# Mixed cycle- $E$-super magic decomposition of complete bipartite graphs 

G. Marimuthu, ${ }^{* 1}$ and S. Stalin Kumar ${ }^{\dagger 2}$<br>${ }^{1}$ Department of Mathematics, The Madura College, Madurai -625 011, Tamilnadu, India.<br>${ }^{2}$ Department of Mathematics, The American College, Madurai - 625 002, Tamilnadu,India.

## ABSTRACT

An $H$-magic labeling in a $H$-decomposable graph $G$ is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every copy $H$ in the decomposition, $\sum_{v \in V(H)} f(v)+$ $\sum_{e \in E(H)} f(e)$ is constant. $f$ is said to be $H$ - $E$-super magic if $f(E(G))=\{1,2, \cdots, q\}$. A family of subgraphs $H_{1}, H_{2}, \cdots, H_{h}$ of $G$ is a mixed cycle-decomposition of $G$ if every subgraph $H_{i}$ is isomorphic to some cycle $C_{k}$, for $k \geq 3, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{h} E\left(H_{i}\right)=$ $E(G)$. In this paper, we prove that $K_{2 m, 2 n}$ is mixed cycle- $E$-super magic decomposable where $m \geq 2, n \geq 3$, with the help of the results found in [1].

Keyword: $H$-decomposable graph, $H$ - $E$-super magic labeling, mixed cycle- $E$-super magic decomposable graph.

## ARTICLE INFO

## Article history:

Received 20, October 2015
Received in revised form 27, January 2016
Accepted 29, February 2016
Available online 18, March 2016

AMS subject Classification: Primary 05C78, 05C70

## 1 Introduction

In this paper we consider only finite and simple undirected bipartite graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$ respectively and we let

[^0]$|V(G)|=p$ and $|E(G)|=q$. For graph theoretic notations, we follow [2, 3]. A labeling of a graph G is a mapping that carries a set of graph elements, usually vertices and/or edges into a set of numbers, usually integers. Many kinds of labeling have been studied and an excellent survey of graph labeling can be found in [5].

Although magic labeling of graphs was introduced by Sedlacek [18], the concept of vertex magic total labeling (VMTL) first appeared in 2002 in [9]. In 2004, MacDougall et al. [10] introduced the notion of super
vertex magic total labeling (SVMTL). In 1998, Enomoto et al. [4] introduced the concept of super edge-magic graphs. In 2005, Sugeng and Xie [19] constructed some super edgemagic total graphs. The usage of the word "super" was introduced in [4]. The notion of a $V$-super vertex magic labeling was introduced by MacDougall et al. [10] as in the name of super vertex-magic total labeling and it was renamed as $V$-super vertex magic labeling by Marr and Wallis in [15] after referencing the article [12]. Most recently, Tao-ming Wang and Guang-Hui Zhang [20], generalized some results found in [12].

A vertex magic total labeling is a bijection $f$ from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ with the property that for every $u \in V(G), f(u)+\sum_{v \in N(u)} f(u v)=k$ for some constant $k$, such a labeling is $V$-super if $f(V(G))=\{1,2, \ldots, p\}$. A graph $G$ is called $V$-super vertex magic if it admits a $V$-super vertex labeling. A vertex magic total labeling is called $E$-super if $f(E(G))=\{1,2, \ldots, q\}$. A graph $G$ is called $E$-super vertex magic if it admits a $E$-super vertex labeling. The results of the article [12] can also be found in [15]. In [10], MacDougall et al., proved that no complete bipartite graph is $V$-super vertex magic. An edge-magic total labeling is a bijection $f$ from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ with the property that for any edge $u v \in E(G), f(u)+f(u v)+f(v)=k$ for some constant $k$, such a labeling is super if $f(V(G))=\{1,2, \ldots, p\}$. A graph $G$ is called super edge-magic if it admits a super edge-magic labeling.

Most recently, Marimuthu and Balakrishnan [13], introduced the notion of super edgemagic graceful graphs to solve some kind of network problems. A $(p, q)$ graph $G$ with $p$ vertices and $q$ edges is edge magic graceful if there exists a bijection $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, p+q\}$ such that $|f(u)+f(v)-f(u v)|=k$, a constant for any edge $u v$ of $G . G$ is said to be super edge-magic graceful if $f(V(G))=\{1,2, \ldots, p\}$.

A covering of $G$ is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq h$. Then it is said that $G$ admits an $\left(H_{1}, H_{2}, \cdots, H_{h}\right)$ covering. If every $H_{i}$ is isomorphic to a given graph $H$, then $G$ admits an $H$-covering. A family of subgraphs $H_{1}, H_{2}, \cdots, H_{h}$ of $G$ is a $H$-decomposition of $G$ if all the subgraphs are isomorphic to a graph $H, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for $i \neq j$ and
$\cup_{i=1}^{h} E\left(H_{i}\right)=E(G)$. In this case, we write $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{h}$ and $G$ is said to be $H$-decomposable.

The notion of H -super magic labeling was first introduced and studied by Gutiérrez and Lladó [6] in 2005. They proved that some classes of connected graphs are $H$-super magic. Suppose $G$ is $H$-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ is called an $H$-magic labeling of $G$ if there exists a positive integer $k$ (called magic constant) such that for every copy $H$ in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)=k$. A graph $G$ that admits such a labeling is called a $H$-magic decomposable graph. An $H$-magic labeling $f$ is called a $H-V$-super magic labeling if $f(V(G))=\{1,2, \cdots, p\}$. A graph that admits a $H$ - $V$-super magic labeling is called a $H-V$-super magic decomposable graph. An $H$-magic labeling $f$ is called a $H$ - $E$-super magic labeling if $f(E(G))=\{1,2, \cdots, q\}$. A graph that admits a $H$ - $E$-super magic labeling is called a $H$ - $E$-super magic decomposable graph. The sum of all vertex and edge labels on $H$ is denoted by $\sum f(H)$.

In 2007, Lladó and Moragas [8] studied the cycle-magic and cyclic-super magic behavior of several classes of connected graphs. They gave several families of $C_{r}$-magic graphs for each $r \geq 3$. In 2010, Ngurah, Salman and Susilowati [17] studied the cycle-super magic labeling of chain graphs, fans, triangle ladders, graph obtained by joining a star $K_{1, n}$ with one isolated vertex, grids and books. Maryati et al. [16] studied the $H$-super magic labeling of some graphs obtained from $k$ isomorphic copies of a connected graph $H$. In 2012, Mania Roswitha and Edy Tri Baskoro [11] studied the $H$-super magic labeling for some trees such as a double star, a caterpillar, a firecracker and banana tree. In 2013, Toru Kojima [21] studied the $C_{4}$-super magic labeling of the Cartesian product of paths and graphs. In 2012, Inayah et al. [7] studied magic and anti-magic $H$-decompositions and Zhihe Liang [22] studied cycle-super magic decompositions of complete multipartite graphs. They are all called a $H$-magic labeling as a $H$-super magic if the smallest labels are assigned to the vertices. Note that an edge-magic graph is a $K_{2}$-magic graph.

All the articles mentioned here which are dealing with $H$-magic or $H$-super magic decomposition of a graph $G$ consider a fixed subgraph $H$. But we discuss the following.

A family of subgraphs $H_{1}, H_{2}, \cdots, H_{h}$ of $G$ is said to be mixed cycle- decomposition if every subgraph $H_{i}$ is isomorphic to some cycle $C_{k}$, for $k \geq 3$. Suppose $G$ is mixed cycle-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ is called an mixed cycle-magic labeling of $G$ if there exists a positive integer $k$ (called magic constant) such that for every cycle $H_{i}$ in the decomposition, $\sum_{v \in V\left(H_{i}\right)} f(v)+\sum_{e \in E\left(H_{i}\right)} f(e)=k$. A graph $G$ that admits such a labeling is called a mixed cycle-magic decomposable graph. A mixed cycle-magic labeling $f$ is called a mixed cycle- $V$-super magic labeling if
$f(V(G))=\{1,2, \cdots, p\}$. A graph that admits a mixed cycle- $V$-super magic labeling is called a mixed cycle- $V$-super magic decomposable graph. A mixed cycle-magic labeling $f$ is called a mixed cycle- $E$-super magic labeling if $f(E(G))=\{1,2, \cdots, q\}$. A graph that admits a mixed cycle- $E$-super magic labeling is called a mixed cycle- $E$-super magic decomposable graph.

Let $K_{m, n}$ and $C_{k}$ denote the complete bipartite graph and the elementary cycle of length $k$. If a graph $G$ can be decomposed into $p_{1}$ copies of $C_{4}, q_{1}$ copies of $C_{6}$ and $r_{1}$ copies of $C_{8}$, then we write $G=p_{1} C_{4}+q_{1} C_{6}+r_{1} C_{8}$. We assume throughtout this paper that $p_{1}, q_{1}, r_{1} \in N \cup\{0\}$, the set of nonnegative integers. In [1], Chao-Chih Chou et al. introduced the notions $D(G)$ and $S_{i} . D(G)=\left\{\left(p_{1}, q_{1}, r_{1}\right): p_{1}, q_{1}, r_{1} \in N \cup\{0\}\right.$ and $\left.G=p_{1} C_{4}+q_{1} C_{6}+r_{1} C_{8}\right\}$ and $S_{i}=\left\{\left(p_{1}, q_{1}, r_{1}\right): p_{1}, q_{1}, r_{1} \in N \cup\{0\}\right.$ and $\left.4 p_{1}+6 q_{1}+8 r_{1}=i\right\}$, for each positive integer $i$. Then clearly $D(G) \subseteq S_{q}$. In [14], Marimuthu and Stalin Kumar studied the Mixed cycle- $V$-super magic decomposition of complete bipartite graphs. This idea helps us to study about the mixed cycle- $E$-super magic decomposition of complete bipartite graphs.

We shall make use of the following results from [1].
Theorem 1.1. $D\left(K_{2,2 t}\right)=\{(t, 0,0)\}$, for each $t \in N$.
Theorem 1.2. $D\left(K_{4,4}\right)=\{(4,0,0),(1,2,0),(0,0,2)\}=S_{16}-\{(2,0,1)\}=S_{16}^{*}$.
Theorem 1.3. If $m$ and $n$ are integers such that $m \geq 2, n \geq 3$ then $D\left(K_{2 m, 2 n}\right)=S_{4 m n}$.

## $2 C_{4}$ - $E$-super magic decomposition of $K_{2,2 t}$ and $K_{4,4}$

In this section, we prove that the graphs $G \cong K_{2,2 t}$ where $t \in N$ and $G \cong K_{4,4}$ are $C_{4}$ - $E$-super magic decomposable.

Theorem 2.1. Suppose that $G \cong K_{2,2 t}$ is $C_{4}$-decomposable. Then $G$ is a $C_{4}$-E-super magic decomposable graph with magic constant $26 t+10$.

Proof. By Theorem 1.1, we have $D\left(K_{2,2 t}\right)=\{(t, 0,0)\}$, for each $t \in N$.
Let $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{v_{1}, v_{2}, \cdots, v_{2 t}\right\}$ be two stable sets of $G$. Let $\left\{H_{1}, H_{2}, \cdots, H_{t}\right\}$ be a $C_{4}$-decomposition of $G$, such that $V\left(H_{i}\right)=\left\{u_{1}, u_{2}, v_{2 i-1}, v_{2 i}\right\}$ and
$E\left(H_{i}\right)=\left\{u_{1} v_{2 i-1}, v_{2 i-1} u_{2}, u_{2} v_{2 i}, v_{2 i} u_{1}\right\}$, for $1 \leq i \leq t$. Clearly $p=2+2 t$ and $q=4 t$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, 2+6 t\}$ by $f\left(u_{i}\right)=4 t+i$ for all $i=1,2$ and
$f\left(v_{j}\right)=\left\{\begin{array}{ll}(4 t+3)+\left\lfloor\frac{j}{2}\right\rfloor, & \text { if } j=1,3, \cdots, 2 t-1 \\ (6 t+3)-\left\lfloor\frac{j}{2}\right\rfloor, & \text { if } j=2,4, \cdots, 2 t\end{array}\right\}$

Table 1: The edge label of a $C_{4}$-decomposition of $K_{2,2 t}$ if $t$ is odd.

| $f$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $\ldots$ | $v_{t}$ | $v_{t+1}$ | $\ldots$ | $v_{2 t-1}$ | $v_{2 t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 1 | 2 | 3 | 4 | $\ldots$ | $t$ | $t+1$ | $\ldots$ | $2 t-1$ | $2 t$ |
| $u_{2}$ | $4 t$ | $4 t-1$ | $4 t-2$ | $4 t-3$ | $\ldots$ | $3 t+1$ | $3 t$ | $\ldots$ | $2 t+2$ | $2 t+1$ |

Table 2: The edge label of a $C_{4}$-decomposition of $K_{2,2 t}$ if $t$ is even.

| $f$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $\ldots$ | $v_{t-1}$ | $v_{t}$ | $\ldots$ | $v_{2 t-1}$ | $v_{2 t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 1 | 2 | 3 | 4 | $\ldots$ | $t-1$ | $t$ | $\ldots$ | $2 t-1$ | $2 t$ |
| $u_{2}$ | $4 t$ | $4 t-1$ | $4 t-2$ | $4 t-3$ | $\ldots$ | $3 t+2$ | $3 t+1$ | $\ldots$ | $2 t+2$ | $2 t+1$ |

It remains only to label the edges.
Case 1. $t$ is odd.
Now the edges of $G$ can be labeled as shown in Table 1.
From Table 1, $\sum f\left(E\left(H_{i}\right)\right)=8 t+2$ for $1 \leq i \leq t$. By the definition of $f$,

$$
\begin{aligned}
\sum f\left(H_{1}\right) & =f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+\sum f\left(E\left(H_{1}\right)\right) \\
& =((4 t+1)+(4 t+2)+(4 t+3)+(6 t+2))+(8 t+2) \\
& =26 t+10
\end{aligned}
$$

In a similar way,

$$
\begin{aligned}
\sum f\left(H_{2}\right) & =f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+\sum f\left(E\left(H_{2}\right)\right) \\
& =((4 t+1)+(4 t+2)+(4 t+4)+(6 t+1))+(8 t+2) \\
& =26 t+10
\end{aligned}
$$

Thus, $\sum f\left(H_{2}\right)=\sum f\left(H_{1}\right)=26 t+10$. In general,

$$
\begin{aligned}
\sum f\left(H_{t}\right) & =f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{2 t-1}\right)+f\left(v_{2 t}\right)+\sum f\left(E\left(H_{t}\right)\right) \\
& =((4 t+1)+(4 t+2)+(5 t+2)+(5 t+3))+(8 t+2) \\
& =26 t+10
\end{aligned}
$$

so, $\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=\sum f\left(H_{3}\right)=\cdots=\sum f\left(H_{t}\right)=26 t+10$.
Thus the graph $G$ is a $C_{4}-E$-super magic decomposable graph.

Case 2. $t$ is even.
The edges of $G$ can be labeled as shown in Table 2.
Here also, we have $\sum f\left(E\left(H_{i}\right)\right)=8 t+2$ for $1 \leq i \leq t$, and as in case 1 ,

40 G. Marimuthu, / Journal of Algorithms and Computation 46 (2015) PP. 35-50

Table 3: The edge label of a $C_{4}$-decomposition of $K_{4,4}$.

| $f$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 16 | 5 | 13 | 4 |
| $u_{2}$ | 11 | 6 | 14 | 3 |
| $u_{3}$ | 10 | 7 | 15 | 2 |
| $u_{4}$ | 9 | 8 | 12 | 1 |

$\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=\sum f\left(H_{3}\right)=\cdots=\sum f\left(H_{t}\right)=26 t+10$. Thus $G$ is a $C_{4}$ - $E$-super magic decomposable graph.

Theorem 2.2. The graph $G \cong K_{4,4}$ is $C_{4}$-E-super magic decomposable under the decomposition $(4,0,0) \in D\left(K_{4,4}\right)$.

Proof. By Theorem 1.2, we have $D\left(K_{4,4}\right)=\{(4,0,0),(1,2,0),(0,0,2)\}$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be two stable sets of $G$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, 24\}$ by $f\left(u_{i}\right)=16+i$ and $f\left(v_{i}\right)=20+i$, for all $i=1,2,3$, 4 . consider the decomposition of $G,(4,0,0) \in D\left(K_{4,4}\right)$.
Let $H=\left\{H_{1}=\left(u_{1} v_{1} u_{2} v_{2}\right), H_{2}=\left(u_{1} v_{3} u_{2} v_{4}\right), H_{3}=\left(u_{3} v_{1} u_{4} v_{2}\right), H_{4}=\left(u_{3} v_{3} u_{4} v_{4}\right)\right\}$ be a $C_{4^{-}}$ decomposition of $G$. Now the edges of $G$ can be labeled as shown in Table 3. Using this, we have

$$
\begin{aligned}
\sum f\left(H_{1}\right) & =f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+\sum f\left(E\left(H_{1}\right)\right) \\
& =(17+18+21+22)+(16+5+11+6) \\
& =78+38 \\
& =116 .
\end{aligned}
$$

$$
\begin{aligned}
\sum f\left(H_{2}\right) & =f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+\sum f\left(E\left(H_{2}\right)\right) \\
& =(17+18+23+24)+(13+4+14+3) \\
& =82+34 \\
& =116 .
\end{aligned}
$$

$$
\begin{aligned}
\sum f\left(H_{3}\right) & =f\left(u_{3}\right)+f\left(u_{4}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+\sum f\left(E\left(H_{1}\right)\right) \\
& =(19+20+21+22)+(10+7+8+9) \\
& =82+34 \\
& =116 .
\end{aligned}
$$

Table 4: The edge label of a $C_{8}$-decomposition of $K_{4,4}$.

| $f$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 1 | 2 | 15 | 16 |
| $u_{2}$ | 4 | 5 | 14 | 11 |
| $u_{3}$ | 7 | 8 | 9 | 10 |
| $u_{4}$ | 6 | 3 | 12 | 13 |

$$
\begin{aligned}
\sum f\left(H_{4}\right) & =f\left(u_{3}\right)+f\left(u_{4}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+\sum f\left(E\left(H_{1}\right)\right) \\
& =(19+20+23+24)+(15+2+12+13) \\
& =86+30 \\
& =116 .
\end{aligned}
$$

Thus $\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=\sum f\left(H_{3}\right)=\sum f\left(H_{4}\right)=116$.
Hence the graph $K_{4,4}$ is $C_{4}$ - $E$-super magic decomposable under the decomposition $(4,0,0) \in$ $D\left(K_{4,4}\right)$.

## $3 \quad C_{8}$ - $E$-super magic decomposition of $K_{4,4}$

In this section, we prove that the graph $G \cong K_{4,4}$ is $C_{8}$ - $E$-super magic decomposable.
Theorem 3.1. The graph $G \cong K_{4,4}$ is $C_{8}$-E-super magic decomposable under the decomposition $(0,0,2) \in D\left(K_{4,4}\right)$.

Proof. By Theorem 1.2, we have $D\left(K_{4,4}\right)=\{(4,0,0),(1,2,0),(0,0,2)\}$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be two stable sets of $G$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, 24\}$ by $f\left(u_{i}\right)=16+i$ and $f\left(v_{i}\right)=20+i$, for all $i=1,2,3$, 4. consider the decomposition of $G,(0,0,2) \in D\left(K_{4,4}\right)$.
Let $H=\left\{H_{1}=\left(u_{1} v_{1} u_{2} v_{2} u_{3} v_{3} u_{4} v_{4}\right), H_{2}=\left(u_{1} v_{2} u_{4} v_{1} u_{3} v_{4} u_{2} v_{3}\right)\right\}$ be a $C_{8}$-decomposition of $G$. Now the edges of $G$ can be labeled as shown in Table 4.
Thus,

$$
\begin{aligned}
\sum f\left(H_{1}\right)= & f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+f\left(u_{4}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) \\
& +\sum f\left(E\left(H_{1}\right)\right) \\
= & (17+18+19+20+21+22+23+24) \\
& +(1+4+5+8+9+12+13+16) \\
= & 164+68 \\
= & 232 .
\end{aligned}
$$

$$
\begin{aligned}
\sum f\left(H_{2}\right)= & f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+f\left(u_{4}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) \\
& +\sum f\left(E\left(H_{2}\right)\right) \\
= & (17+18+19+20+21+22+23+24) \\
& +(2+3+6+7+10+11+14+15) \\
= & 164+68 \\
= & 232 .
\end{aligned}
$$

So $\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=232$.
Thus the graph $K_{4,4}$ is $C_{8}$ - $E$-super magic decomposable under the decomposition $(0,0,2) \in$ $D\left(K_{4,4}\right)$.

## 4 Mixed Cycle- $E$-super magic decomposition of Complete bipartite graphs

Many authors studied $H$-(super)magic labeling for a fixed graph $H$, for example see $[6,7,8,11,16,17,21,22]$. In this section, we introduce the concept of mixed cycle decomposition of a graph $G$ after refering [1]. A family of subgraphs $H_{1}, H_{2}, \cdots, H_{h}$ of $G$ is said to be mixed cycle-decomposition of $G$ if every subgraph $H_{i}$ is isomorphic to some cycle $C_{k}$, for $k \geq 3$. Suppose $G$ is mixed cycle-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ is called an mixed cycle-magic labeling of $G$ if there exists a positive integer $k$ (called magic constant) such that for every copy $H$ in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)=k$. A graph $G$ that admits such a labeling is called a mixed cycle-magic decomposable graph. A mixed cycle-magic labeling $f$ is called a mixed cycle- $V$-super magic labeling if $f(V(G))=\{1,2, \cdots, p\}$. A graph that admits a mixed cycle- $V$-super magic labeling is called a mixed cycle- $V$-super magic decomposable graph. A mixed cycle-magic labeling $f$ is called a mixed cycle- $E$-super magic labeling if $f(E(G))=\{1,2, \cdots, q\}$. A graph that admits a mixed cycle- $E$-super magic labeling is called a mixed cycle- $E$-super magic decomposable graph.

In [14], Marimuthu and Stalin Kumar studied the Mixed cycle- $V$-super magic decomposition of complete bipartite graphs $G \cong K_{2 m, 2 n}$ with $m \geq 2$ and $n \geq 3$. Here we studied the mixed cycle- $E$-super magicness of complete bipartite graphs and also prove that the graph $K_{4,4}$ is not mixed cycle- $E$-super magic decomposable under the decomposotion $(1,2,0) \in D\left(K_{4,4}\right)$.

In this section, we consider the graph $G \cong K_{2 m, 2 n}$ with $m \geq 2$ and $n \geq 3$. Clearly $p=2(m+n)$ and $q=4 m n$.

Theorem 4.1. If a non-trivial complete bipartite graph $G \cong K_{2 m, 2 n}$ with $m \geq 2$ and $n \geq 3$ is mixed cycle-E-super magic decomposable, then the magic constant $k$ is given by $k=\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}}$.

Proof. By Theorem 1.3, $D\left(K_{2 m, 2 n}\right)=S_{4 m n}=\left\{\left(p_{1}, q_{1}, r_{1}\right) / p_{1}, q_{1}, r_{1} \in N \cup\{0\}\right.$ and $4 p_{1}+$ $\left.6 q_{1}+8 r_{1}=4 m n\right\}$. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{2 m}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots, w_{2 n}\right\}$ be two stable sets of $G$ such that $V(G)=U \cup W$ and let $\left\{H_{i} / i=1,2, \cdots, p_{1}+q_{1}+r_{1}\right\}$ be a mixed-cycle decomposition of $G$. Let $f$ be a mixed cycle- $E$-super magic labeling of $G$ with magic constant $k$. Then $f(V(G))=\{4 m n+1,4 m n+2, \cdots,(4 m n+2(m+n))\}$, $f(E(G))=\{1,2, \cdots, 4 m n\}$ and $k=\sum_{v \in V\left(H_{i}\right)} f(v)+\sum_{e \in E\left(H_{i}\right)} f(e)$ for every $H_{i}$ in the decomposition of $G$. Let $f(U)=\{4 m n+1,4 m n+2, \cdots,(4 m n+2 m)\}$ and $f(W)=$ $\{(4 m n+2 m+1),(4 m n+2 m+2), \cdots,(4 m n+2(m+n))\}$. When taking the sum of vertex labels of all subgraphs $H_{i},\left(i=1,2, \cdots, p_{1}+q_{1}+r_{1}\right)$ in the decomposition $\left(p_{1}, q_{1}, r_{1}\right)$, the vertex labels $4 m n+1,4 m n+2, \cdots,(4 m n+2 m)$ occurs $\frac{2 n}{2}$ times and the vertex labels $(4 m n+2 m+1),(4 m n+2 m+2), \cdots,(4 m n+2(m+n))$ occurs $\frac{2 m}{2}$ times.
Hence,

$$
\begin{aligned}
\sum_{i=1}^{p_{1}+q_{1}+r_{1}} f\left(V\left(H_{i}\right)\right)= & \frac{2 n}{2}\{(4 m n+1)+(4 m n+2)+\cdots+(4 m n+2 m)\} \\
& +\frac{2 m}{2}\{(4 m n+(2 m+1))+(4 m n+(2 m+2)) \\
& +\cdots+(4 m n+(2 m+2 n))\} \\
= & n\left\{8 m^{2} n+\frac{2 m(2 m+1)}{2}\right\}+m\left\{2 n(4 m n+2 m)+\frac{2 n(2 n+1)}{2}\right\} \\
= & 8 m^{2} n^{2}+m n(2 m+1)+8 m^{2} n^{2}+4 m^{2} n+m n(2 n+1) \\
= & 16 m^{2} n^{2}+4 m^{2} n+m n(2 m+2 n+2) \\
= & m n(16 m n+4 m+2(m+n+1)) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{i=1}^{p_{1}+q_{1}+r_{1}} f\left(E\left(H_{i}\right)\right) & =\{1+2+\cdots+4 m n\} \\
& =\frac{4 m n(4 m n+1)}{2} \\
& =2 m n(4 m n+1)
\end{aligned}
$$

Since there are $p_{1}$ copies of $C_{4}, q_{1}$ copies of $C_{6}$ and $r_{1}$ copies of $C_{8}$, we have

$$
\begin{aligned}
\left(p_{1}+q_{1}+r_{1}\right) k & =\sum_{i=1}^{p_{1}+q_{1}+r_{1}} f\left(V\left(H_{i}\right)\right)+\sum_{i=1}^{p_{1}+q_{1}+r_{1}} f\left(E\left(H_{i}\right)\right) \\
& =m n(16 m n+4 m+2(m+n+1))+2 m n(4 m n+1) \\
& =m n(16 m n+4 m+2(m+n+1)+2(4 m n+1)) \\
& =2 m n(8 m n+2 m+(m+n+1)+(4 m n+1)) \\
& =2 m n(3 m+n+12 m n+2) .
\end{aligned}
$$

Thus, $k=\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}}$.
Corollary 4.2. Suppose $G \cong K_{2 m, 2 n}$ with $m \geq 2$ and $n \geq 3$ is a mixed cycle- $E$-super magic decomposable graph under the decomposition $\left(p_{1}, q_{1}, r_{1}\right) \in D\left(K_{2 m, 2 n}\right)$ with magic constant $k=\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}}$, then $\left(p_{1}+q_{1}+r_{1}\right)$ divides $2 m n$ or $(3 m+n+12 m n+2)$.

Theorem 4.3. The graph $G \cong K_{4,4}$ is not a mixed cycle-E-super magic decomposable under the decomposition $(1,2,0) \in D\left(K_{4,4}\right)$.

Proof. Suppose $G$ is mixed-cycle- $E$-super magic decomposable under the decomposition $(1,2,0) \in D\left(K_{4,4}\right)$, then by Theorem 4.1,

$$
\begin{aligned}
k & =\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}} \\
& =\frac{2(2)(2)(3(2)+2+12(2)(2)+2)}{1+2+0} \\
& =\frac{8(58)}{3},
\end{aligned}
$$

which is not an integer. Hence $G \cong K_{4,4}$ is not a mixed cycle- $E$-super magic decomposable graph under the decomposition $(1,2,0) \in D\left(K_{4,4}\right)$.

Remark 4.4. Suppose for some $m \geq 2$ and $n \geq 3, D\left(K_{2 m, 2 n}\right)=\{(a, b, c)\}$ where $a, b, c \in$ $N \cup\{0\}$ and $K_{2 m, 2 n}=a C_{4}+b C_{6}+c C_{8}$. If $k=\frac{2 m n(3 m+n+12 m n+2)}{a+b+c}$ is an integer. Then $K_{2 m, 2 n}$ is not neccessary to be a mixed cycle-E-super magic decomposable graph. This fact is illustrated in the following examples.

Example 4.1. Consider the decomposition $(2,0,2) \in D\left(K_{4,6}\right)$.
Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$ be two stable sets of $K_{4,6}$ such that $V(G)=U \cup W$. Let $\left\{H_{1}=\left(u_{1} w_{1} u_{2} w_{2}\right), H_{2}=\left(u_{3} w_{1} u_{4} w_{6}\right), H_{3}=\left(u_{1} w_{3} u_{2} w_{4} u_{3} w_{2} u_{4} w_{5}\right)\right.$, $\left.H_{4}=\left(u_{1} w_{4} u_{4} w_{3} u_{3} w_{5} u_{2} w_{6}\right)\right\}$ be a mixed cycle-decomposition of $K_{4,6}$, where $H_{1}, H_{2}$ are isomorphic to $C_{4}$ and $H_{3}, H_{4}$ are isomorphic to $C_{8}$. Define a total labeling $f: V(G) \cup$ $E(G) \rightarrow\{1,2, \cdots, 34\}$ by $f\left(u_{i}\right)=24+i$ and $f\left(w_{j}\right)=28+j$, for all $i=1,2,3,4$ and
$j=1,2,3,4,5,6$. Here $m=2, n=3, p_{1}=2, q_{1}=0$ and $r_{1}=2$.
Suppose $K_{4,6}$ is a mixed cycle-E-super magic decomposable graph under the decomposition $(2,0,2) \in D\left(K_{4,6}\right)$, then by Theorem 4.1,

$$
\begin{aligned}
k & =\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}} \\
& =\frac{2(2)(3)(3(2)+3+12(2)(3)+2)}{2+0+2} \\
& =\frac{12(83)}{4} \\
& =249 .
\end{aligned}
$$

Hence $\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=\sum f\left(H_{3}\right)=\sum f\left(H_{4}\right)=249$.
But consider the labeling of $H_{1}$, if we assign maximum edge labels to $H_{1}, \sum f\left(E\left(H_{1}\right)\right)=$ $21+22+23+24=90$ and by definition of $f$, we have

$$
\begin{aligned}
\sum f\left(V\left(H_{1}\right)\right) & =f\left(u_{1}\right)+f\left(w_{1}\right)+f\left(u_{2}\right)+f\left(w_{2}\right) \\
& =(24+1)+(28+1)+(24+2)+(28+2) \\
& =110
\end{aligned}
$$

Thus, $\sum f\left(H_{1}\right)=90+110=200 \neq 249$. Hence, under the decomposition $(2,0,2) \in$ $D\left(K_{4,6}\right)$, the graph $K_{4,6}$ is not a mixed cycle- $E$-super magic decomposable.

Example 4.2. The graph $K_{4,6}$ is not mixed cycle-E-super magic decomposable under the decomposition $(1,2,1) \in D\left(K_{4,6}\right)$.
Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$ be two stable sets of $K_{4,6}$ such that $V(G)=U \cup W$. Let $\left\{H_{1}=\left(u_{3} w_{1} u_{4} w_{2}\right), H_{2}=\left(u_{1} w_{4} u_{2} w_{5} u_{3} w_{6}\right), H_{3}=\left(u_{1} w_{1} u_{2} w_{6} u_{4} w_{3}\right)\right.$, $\left.H_{4}=\left(u_{1} w_{1} u_{2} w_{3} u_{3} w_{4} u_{4} w_{5}\right)\right\}$ be a Mixed Cycle- decomposition of $K_{4,6}$, where $H_{1}$, is isomorphic to $C_{4}, H_{2}, H_{3}$, are isomorphic to $C_{6}$ and $H_{4}$ is isomorphic to $C_{8}$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, 34\}$ by $f\left(u_{i}\right)=24+i$ and $f\left(w_{j}\right)=28+j$, for all $i=1,2,3,4$ and $j=1,2,3,4,5,6$. Here $m=2, n=3, p_{1}=1, q_{1}=2$ and $r_{1}=1$.
Suppose $K_{4,6}$ is a mixed cycle-E-super magic decomposable graph under the decomposition

46 G. Marimuthu, / Journal of Algorithms and Computation 46 (2015) PP. 35-50
$(1,2,1) \in D\left(K_{4,6}\right)$, then by Theorem 4.1,

$$
\begin{aligned}
k & =\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}} \\
& =\frac{2(2)(3)(3(2)+3+12(2)(3)+2)}{1+2+1} \\
& =\frac{12(83)}{4} \\
& =249 .
\end{aligned}
$$

Hence $\sum f\left(H_{1}\right)=\sum f\left(H_{2}\right)=\sum f\left(H_{3}\right)=\sum f\left(H_{4}\right)=249$.
But consider the labeling of $H_{1}$, if we assign maximum edge labels to $H_{1}, \sum f\left(E\left(H_{1}\right)\right)=$ $21+22+23+24=90$ and by definition of $f$, we have

$$
\begin{aligned}
\sum f\left(V\left(H_{1}\right)\right) & =f\left(u_{3}\right)+f\left(w_{1}\right)+f\left(u_{4}\right)+f\left(w_{2}\right) \\
& =(24+3)+(28+1)+(24+4)+(28+2) \\
& =114
\end{aligned}
$$

Thus, $\sum f\left(H_{1}\right)=90+114=204 \neq 249$. Hence, under the decomposition $(1,2,1) \in$ $D\left(K_{4,6}\right)$, the graph $K_{4,6}$ is not a mixed cycle-E-super magic decomposable.

Example 4.3. The graph $K_{4,6}$ is not mixed cycle-E-super magic decomposable under the decomposition $(4,0,1) \in D\left(K_{4,6}\right)$.
Suppose $K_{4,6}$ is mixed-cycle-E-super magic decomposable under the decomposition $(4,0,1) \in$ $D\left(K_{4,6}\right)$, then by Theorem 4.1,

$$
\begin{aligned}
k & =\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}} \\
& =\frac{2(2)(3)(3(2)+3+12(2)(3)+2)}{4+0+1} \\
& =\frac{12(83)}{5},
\end{aligned}
$$

which is not an integer. Thus, under the decomposition $(4,0,1) \in D\left(K_{4,6}\right)$, the graph $K_{4,6}$ is not a mixed cycle-E-super magic decomposable.

Example 4.4. The graph $K_{4,6}$ is not mixed cycle-E-super magic decomposable under the decomposition $(3,2,0) \in D\left(K_{4,6}\right)$.
Suppose $K_{4,6}$ is mixed-cycle-E-super magic decomposable under the decomposition $(3,2,0) \in$

47 G. Marimuthu, / Journal of Algorithms and Computation 46 (2015) PP. 35-50


Figure 1: mixed cycle- $E$-super magic decompositon of $K_{7}$
$D\left(K_{4,6}\right)$, then by Theorem 4.1,

$$
\begin{aligned}
k & =\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}} \\
& =\frac{2(2)(3)(3(2)+3+12(2)(3)+2)}{3+2+0} \\
& =\frac{12(83)}{5},
\end{aligned}
$$

which is not an integer. Thus, under the decomposition $(3,2,0) \in D\left(K_{4,6}\right)$, the graph $K_{4,6}$ is not a mixed cycle-E-super magic decomposable.

Theorem 4.5. Suppose the decomposition of $K_{2 m, 2 n}$ has at least one $C_{4}$ and at least one $C_{8}$, then $K_{2 m, 2 n}$ is not mixed cycle- $E$-super magic decomposable.

Proof. Let $\left(p_{1}, q_{1}, r_{1}\right) \in D\left(K_{2 m, 2 n}\right)$ with $p_{1} \geq 1$ and $r_{1} \geq 1$. Suppose $K_{2 m, 2 n}$ is mixed cycle- $E$-super magic decomposable, then by Theorem 4.1, there exists a mixed cycle- $E$ super magic labeling $f$ such that $k=\frac{2 m n(3 m+n+12 m n+2)}{p_{1}+q_{1}+r_{1}}$. Let us assume that $p_{1}=1$, $q_{1} \neq 0$ and $r_{1}=1$. Let $H_{1}$ and $H_{2}$ be the subgraphs of $K_{2 m, 2 n}$ isomorphic to $C_{4}$ and $C_{8}$ respectively. Let us label $H_{1}$, if we assign maximum edge labels to the edges of $H_{1}$, we have $\sum f\left(E\left(H_{1}\right)\right)=(4 m n-3)+(4 m n-2)+(4 m n-1)+(4 m n)=16 m n-6$ and if we assign maximum vertex labels to the vertices of $H_{1}$, we have $\sum f\left(V\left(H_{1}\right)\right)=$ $\{((2 m+2 n)+4 m n-3)+((2 m+2 n)+4 m n-2)+((2 m+2 n)+4 m n-1)+((2 m+2 n)+$ $4 m n)\}=16 m n+8 m+8 n-6$, thus $\sum f\left(H_{1}\right)=(16 m n-6)+(16 m n+8 m+8 n-6)=$ $32 m n+8 m+8 n-12 \neq k$. Similarly if we assign minimum edge labels to the edges of $H_{2}$, we have $\sum f\left(E\left(H_{1}\right)\right)=(1+2+3+\cdots+8)=36$, and minimum vertex labels to the vertices of $H_{2}$, we have $\sum f\left(E\left(H_{2}\right)\right)=\{(4 m n+1)+(4 m n+2)+(4 m n+3)+\cdots+(4 m n+8)\}$ $=32 m n+36$, thus $\sum f\left(H_{2}\right)=(36)+(32 m n+36)=32 m n+72 \neq k$. In both cases we get a contradiction, hence the graph $K_{2 m, 2 n}$ is not mixed cycle- $E$-super magic decomposable if its decomposition has at least one $C_{4}$ and at least one $C_{8}$.

## 5 Conclusion

In this paper, we studied the mixed cycle- $E$-super magic decomposition of $K_{2 m, 2 n}$. If its decomposition has at least one $C_{4}$ and at least one $C_{8}$, then $K_{2 m, 2 n}$ is not mixed cycle- $E$-super magic decomposable. Figure 1 shows that the complete graph $K_{7}$ is mixed cycle- $E$-super magic decomposable with magic constant $k=126$.
It is natural to have the following problem.
Open Problem 5.1. Discuss the mixed cycle-E-super magic decomposition of complete graphs

49 G. Marimuthu, / Journal of Algorithms and Computation 46 (2015) PP. 35-50

## References

[1] Chao-Chih Chou, Chin-Mei Fu, Wen-Chung Huang, Decomposition of $K_{m, n}$ into short cycles, Discrete Math. 197/198 (1999) 195-203.
[2] G. Chartrand, L. Lesniak, "Graphs and Digraphs", 3rd Edition, Chapman and Hall, Boca Raton, London, Newyork, Washington, D.C (1996).
[3] G. Chartrand and P. Zhang, "Chromatic Graph Theory", Chapman and Hall, CRC, Boca Raton, (2009).
[4] H. Emonoto, Anna S Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.
[5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) \#DS6.
[6] A. Gutiérrez, A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56.
[7] N. Inayah, A. Lladó, J. Moragas, Magic and antimagic H-decompositions, Discrete Math. 312 (2012) 1367-1371.
[8] A. Lladó, J.Moragas, Cycle-magic graphs, Discrete Math. 307 (2007) 2925-2933.
[9] J.A. MacDougall, M. Miller, Slamin, W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002) 3-21.
[10] J. A. MacDougall, M. Miller and K. Sugeng, Super vertex-magic total labeling of graphs, Proc. 15th AWOCA (2004) 222-229.
[11] Mania Roswitha, Edy Tri Baskoro, H-Magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012) 135-138.
[12] G. Marimuthu, M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Appl. Math. 160 (2012) 1766-1774.
[13] G. Marimuthu, M. Balakrishnan, Super edge magic graceful graphs, Inform. Sci. 287 (2014) 140-151.
[14] G. Marimuthu, S. Stalin Kumar, Mixed cycle-V-super magic decomposition of complete bipartite graphs, Communicated.
[15] A. M. Marr, W. D. Wallis, "Magic graphs", Birkhauser, Boston, Basel, Berlin, (2013) (2nd edition).

50 G. Marimuthu, / Journal of Algorithms and Computation 46 (2015) PP. 35-50
[16] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan, M. Miller, On H-Supermagic labeling for certain shackles and amalgamations of a connected graph, Util. Math. 83 (2010) pp. 333-342.
[17] A. A. G. Ngurah, A. N. M. Salman, L. Susilowati, H-Supermagic labeling of graphs, Discrete Math. 310 (2010) 1293-1300.
[18] J. Sedlacek, Problem 27, Theory of Graphs and its Applications, Proceedings of Symposium Smolenice, (1963), pp. 163-167.
[19] ] K.A. Sugeng and W. Xie, Construction of Super edge magic total graphs, Proc. 16th AWOCA (2005), 303-310.
[20] Tao-Ming Wang, Guang-Hui Zhang, Note on E-super vertex magic graphs, Discrete Appl. Math. 178 (2014) 160-162.
[21] Toru Kojima, On $C_{4}$-Supermagic labelings of the Cartesian product of paths and graphs, Discrete Math. 313 (2013) 164-173.
[22] Zhihe Liang, Cycle-super magic decompositions of complete multipartite graphs, Discrete Math. 312 (2012) 3342-3348.


[^0]:    *Email:yellowmuthu@yahoo.com;
    ${ }^{\dagger}$ E-mail: sskumbas@gmail.com

