Vertex Equitable Labeling of Double Alternate Snake Graphs

P. Jeyanthi ${ }^{* 1}$, A. Maheswari ${ }^{\dagger}{ }^{2}$ and M.Vijayalakshmi ${ }^{\ddagger 3}$
${ }^{1}$ Research Center, Department of Mathematics, Govindammal Aditanar College for women, Tiruchendur - 628 215, Tamilnadu,India
${ }^{2}$ Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar, India.
${ }^{3}$ Department of Mathematics, Dr.G.U. Pope College of Engineering, Sawyerpuram, Thoothukudi District, Tamilnadu, India.

ABSTRACT

Let G be a graph with p vertices and q edges and $A=\left\{0,1,2, \ldots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A vertex labeling $f: V(G) \rightarrow A$ induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+$ $f(v)$ for all edges $u v$. For $a \in A$, let $v_{f}(a)$ be the number of vertices v with $f(v)=a$. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \ldots, q$. In this paper, we prove that $D A\left(T_{n}\right) \odot K_{1}, D A\left(T_{n}\right) \odot 2 K_{1}\left(D A\left(T_{n}\right)\right.$ denote double alternate triangular snake) and $D A\left(Q_{n}\right) \odot$ $K_{1}, D A\left(Q_{n}\right) \odot 2 K_{1}\left(D A\left(Q_{n}\right)\right.$ denote double alternate quadrilateral snake) are vertex equitable graphs.

ARTICLE INFO

Article history:
Received 12, January 2015
Received in revised form 14, September 2015
Accepted 25, September 2015
Available online 7, January 2016

AMS subject Classification: 05C78

[^0]
1 Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notations and terminology of graph theory as in [1]. There are several types of labeling and a detailed survey of graph labeling is found in [2]. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan [3]. Let G be a graph with p vertices and q edges and $A=\left\{0,1,2, \ldots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f: V(G) \rightarrow A$ that indcues an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \ldots, q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$.
The vertex labeling f is known as vertex equitable labeling. In [3] the authors proved that the graphs like path, bistar $B(n, n)$, combs, cycle C_{n} if $n \equiv 0$ or $3(\bmod 4), K_{2, n}, C_{3}^{(t)}$ for $t \geq 2$, quadrilateral snake, $K_{2}+m K_{1}, K_{1, n} \cup K_{1, n+k}$ if and only if $1 \leq k \leq 3$, ladder, arbitrary super division of any path and cycle C_{n} with $n \equiv 0$ or $3(\bmod 4)$ are vertex equitable. Also they proved that the graphs $K_{1, n}$ if $n \geq 4$, any Eulerian graph with n edges where $n \equiv 1$ or $2(\bmod 4)$, the wheel W_{n}, the complete graph K_{n} if $n>3$ and triangular cactus with $q \equiv 0$ or 6 or $9(\bmod 12)$ are not vertex equitable. In addition, they proved that if G is a graph with p vertices and q edges, q is even and $p<\left\lceil\frac{q}{2}\right\rceil+2$ then G is not vertex equitable graph. Motivated by these results, we $[4,5,6,7,8]$ proved that T_{p}-tree, $T \odot \overline{K_{n}}$ where T is a T_{p}-tree with even number of vertices, $T \widehat{o} P_{n}, T \widehat{o} 2 P_{n}, T \widehat{o} C_{n}(n \equiv 0,3(\bmod 4))$, $T \widetilde{o} C_{n}(n \equiv 0,3(\bmod 4))$, bistar $B(n, n+1)$, square graph of $B_{n, n}$ and splitting graph of $B_{n, n}$, the caterpillar $S\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $C_{n} \odot K_{1}, P_{n}^{2}$, tadpoles, $C_{m} \oplus C_{n}$, armed crowns, [$\left.P_{m} ; C_{n}^{2}\right],\left\langle P_{m} \widehat{o} K_{1, n}\right\rangle, k C_{4}$-snakes for all $k \geq 1$, generalized $k C_{n}$-snake if $n \equiv 0(\bmod 4), n \geq$ 4 and the graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle C_{n}, total graph of P_{n}, splitting graph of P_{n} and fusion of two edges of a cycle C_{n} are vertex equitable graphs. In this paper we extend our study on vertex equitable labeling and prove that the graphs $D A\left(T_{n}\right) \odot K_{1}, D A\left(T_{n}\right) \odot 2 K_{1}, D A\left(Q_{n}\right) \odot K_{1}, D A\left(Q_{n}\right) \odot 2 K_{1}$ are vertex equitable.

Definition 1.1. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is defined as a graph obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Definition 1.2. A double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to two new vertices v_{i} and w_{i} respectively.

Definition 1.3. A double alternate quadrilateral snake $D A\left(Q_{n}\right)$ consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to two new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and then joining v_{i}, w_{i} and x_{i}, y_{i}.

2 Main Results

Theorem 2.1. The graph $D A\left(T_{n}\right) \odot K_{1}$ is a vertex equitable graph.
Proof. Let $G=D A\left(T_{n}\right) \odot K_{1}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}.
Case (i) The triangle starts from u_{1}.
We construct $D A\left(T_{n}\right)$ by joining every $u_{2 i-1}, u_{2 i}$ to the new vertices v_{i}, w_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, w_{i}^{\prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $E(G)=$ $E\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. We consider the following two subcases.
Subcase (i) n is even.
Here $|V(G)|=4 n$ and $|E(G)|=5 n-1$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{5 n-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=5(i-1), f\left(u_{2 i}\right)=$ $5 i, f\left(u_{2 i-1}^{\prime}\right)=5 i-4, f\left(u_{2 i}^{\prime}\right)=5 i-1, f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=5 i-3$ and $f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=5 i-2$. It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot K_{1}$ are $1,2, \ldots, 5 n-1$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot K_{1}$.
Subcase (ii) n is odd.
Here $|V(G)|=4 n-2$ and $|E(G)|=5 n-4$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{5 n-4}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. We label the vertices $u_{2 i-1}, u_{2 i-1}^{\prime}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}, u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in Subcase (i). It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot K_{1}$ are $1,2, \ldots, 5 n-4$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot K_{1}$.
Case (ii) The triangle starts from u_{2}.
We construct $D A\left(T_{n}\right)$ by joining every $u_{2 i}, u_{2 i+1}$ to the new vertices v_{i}, w_{i} for $1 \leq i \leq \frac{n-2}{2}$. Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, w_{i}^{\prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and $E(G)=$ $E\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$.
Subcase (i) n is even.
Here $|V(G)|=4 n-4$ and $|E(G)|=5 n-7$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{5 n-7}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=f\left(u_{2 i}\right)=5 i-4, f\left(u_{1}^{\prime}\right)=$ $0, f\left(u_{2 i}^{\prime}\right)=5 i-3$. For $1 \leq i \leq \frac{n-2}{2}, f\left(u_{2 i+1}^{\prime}\right)=5 i-1, f\left(v_{i}\right)=5 i, f\left(v_{i}^{\prime}\right)=f\left(w_{i}\right)=5 i-2$ and $f\left(w_{i}^{\prime}\right)=5 i-3$. It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot K_{1}$ are $1,2, \ldots, 5 n-7$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot K_{1}$.
Subcase (ii) n is odd.

The proof can be omitted since by symmetry, the graph obtained in this subcase is isomorphic to the graph obtained in Subcase (ii) under Case (i).

An example for the vertex equitable labeling of $D A\left(T_{8}\right) \odot K_{1}$ where the two triangles start from u_{1} is shown in Figure 1.

Figure 1
Theorem 2.2. The graph $D A\left(T_{n}\right) \odot 2 K_{1}$ is a vertex equitable graph.
Proof. Let $G=D A\left(T_{n}\right) \odot 2 K_{1}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}.
Case (i) The triangle starts from u_{1}.
We construct $D A\left(T_{n}\right)$ by joining every $u_{2 i-1}, u_{2 i}$ to the new vertices v_{i}, w_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}:, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $E(G)=E\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
We consider the following two subcases.
Subcase (i) n is even.
Here $|V(G)|=6 n$ and $|E(G)|=7 n-1$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=7(i-1), f\left(u_{2 i}\right)=$ $7 i, f\left(u_{2 i-1}^{\prime}\right)=7 i-6, f\left(u_{2 i}^{\prime}\right)=f\left(w_{i}^{\prime}\right)=7 i-2, f\left(u_{2 i-1}^{\prime \prime}\right)=f\left(v_{i}^{\prime}\right)=7 i-5, f\left(u_{2 i}^{\prime \prime}\right)=$ $7 i-1, f\left(v_{i}\right)=f\left(v_{i}^{\prime \prime}\right)=7 i-4, f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=7 i-3$. It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 7 n-1$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot 2 K_{1}$.
Subcase (ii) n is odd.
Here $|V(G)|=6 n-3$ and $|E(G)|=7 n-5$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-5}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. We label the vertices $u_{2 i-1}, u_{2 i-1}^{\prime}, u_{2 i-1}^{\prime \prime}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}, u_{2 i}^{\prime}, u_{2 i}^{\prime \prime}, v_{i}, v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}, w_{i}^{\prime}, w_{i}^{\prime \prime}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in Subcase (i). It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 7 n-5$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot 2 K_{1}$.
Case (ii) The triangle starts from u_{2}.

We construct $D A\left(T_{n}\right)$ by joining every $u_{2 i}, u_{2 i+1}$ to the vertices v_{i}, w_{i} for $1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$. Let $V(G)=V\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and $E(G)=E\left(D A\left(T_{n}\right)\right) \cup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$.
Subcase (i) n is even.
Here $|V(G)|=6 n-6$ and $|E(G)|=7 n-9$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-9}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=f\left(u_{2 i-1}^{\prime \prime}\right)=7 i-6, f\left(u_{2 i}\right)=$ $7 i-5, f\left(u_{2 i-1}^{\prime}\right)=7(i-1), f\left(u_{2 i}^{\prime}\right)=7 i-5, f\left(u_{2 i}^{\prime \prime}\right)=7 i-4$. For $1 \leq i \leq \frac{n-2}{2}, f\left(v_{i}\right)=$ $7 i-3, f\left(v_{i}^{\prime}\right)=7 i-4, f\left(v_{i}^{\prime \prime}\right)=f\left(w_{i}^{\prime}\right)=7 i-2, f\left(w_{i}\right)=7 i-1, f\left(w_{i}^{\prime \prime}\right)=7 i$. It can be verified that the induced edge labels of $D A\left(T_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 7 n-9$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(T_{n}\right) \odot 2 K_{1}$.
Subcase (ii) n is odd.
The proof can be omitted since by symmetry, the graph obtained in this subcase is isomorphic to the graph obtained in Subcase (ii) under Case (i).

An example for the vertex equitable labeling of $D A\left(T_{5}\right) \odot 2 K_{1}$ where the two triangles start from u_{1} is shown in Figure 2.

Figure 2
Theorem 2.3. The graph $D A\left(Q_{n}\right) \odot K_{1}$ is a vertex equitable graph.
Proof. Let $G=D A\left(Q_{n}\right) \odot K_{1}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}.
Case (i) The quadrilateral starts from u_{1}.
We construct $D A\left(Q_{n}\right)$ by joining every $u_{2 i-1}$ to v_{i}, x_{i} and $u_{2 i}$ is adjacent to w_{i}, y_{i} and v_{i} is adjacent to w_{i} and x_{i} is adjacent to y_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let
$V(G)=V\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and
$E(G)=E\left(D A\left(Q_{n}\right)\right) \cup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}, x_{i} x_{i}^{\prime}, y_{i} y_{i}^{\prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\}$. We consider the following two subcases.
Subcase (i) n is even.
Here $|V(G)|=6 n$ and $|E(G)|=7 n-1$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows.

For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=7(i-1), f\left(u_{2 i}\right)=7 i, f\left(u_{2 i-1}^{\prime}\right)=7 i-5, f\left(u_{2 i}^{\prime}\right)=f\left(w_{i}^{\prime}\right)=7 i-$ $1, f\left(v_{i}\right)=f\left(x_{i}^{\prime}\right)=7 i-6, f\left(x_{i}\right)=7 i-4, f\left(v_{i}^{\prime}\right)=f\left(y_{i}\right)=7 i-2$ and $f\left(w_{i}\right)=f\left(y_{i}^{\prime}\right)=7 i-3$. It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot K_{1}$ are $1,2, \ldots, 7 n-1$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot K_{1}$. Subcase (ii) n is odd.
Here $|V(G)|=6 n-4$ and $|E(G)|=7 n-6$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-6}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. We label the vertices $u_{2 i-1}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right),\left(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $u_{2 i}, u_{2 i-1}^{\prime}, u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime},\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in Subcase(i) and define $f\left(u_{n}^{\prime}\right)=\left\lceil\frac{7 n-6}{2}\right\rceil$. It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot K_{1}$ are $1,2, \ldots, 7 n-6$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot K_{1}$.
Case (ii) The quadrilateral starts from u_{2}.
We construct $D A\left(Q_{n}\right)$ by joining every $u_{2 i}$ to v_{i}, x_{i} and $u_{2 i+1}$ is adjacent to w_{i}, y_{i} and v_{i} is adjacent to w_{i} and x_{i} is adjacent to y_{i} for $1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$. Let $V(G)=V\left(D A\left(Q_{n}\right)\right) \cup\left\{u_{i}^{\prime}\right.$: $1 \leq i \leq n\} \cup\left\{v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and
$E(G)=E\left(D A\left(Q_{n}\right)\right) \cup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}, x_{i} x_{i}^{\prime}, y_{i} y_{i}^{\prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\} \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\}$.
Subcase (i) n is even.
Here $|V(G)|=6 n-8$ and $|E(G)|=7 n-11$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{7 n-11}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=f\left(u_{2 i}\right)=7 i-6, f\left(u_{1}^{\prime}\right)=$ $0, f\left(u_{n}^{\prime}\right)=\left\lceil\frac{7 n-11}{2}\right\rceil$. For $1 \leq i \leq \frac{n-2}{2}, f\left(u_{2 i}^{\prime}\right)=f\left(v_{i}^{\prime}\right)=7 i-4, f\left(v_{i}\right)=f\left(u_{2 i+1}^{\prime}\right)=$ $7 i-5, f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=7 i-3, f\left(x_{i}\right)=7 i-1, f\left(x_{i}^{\prime}\right)=7 i-2$ and $f\left(y_{i}\right)=f\left(y_{i}^{\prime}\right)=7 i$. It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot K_{1}$ are $1,2, \ldots, 7 n-11$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot K_{1}$.
Subcase (ii) n is odd.
The proof can be omitted since by symmetry, the graph obtained in this subcase is isomorphic to the graph obtained in Subcase (ii) under Case (i).

An example for the vertex equitable labeling of $D A\left(Q_{6}\right) \odot K_{1}$ where the two quadrilateral start from u_{2} is shown in Figure 3.

Figure 3
Theorem 2.4. The graph $D A\left(Q_{n}\right) \odot 2 K_{1}$ is a vertex equitable graph.

Proof. Let $G=D A\left(Q_{n}\right) \odot 2 K_{1}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}.
Case (i) The quadrilateral starts from u_{1}.
We construct $D A\left(Q_{n}\right)$ by joining every $u_{2 i-1}$ to v_{i}, x_{i} and $u_{2 i}$ is adjacent to w_{i}, y_{i} and v_{i} is adjacent to w_{i} and x_{i} is adjacent to y_{i} for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let $V(G)=V\left(D A\left(Q_{n}\right)\right) \cup$ $\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}^{\prime}, y_{i}^{\prime \prime}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $E(G)=E\left(D A\left(Q_{n}\right)\right) \cup$ $\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}, x_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime \prime}, y_{i} y_{i}^{\prime}, y_{i} y_{i}^{\prime \prime}:, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. We consider the following two subcases.
Subcase (i) n is even.
Here $|V(G)|=9 n$ and $|E(G)|=10 n-1$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{10 n-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. For $1 \leq i \leq \frac{n}{2}, f\left(u_{2 i-1}\right)=10(i-1), f\left(u_{2 i}\right)=$ $10 i, f\left(u_{2 i-1}^{\prime}\right)=f\left(w_{i}^{\prime}\right)=10 i-9, f\left(u_{2 i}^{\prime}\right)=10 i-3, f\left(u_{2 i-1}^{\prime \prime}\right)=10 i-8, f\left(u_{2 i}^{\prime \prime}\right)=f\left(w_{i}^{\prime \prime}\right)=$ $10 i-1, f\left(w_{i}\right)=10 i-4, f\left(v_{i}\right)=f\left(v_{i}^{\prime \prime}\right)=10 i-7, f\left(v_{i}^{\prime}\right)=10 i-8, f\left(y_{i}\right)=10 i-2, f\left(y_{i}^{\prime}\right)=$ $10 i-5, f\left(y_{i}^{\prime \prime}\right)=10 i-4, f\left(x_{i}\right)=f\left(x_{i}^{\prime}\right)=10 i-6, f\left(x_{i}^{\prime \prime}\right)=10 i-3$.
It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 10 n-1$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for al $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot 2 K_{1}$.
Subcase (ii) n is odd.
Here $|V(G)|=9 n-6$ and $|E(G)|=10 n-8$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{10 n-8}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows. We label the vertices $u_{2 i-1}, u_{2 i-1}^{\prime}, u_{2 i-1}^{\prime \prime}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$ and $u_{2 i}, u_{2 i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in Subcase (i). It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 10 n-8$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot 2 K_{1}$.
Case (ii) The quadrilateral starts from u_{2}.
We construct $D A\left(Q_{n}\right)$ by joining every $u_{2 i}$ to v_{i}, x_{i} and $u_{2 i+1}$ is adjacent to w_{i}, y_{i} and v_{i} is adjacent to w_{i} and x_{i} is adjacent to y_{i} for $1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil$. Let $V(G)=V\left(D A\left(Q_{n}\right)\right) \cup$ $\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}^{\prime}, y_{i}^{\prime \prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and $E(G)=E\left(D A\left(Q_{n}\right)\right) \cup$ $\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}, x_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime \prime}, y_{i} y_{i}^{\prime}, y_{i} y_{i}^{\prime \prime}: 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil\right\} \cup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$.
Subcase (i) n is even.
Here $|V(G)|=9 n-12$ and $|E(G)|=10 n-15$. Let $A=\left\{0,1,2, \ldots,\left\lceil\frac{10 n-15}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \leq i \leq \frac{n}{2} f\left(u_{2 i-1}\right)=f\left(u_{2 i-1}^{\prime \prime}\right)=$ $10 i-9, f\left(u_{2 i}\right)=f\left(u_{2 i}^{\prime}\right)=10 i-8, f\left(u_{2 i}^{\prime \prime}\right)=10 i-7, f\left(u_{1}^{\prime}\right)=0$. For $1 \leq i \leq \frac{n-2}{2}, f\left(x_{i}^{\prime}\right)=$ $10 i-7, f\left(w_{i}\right)=f\left(w_{i}^{\prime}\right)=10 i-2, f\left(u_{2 i+1}^{\prime \prime}\right)=10 i-1, f\left(v_{i}\right)=f\left(y_{i}^{\prime}\right)=10 i-6, f\left(y_{i}^{\prime \prime}\right)=$ $10 i-3, f\left(x_{i}\right)=f\left(v_{i}^{\prime \prime}\right)=10 i-5, f\left(y_{i}\right)=f\left(w_{i}^{\prime \prime}\right)=10 i, f\left(v_{i}^{\prime}\right)=f\left(x_{i}^{\prime \prime}\right)=10 i-4$. It can be verified that the induced edge labels of $D A\left(Q_{n}\right) \odot 2 K_{1}$ are $1,2, \ldots, 10 n-15$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Hence f is a vertex equitable labeling of $D A\left(Q_{n}\right) \odot 2 K_{1}$.
Subcase (ii) n is odd.
The proof can be omitted since by symmetry, the graph obtained in this subcase is isomorphic to the graph obtained in Subcase (ii) under Case (i).

An example for the vertex equitable labeling of $D A\left(Q_{5}\right) \odot 2 K_{1}$ where the two quadrilateral start from u_{2} is shown in Figure 4.

Figure 4
Acknowledgement: The authors sincerely thank the referee for the valuable comments to improve the presentation of the paper.

References

[1] F. Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
[2] Joseph A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2014), \# DS6.
[3] A. Lourdusamy and M. Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences ÉCryptography, 11(6) (2008), 727-735.
[4] P. Jeyanthi and A. Maheswari, Some Results on Vertex Equitable Labeling, Open Journal of Discrete Mathematics, 2 (2012), 51-57.
[5] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cycle and path related graphs, Utilitas Mathematica, 98 (2015), 215-226.
[6] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of transformed trees, Journal of Algorithms and Computation, 44 (2013), 9-20.
[7] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, Journal of Scientific Research, 6(1) (2014), 79-85.
[8] P. Jeyanthi, A. Maheswari and M. Vijayalakshmi, Vertex Equitable Labeling of Cycle and Star Related graphs, Journal of Scientific Research, 7(3), (2015), 33-42.

[^0]: *Corresponding author. E-mail: jeyajeyanthi@rediffmail.com
 †Email:bala_nithin@yahoo.co.in
 ${ }^{\ddagger}$ Email:Viji_mac@rediffmail.com

