2 3 4 5

av
g.

Tu
rn

A
ro

u
n

d
 T

im
e

No.of test

FIFO method proposed method

Figure 2: average turnaround time

5.2 Practical evaluation of the proposed scheduling method

After investigating the proposed method theoretically, for a more precise evaluation, we
tested our method in our lab with the specifications mentioned below in Table 2.

Table 2: Test environment specifications
Motherboard Giga p85

CPU Intel R©core i3-3240 2*2 cores 3.40 GHz
RAM 4 GB
HDD 500 GB
OS Ubuntu 17.04

Band Width 100 Mbps
Hadoop 2.9.1

JDK 1.8.1

In our lab, there are 13 systems as a cluster of Hadoop with the specifications in Table 2.
Out of the thirteen systems, one system is Master, and twelve systems are considered as
Slaves. Hadoop 2.9.1 is installed on the systems. Four conventional Hadoop benchmarks
[10] were used to produce jobs. TeraGen initially produces input data sizes of 1G, 2G,

118 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

3G, 5G, 10G, and 20GB. WordCount is a memory-intensive job for counting the words
within a text. TeraSort is a CPU-intensive job for sorting the input file. Inverted Index
is a CPU limited job for looking up the set of documents contain a given word or a term.
Since the purpose of this study is to improve the performance of the Hadoop default sched-
uler (Fair and Capacity) the tests have been done with and without the proposed method
by using default scheduling algorithms in terms of the average waiting and turnaround
times.
By varying the number of jobs that entered the cluster at the same or different times, four
sets of tests have been performed. Each set of the test are scheduled with four methods:
Fair, Capacity, new Fair, and new Capacity. In the new Fair (new Capacity) method,
first, we ran our proposed method then we utilized the Fair (Capacity) method. Fig. 3
shows the comparison of the average waiting time, and Fig. 4 shows the comparison of the
average turnaround time in WordCount application. Fig. 5 and 6 show the comparison
for TeraSort application with average waiting time and turnaround time respectively.
Fig. 7 and Fig. 8 show the average waiting time and turnaround time for Inverted index
application.

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 1 0 1 5 2 0

A
V

G
.

W
A

IT
IN

G
 T

IM
E

(S
)

NO.OF JOBS

Fair Capacity new_Fair new_capacity

Figure 3: Average waiting time for WordCount

119 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

1000

2000

3000

4000

5000

6000

7000

5 1 0 1 5 2 0

A
V

G
.

T
U

R
N

A
R

O
U

N
D

 T
IM

E
(S

)

NO. OF JOBS

Fair Capacity new_Fair new_capacity

Figure 4: Average turnaround time for WordCount

100

600

1100

1600

2100

2600

3100

3600

5 1 0 1 5 2 0

A
V

G
.W

A
IT

IN
G

 T
IM

E
(S

)

NO.OF JOBS

Fair Capacity new_Fair new_capacity

Figure 5: Average waiting time for TeraSort

500

1000

1500

2000

2500

3000

3500

4000

5 1 0 1 5 2 0

A
V

G
.T

U
R

N
A

R
O

U
N

D
 T

IM
E

(S
)

NO.OF JOBS

Fair Cpacity new_Fair new_Capacity

Figure 6: Average turnaround time for TeraSort

120 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

500

1500

2500

3500

4500

5500

6500

7500

8500

9500

5 10 15 20

A
V

G
.W

A
T

IN
G

 T
IM

E
(S

)

NO. OF JOBS

Fair Capacity new_Fair new_capacity

Figure 7: Average waiting time for Inverted index

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

5 1 0 1 5 2 0

T
U

R
N

A
R

O
U

N
D

 T
IM

E
(S

)

NO. OF JOBS

Fair Capacity new-Fair new-Capacity

Figure 8: Average turnaround time for Inverted index

As the results show, new Capacity shows better results than Capacity. Also, new Fair is
better than the Fair. It means, when the system uses the proposed method for schedul-
ing jobs and determines their priority, the average waiting and turnaround times are
decreased. Additionally, the higher the number of jobs, the better the results achieved.
After running several similar tests, the investigation of the results shows an approximately
45% reduction in average waiting time and a 40% reduction in average turnaround time
compared to the Hadoop default algorithms.
After evaluating the proposed method in prioritizing jobs, we used the Ganglia monitoring
tool to investigate CPU and Memory performances. Ganglia is a distributed and scalable
monitoring tool for high-performance computing systems, clusters, and networks. This
software is used to view live or recorded statistics from criteria such as average CPU load,
network usage, and memory [12, 15, 19].

121 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

For this purpose, two groups of experiments were taken. In the first set of tests, about
12GB jobs were given to the system and the default Hadoop scheduler was activated.
Fig. 9 shows the CPU performance and consumed memory. The second experiment was
repeated with the previous set of jobs, but in this experiment, the proposed method was
used to prioritize the tasks. Fig. 10 shows the amount of memory consumption and CPU
performance. In Figures 9 and 10, CPU performance is indicated by the diagram on the
right. In these diagrams, the x-axis shows the CPU operating time and the y-axis the
percentage of CPU usage. According to Figures 9 and 10, if Hadoop’s default scheduler is
enabled, the average CPU usage percentage is 9% and the average CPU wait is 20.4%, and
the jobs are done in interval 15:50 to 16:50. If the proposed method is used to prioritize
tasks, the average CPU usage percentage will increase to 12% and the average CPU wait
will decrease to 15.5%, and the jobs are done in interval 5 to 10:45. This is a significant
reduction in time.
In terms of memory consumption, using the proposed method involves a shorter amount
of memory to perform tasks.
We repeated the experiment with the conditions above. Fig. 11 shows the CPU perfor-
mance in the case where the default Hadoop scheduler is used, and Fig. 12 shows the CPU
performance in the case that our proposed method is used. According to these diagrams,
if we use the default scheduler, the average percentage of CPU usage is 7.2%, and if the
proposed method is used, this increases to 13.1%. Also, using the proposed method, the
average CPU wait is reduced from 21.2% to 17.4%. Similarly, the time interval is reduced
from 17:22 - 18:21 to 12:21 - 13: 7.
According to Figures 13 and 14, the memory time usage is shorter if the proposed method
is used. Reviewing the performance of other jobs showed similar results.

Figure 9: CPU and memory usage in Hadoop default scheduler

122 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Figure 10: CPU and memory usage in the proposed method

Figure 11: CPU performance using the de-
fault Hadoop scheduler

Figure 12: CPU performance in using the
proposed method

123 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

Figure 13: Memory performance using the
default Hadoop scheduler

Figure 14: Memory performance using the
default Hadoop scheduler

We compared our proposed method with other studies [3, 4, 16, 23, 25] that had a similar
approach to ours. They also intended to improve Hadoop default job scheduling and focus
on reducing the average turnaround or job completion times. Fig. 15 shows the result of
this comparison.

25%

37%

34%

30%

33/90%

40%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

SAMR[39] HAT[38] HFSP[41] FGM[46] HaSTE[45] Our method

P
e

rc
e

n
t

im
p

ro
ve

m
e

n
t

improvement methods

Figure 15: The percentage improvement different methods versus in comparison Hadoop
default scheduling

According to Fig. 15, our method has a higher improvement percentage than other
methods in job completion times.

124 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

6 Conclusion and future works

In this paper, a novel dynamic method has been presented to improve the default job
scheduling in Hadoop MapReduce. This method determines the priority of execution
by allocating a score to each job. The execution priority is assigned to a job that has
the highest score among the jobs. To calculate this score, parameters such as waiting
time, the runtime of each job, the input data size, and the number of jobs in the waiting
queue are considered. The experiments show the proposed priority method improved the
default Hadoop job scheduler by approximately 45% in the average waiting time and by
40% in the average turnaround time. Also, by using the proposed method, not only CPU
performance improved but memory usage decreased as well.
In future work, we plan to extend the proposed scheme by using machine learning tech-
niques and optimize Hadoop parameter values by using metaheuristic algorithms to reduce
runtime. Also, we intend to work on Spark and Flink scheduling algorithms to process
streaming data.

References

[1] Akhtar MN, Saleh JM, Awais H, Bakar EA. Map-Reduce based tipping point sched-
uler for parallel image processing. Expert Systems with Applications. 2020 Jan
1;139:112848.

[2] Alapati SR. Expert Hadoop administration: managing, tuning, and securing spark,
YARN, and HDFS. Addison-Wesley Professional; 2016 Nov 29.

[3] Chen Q, Guo M, Deng Q, Zheng L, Guo S, Shen Y. HAT: history-based auto-tuning
MapReduce in heterogeneous environments. The Journal of Supercomputing. 2013
Jun 1;64(3):1038-54..

[4] Chen Q, Zhang D, Guo M, Deng Q, Guo S. Samr: A self-adaptive mapreduce schedul-
ing algorithm in heterogeneous environment. In2010 10th IEEE International Confer-
ence on Computer and Information Technology 2010 Jun 29 (pp. 2736-2743). IEEE.

[5] Chunlin L, Jianhang T, Youlong L. Multi-queue scheduling of heterogeneous jobs in
hybrid geo-distributed cloud environment. The Journal of Supercomputing. 2018 Oct
1;74(10):5263-92.

[6] Dhulavvagol PM, Totad SG, Sourabh S. Performance Analysis of Job Scheduling Al-
gorithms on Hadoop Multi-cluster Environment. InEmerging Research in Electronics,
Computer Science and Technology 2019 (pp. 457-470). Springer, Singapore..

[7] Hashem IA, Anuar NB, Marjani M, Ahmed E, Chiroma H, Firdaus A, Abdullah MT,
Alotaibi F, Ali WK, Yaqoob I, Gani A. MapReduce scheduling algorithms: a review.
The Journal of Supercomputing. 2020 Jul;76(7):4915-45.

125 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

[8] Hashem IA, Anuar NB, Marjani M, Gani A, Sangaiah AK, Sakariyah AK. Multi-
objective scheduling of MapReduce jobs in big data processing. Multimedia Tools
and Applications. 2018 Apr 1;77(8):9979-94.

[9] He C. Scheduling in Mapreduce Clusters. Computer Science and Engineering: Theses,
Dissertations, and Student Research. 148; The University of Nebraska - Lincoln, 2018;
https://digitalcommons.unl.edu/computerscidiss/148

[10] https://engineering.purdue.edu/ puma/pumabenchmarks.htm, last visited: August
2020

[11] http://hadoop.apache.org/docs/r2.9.1/index.html, last visited: May 2020

[12] http://ganglia.sourceforge.net/; last visited: March 2020

[13] Johannessen R, Yazidi A, Feng B. Hadoop MapReduce scheduling paradigms. In2017
IEEE 2nd International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA) 2017 Apr 28 (pp. 175-179). IEEE.

[14] Lin JC, Lee MC. Performance evaluation of job schedulers on Hadoop YARN. Con-
currency and Computation: Practice and Experience. 2016 Jun 25;28(9):2711-28.

[15] Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean
A, Josephsen D, Phaal P, Pocock D. Monitoring with Ganglia: tracking dynamic
host and application metrics at scale. ” O’Reilly Media, Inc.”; 2012 Nov 9.

[16] Pastorelli M, Carra D, Dell’Amico M, Michiardi P. HFSP: bringing size-based
scheduling to Hadoop. IEEE Transactions on Cloud Computing. 2015 Jan 23;5(1):43-
56.

[17] Perera S. Hadoop MapReduce Cookbook. Packt Publishing Ltd; 2013..

[18] Peyravi N, Moeini A. Estimating runtime of a job in Hadoop MapReduce. Journal
of Big Data. 2020 Dec;7(1):1-8.

[19] Prashant Bhamidipati; GANGLIA INSTALLATION GUIDE; http://www-
hep.uta.edu/hep notes/computing/computing 0025.pdf

[20] Teng F, Magoulès F, Yu L, Li T. A novel real-time scheduling algorithm and perfor-
mance analysis of a MapReduce-based cloud. The Journal of Supercomputing. 2014
Aug 1;69(2):739-65.

[21] Tian W, Li G, Yang W, Buyya R. HScheduler: an optimal approach to minimize the
makespan of multiple MapReduce jobs. The Journal of Supercomputing. 2016 Jun
1;72(6):2376-93.

[22] White, T., Hadoop: The definitive guide, Fourth Edition, 2015;Published by OReilly
Media, Inc.

126 N.Peyravi / JAC 52 issue 2, December 2020, PP. 109 - 126

[23] Yao Y, Gao H, Wang J, Sheng B, Mi N. New scheduling algorithms for improving
performance and resource utilization in hadoop YARN clusters. IEEE Transactions
on Cloud Computing. 2019 Jan 23.

[24] Yao Y, Tai J, Sheng B, Mi N. LsPS: A job size-based scheduler for efficient task assign-
ments in Hadoop. IEEE Transactions on Cloud Computing. 2014 Jul 30;3(4):411-24.

[25] Zhou M, Dong X, Chen H, Zhang X. Fine-grained scheduling in multi-resource clus-
ters. The Journal of Supercomputing. 2020 Mar;76(3):1931-58.

	Introduction
	Statement of the problem
	Review of Related Work
	 The proposed method - dynamic job prioritization
	Evaluation
	Theoretical evaluation of the proposed scheduling method
	 Practical evaluation of the proposed scheduling method

	Conclusion and future works

