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Let F, G and H be non-empty graphs. The notation

F → (G,H) means that if any edge of F is colored

by red or blue, then either the red subgraph of F con-

tains a graph G or the blue subgraph of F contains

a graph H. A graph F (without isolated vertices) is

called a Ramsey (G,H)−minimal if F → (G,H) and

for every e ∈ E(F ), (F − e) 9 (G,H). The set of all
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R(2K2, C4).
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1 Introduction

Let F be a graph without isolated vertices. Let G and H be non-empty graphs. We write

F → (G,H) to mean that any red-blue coloring on the edges of F contains a red copy of

G or a blue copy of H. Any red-blue coloring on the edges of F is called a (G,H)−coloring

if neither a red G nor a blue H occurs. If a graph F has a (G,H)−coloring, then we

write F 9 (G,H). A graph F is called a Ramsey (G,H)−minimal if F → (G,H), but

for every e ∈ E(F ), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs

is denoted by R(G,H). The pair (G,H) is called Ramsey-finite if R(G,H) is finite and

Ramsey-infinite if otherwise.

The characterization of all graphs in R(G,H) for any given graphs G and H is an inter-

esting problem. However, it is a difficult even for small graphs G and H. There are many

papers dealing with this characterization of the members of R(G,H). Nešetřil and Rödl

(1978) gave some properties of G and H such that (G,H) is Ramsey-infinite. Some re-

searchers have characterized some infinite families of Ramsey (K1,2, H)−minimal graphs

(see [1, 4, 5, 6, 11, 15, 16]). Burr et al. [10] showed that the pair (G,H) is Ramsey

infinite whenever both G and H are forests, with at least one of G or H having a non-

star component. Moreover, Borowiecka-Olszewska and Ha luszczak [7] gave a method for

constructing infinitely many graphs which belong to R(K1,m,G), where m ≥ 2 and G is a

family of 2−connected graphs.

Burr et al. [8] proved that if G is a matching, then R(G,H) is Ramsey-finite for all

graphs H. In the same paper, Burr et al. proved that for any graph H, R(K2, H) = {H}

and they gave some examples of the set R(2K2, H) where H = 2K2 and H = C3, that

is R(2K2, 2K2) = {C5, 3K2} and R(2K2, C3) = {K5, 2C3, G1} (see Figure 1). Moreover

Burr et al. [9] investigated R(G,H) in the special case where G is a 2−matching and H

is a t−matching. They also proved that R(2K2, 3K2) = {C7, 4K2, G2},R(2K2, 4K2) =

{5K2, 2C5, C5 · C5, C9, G3, G4} (see Figure 1), R(2K2, K1,2) = {C4, C5, 2K1,2}.

Figure 1: Graphs G1, G2, G3 and G4.

Mengersen and Oeckermann [12] characterized graphs which belong to R(2K2, K1,n) for

n ≥ 3 and determined explicitly all graphs in R(2K2, K1,n) for n ≤ 3. Baskoro and Yulianti

[3] determined all graphs in R(2K2, Pn) for n = 4, 5. Moreover, Tatanto and Baskoro [14]
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determined all graphs in R(2K2, 2P3). Mushi and Baskoro [13] derived the properties of

graphs belonging to the class R(3K2, P3) and obtained all graphs in this set, which can

be also found in [9] without proof, except one graph. Recently, Baskoro and Wijaya [2]

gave the necessary and sufficient conditions of graphs in R(2K2, H) for any connected H.

Theorem 1.1. [2] Let H be any connected graph. F ∈ R(2K2, H) if and only if the

following conditions are satisfied:

(i) for every v ∈ V (F ), F − v ⊇ H,

(ii) for every K3 in F, F − E(K3) ⊇ H,

(iii) for every e ∈ E(F ), there exists v ∈ V (F ) or K3 in F such that (F − e)− v + H or

(F − e) −E(K3) + H.

They determined all graphs in R(2K2, K4) with at most 8 vertices.

In this paper, we give some properties of graphs belonging to R(2K2, Cn) for n ≥ 3.

Furthermore, we characterize all graphs in the set R(2K2, C4).

2 Main Results

As usual, V and E are used to denote the vertex set and the edge set of a graph G. If a

vertex u is adjacent to v in G, then this edge is denoted by uv. The degree of a vertex v,

denoted by d(v), is the number of edges incident to a vertex v. If G has n vertices, then

the degree sequence of G is (d1, d2, . . . , dn), where di is the degree of vertex i for every

i ∈ [1, n] and d1 ≥ d2 ≥ . . . ≥ dn.

Let G be a graph with n vertices and m edges. For v ∈ V (G), define G− v as a subgraph

of G obtained by removing the vertex v and all edges incident with v. Similarly, for

e ∈ E(G), define G − e as a subgraph of G obtained by deleting the edge e but leaving

two vertices incident to e. A complete graph and cycle with n vertices is denoted by Kn

and Cn, respectively. mK2 is a graph consisting of m disjoint copies of K2. In this paper,

we use the notation (uvwx) to describe a cycle C4 with the vertex set {u, v, w, x} and the

edge set {uv, vw, wx, ux}. So, (uvwx) and (uwxv) denote two different cycles. Similarly,

the notation (uvw) describes a triangle K3 with the edge set {uv, vw, uw}.

We will determine explicitly all graphs in R(2K2, C4) by using Theorem 1.1. In general,

the case (ii) of Theorem 1.1 can be replaced by (ii’) for every induced subgraph S of order

3 in F, F − E(S) ⊇ H.

The following result gives some properties of graphs in R(2K2, Cn), for any n ≥ 3.

Lemma 2.1. Let F ∈ R(2K2, Cn). Then,

(i) |V (F )| ≥ n + 1,
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(ii) d(v) ≥ 2 for every v ∈ V (F ),

(iii) every vertex v is contained in Cn, and

(iv) every edge e is contained in Cn.

Proof.

(i) If |V (F )| = n, then F − v has n − 1 vertices. So, F does not contain a cycle Cn, a

contradiction to Theorem 1.1(i).

(ii) Suppose that there exists a vertex v ∈ V (F ) having d(v) = 1. Then v is incident to

exactly an edge e. Thus, there exists a (2K2, Cn)−coloring φ′ on the edges of F − e.

Next, we define a red-blue coloring φ on the edges of F such that φ(x) = φ′(x) for

x ∈ E(F − e) and φ(e) = blue. It is easy to verify that φ is a (2K2, Cn)−coloring

of F, a contradiction.

(iii) Suppose that there exists a vertex v ∈ V (F ) not contained in any Cn. By the

minimality of F, we have a (2K2, Cn)−coloring φ′ of F − v. Next, we define a red-

blue coloring φ on the edges of F such that φ(x) = φ′(x) for x ∈ E(F − v) and

φ(x) = blue, for all edges x incident to v. Then, φ is a (2K2, Cn)−coloring of F, a

contradiction.

(iv) Suppose that there exists an edge e ∈ E(F ) not contained in any Cn. By the min-

imality of F, we have a (2K2, Cn)−coloring φ′ of F − e. Next, we define a red-blue

coloring φ on the edges of F such that φ(x) = φ′(x) for all x ∈ E(F − e) and φ(e) =

blue. Then, we obtain φ as a (2K2, Cn)−coloring of F, a contradiction.

The next result gives all disconnected graphs which belong to R(2K2, Cn).

Theorem 2.2. Let n ≥ 3. The only disconnected graph in R(2K2, Cn) is 2Cn.

Proof. It is easy to see that 2Cn ∈ R(2K2, Cn). Let F ∈ R(2K2, Cn) be a disconnected

graph. So, F contains more than one component. By Theorem 1.1(i), each component

contains a cycle Cn. Then, the minimality of F implies that F = 2Cn.

By Theorem 2.2 and the minimality of graphs in R(2K2, Cn), we can conclude that any

connected graph in R(2K2, Cn) must satisfy the following lemma.

Lemma 2.3. Let F be a connected graph in R(2K2, Cn) for n ≥ 3. Then,

(i) every two cycles of length n in F intersects in at least one vertex,

(ii) F contains at least three cycles of length n.

Proof. Let F be a connected graph in R(2K2, Cn).
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(i) Assume that we have two disjoint cycles of length n in F. Then, F ⊇ 2Cn. This

contradicts to the minimality of F.

(ii) Let v be an intersection vertex of two cycles Cn in F. By Theorem 1.1(i), we have

F − v ⊇ Cn. Of course, the last cycle will be different from the previous two cycles.

Therefore, F must contain at least 3 cycles of length n.

From now on, we will determine all graphs in R(2K2, C4). By Theorem 2.2, a graph 2C4 is

the only disconnected graph in R(2K2, C4). So, to complete our task, we must determine

all connected graphs F in R(2K2, C4). The minimality of F implies that F + 2C4. To

determine all connected graphs F ∈ R(2K2, C4), we will find such graphs of certain order

n. Trivially, n ≥ 5. We will show that these graphs exist if n ≤ 10. The following theorem

shows that K5 − e is the only connected graph of order 5 in R(2K2, C4).

Theorem 2.4. The only connected graph of order 5 in R(2K2, C4) is K5 − e.

Proof. First, we show that K5−e ∈ R(2K2, C4). For every v ∈ V (K5−e), (K5−e)−v

can be either K4 or K4− e. Obviously, (K5− e)−v ⊇ C4. Moreover, for every triangle K3

in K5−e, we obtain a graph of order 5, K5−e−E(K3) with a degree sequence (4, 3, 2, 2, 1)

or (3, 3, 2, 2, 2). Certainly, K5 − e− E(K3) contains a C4. So, K5 − e → (2K2, C4). Next,

if an edge of K5 − e is deleted, then we obtain two non-isomorphic graphs K5 − 2e, say

Fa with a degree sequence (4, 4, 3, 3, 2) or Fb with a degree sequence (4, 3, 3, 3, 3). For

v ∈ V (Fa) with d(v) = 4, we obtain Fa − v which does not contain a C4. For the graph

Fb, we choose a triangle K3 where two edges of K3 incident to a vertex of degree 4 in Fb.

We obtain Fb − E(K3) which does not contain a C4. So, K5 − 2e 9 (2K2, C4). Hence,

K5 − e ∈ R(2K2, C4).

Since K5 ⊇ K5 − e, K5 /∈ R(2K2, C4). Beside that, other non complete graphs of order 5

are subgraphs of K5 − e. So, K5 − e is the only graph of order 5 in R(2K2, C4).

We need the following lemma to find all connected Ramsey (2K2, C4)−minimal graphs of

order greater than 5.

Lemma 2.5. Let A1 and A2 be graphs of orders 7 and 6 containing two cycles of length

4, respectively, with E(A1) = E(C1) ∪ E(C2) and E(A2) = E(C1) ∪ E(C3), where C1 =

(v1v2v3v4), C2 = (v4v5v6v7) and C3 = (v3v4v5v6). Let F be a connected graph and F ∈

R(2K2, C4). If F has order at least 6, then F must contain A1 or A2. Precisely, we have

(i) If F has order 6, then F contains A2,

(ii) If F has order 7, then F contains A1 or A5, where A5 is a graph having the vertex

set V (A5) = V (A2) ∪ {v7} and the edge set E(A5) = E(A2) ∪ {v2v4, v2v7, v4v6},

(iii) If F has order at least 8, then F contains A1.
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Proof. Let F ∈ R(2K2, C4). Then, F must contain a cycle of length 4, say C1 =

(v1v2v3v4). Since there is no triangle in C1, we take an induced subgraph S of order 3

to apply Theorem 1.1(ii’). So, by Theorem 1.1(ii’), for S = {v1, v2, v4}, there must be a

C4 in F − E(S). This C4 is formed by involving a vertex of C1 and three other vertices

v5, v6, v7 in F, say C4 = (v4v5v6v7) (the graph A1); or involving two vertices of C1 and

two other vertices v5, v6 in F, say C4 = (v3v4v5v6) (the graph A2) or C4 = (v3v5v4v6) (the

graph A3); or involving three vertices of C1 and a vertex v5 in F, say C4 = (v2v3v4v5) (the

graph A4), as depicted in Figure 2. Let F be of order at least 6. We now consider that

Figure 2: The possibilities of forming C4 in F − E(S)
for some V (S) = {v1, v2, v4} when F ⊇ C4.

F contains either A3 or A4. If F ⊇ A3, then by Theorem 1.1(i), F − v3 must contain a

C4. As a consequence, F will contain either A1 or A2. If F ⊇ A4, then by Theorem 1.1(i),

F − v2 must contain a C4. Since |V (F )| ≥ 6, there exists at least a vertex in F other than

V (C1) ∪ {v5}. But every C4 in F − v2 will yield that F contains either A1 or A2 or A3.

Thus, the claim follows immediately.

(i) Let F be of order 6. Clearly F does not contain A1.

(ii) Let F be of order 7. Then, F contains either A1 or A2. Suppose that F contains

A2. Then, there must be a C4 in F − v3, by Theorem 1.1(i). This cycle is formed

by involving three vertices in A2 and a vertex v7 in F. There are five possibilities

(up to isomorphism), say C4 = (v2v4v6v7), C4 = (v1v4v5v7), C4 = (v1v7v4v5), C4 =

(v1v4v6v7) or C4 = (v2v6v4v7), (see the graph A5, A6, A7, A8 or A9, respectively, as

depicted in Figure 3). From these possibilities, it is enough to consider F ⊇ A5,

since F − v4 contains a C4.

(iii) Let F be of order at least 8. Then, F contains either A1 or A2. If F contains A2,

then there must be a C4 in F − v3, by Theorem 1.1(i). This cycle can be formed

by involving two vertices in A2 and two vertices v7 and v8 in F ; or involving three

vertices in A2 and a vertex v7 in F. But, if this C4 contains v7 and v8, then F will

contain either A1 or 2C4. So, this C4 is formed by involving v7 in F. By case (ii),
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Figure 3: The possibilities of forming C4 in F − v3 when F ⊇ A2.

F contains A5. Next, by Theorem 1.1(ii), F − E(K3) must contain a C4 for some

K3 = (v3v4v6). This cycle is formed by involving three vertices of A5 and a vertex

v8 in F. So, the edge viv8 must be in F for some i ∈ [1, 7]. But, this cycle cannot

involve the edge viv8 for every i ∈ [1, 7], since it causes F containing A1.

In the next result, we consider all graphs in Figure 4. First, we consider the graph F1

which has the vertex set V (F1) = {v1, v2, . . . , v6} and the edge set E(F1) = {vivi+1 | i =

1, 2, . . . , 5} ∪ {v1v4, v1v6, v3v6}. We prove that the graph F1 is the only graph of order 6

in R(2K2, C4) by the following theorem.

Theorem 2.6. The only connected graph of order 6 in R(2K2, C4) is F1.

Proof. First, we prove that F1 ∈ R(2K2, C4). We can verify easily that for every i ∈ [1, 6],

F1 − vi contains a C4. Next, consider two cycles of length 4, namely C1 = (v1v2v3v4),

C3 = (v3v4v5v6) and an edge v1v6 in F1. If an edge e of the cycle C1 is deleted from F,

then we obtain (F1 − e)− v6 + C4. Moreover, (F1 − e)− v1 + C4 if an edge e on the cycle

C3 is deleted from F. Finally, (F1 − v1v6) − v3 + C4. So, F1 ∈ R(2K2, C4).

Now, we prove that the connected graph of order 6 in R(2K2, C4) is F1. Let F be a con-

nected graph having the vertex set V (F ) = {v1, v2, . . . , v6}. Suppose that F ∈ R(2K2, C4)

but F 6= F1. By Lemma 2.5(i), F contains A2. By the minimality of F, F + 2C4 and

F + K5 − e. By Theorem 1.1(i), F − v3 must contain a C4. Since F 6= F1, the edges

v1v6, v2v5 /∈ E(F ). So, there must be the edges v2v4 and v1v5 in F (the graph A21) or

edges v2v6 and v4v6 in F (the graph A22) (see Figure 5). Next, if F contains either A21 or

A22, then F − v4 must contain a C4, by Theorem 1.1(i). This cycle is formed by involving

an edge v3v5 in F when F ⊇ A21 (see the graph A2a) and an edge v1v3 in F when F ⊇ A22

(see the graph A2b). Otherwise F contains F1.

Furthermore, by Theorem 1.1(ii), we must form a C4 in F−E(K3) for some K3 = (v1v4v5)

when F contains A2a or K3 = (v3v4v6) when F contains A2b. As a consequence, F will

contain F1, a contradiction.

Next, we will find all Ramsey (2K2, C4)−minimal graphs of order 7. We consider the

graphs F2, F3, F4 and F5 as depicted in Figure 4. We will prove that F2, F3, F4 and F5
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Figure 4: All connected Ramsey (2K2, C4)−minimal graphs.

Figure 5: The process of forming a C4 when F contains A2.
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are the only Ramsey (2K2, C4)−minimal graphs of order 7 as follows.

Theorem 2.7. The only connected graphs of order 7 in R(2K2, C4) are F2, F3, F4 and

F5.

Proof. We can show easily that F2, F3, F4, F5 satisfy Theorem 1.1 (i) and (ii). To show

the minimality of F2, consider the first line of Figure 6. Let e be any edge in F2. Then,

e must be in a (bold) C4. Now, consider F − e. Then, color all dash-line edges by red

and the remaining edges by blue. Thus, this coloring is a (2K2, C4)−coloring of F2 − e.

Therefore, F2 is a Ramsey (2K2, C4)−minimal graph. Similarly, by considering Figure 6,

we can show the minimality of F3, F4 and F5.

Figure 6: Some red-blue coloring of F2, F3, F4 and F5 contain a red K2 and a blue C4.

Now, we prove that the connected graphs of order 7 in R(2K2, C4) are F2, F3, F4 and F5.

Let F ∈ R(2K2, C4) be a connected graph having the vertex set V (F ) = {v1, v2, . . . , v7}.

By the minimality, F does not contain K5 − e or F1. By Lemma 2.5(ii), F contains A1 or

A5.

First, we observe that F contains A1.There must be a C4 in F − v4 by Theorem 1.1(i).

Up to isomorphism, there are five possibilities to form this C4 by involving some edges



18 K. Wijaya / Journal of Algorithms and Computation 46 (2015) PP. 9 - 25

other than e ∈ E(A1), that is C4 = (v1v3v2v6) (the graph B1), C4 = (v1v2v3v7) (the graph

B2), C4 = (v1v3v2v7) (the graph B3), C4 = (v1v2v6v7) (the graph B4) or C4 = (v1v3v5v7)

(the graph B5), as depicted in Figure 7.

Figure 7: The possibilities of forming C4 in F − v4 when F ⊇ A1.

Now, consider that F contains Bi for every i ∈ [1, 5]. If F ⊇ B1, then F = B1 since B1 is

isomorphic to F2. Consider a triangle K3 = (v1v4v7). If F ⊇ Bi for i ∈ [2, 5], then there

must be a C4 in F −E(K3), by Theorem 1.1(ii). But this C4 makes F not minimal, when

F ⊇ Bi for i = 2, 3, 5. Next, if F ⊇ B4, this cycle is formed by involving an edge in F,

namely v2v5 or v3v5. We obtain the graph F with either the edge set E(F ) = E(B4)∪{v2v5}

or E(F ) = E(B4) ∪ {v3v5} which is isomorphic to either F3 or F4, respectively. So, F2,

F3 and F4 are all Ramsey (2K2, C4)−minimal graphs of order 7 containing A1.

Now, we will find all Ramsey (2K2, C4)−minimal graphs of order 7 containing A5. By

Theorem 1.1(ii), F −E(K3) must contain a C4 for some K3 = (v3v4v6). Since F does not

contain A1, one of the edges v1v5, v1v6, v1v7, v2v5, v4v7, v5v7 does not involve in F. By the

minimality, this cycle is only formed by involving an edge v2v6 in F. We obtain the graph

F with E(F ) = E(A5) ∪ {v2v6} which is isomorphic to F5.

Next, we will determine all graphs of order 8 in R(2K2, C4). We consider the graphs F6,

F7, F8, F9, F10, F11 and F12 as depicted in Figure 4. The following theorem prove that

F6, F7, F8, F9, F10, F11 and F12 are the only Ramsey (2K2, C4)−minimal graphs of order

8.

Theorem 2.8. The only connected graphs of order 8 in R(2K2, C4) are F6, F7, F8, F9,

F10, F11 and F12.

Proof. We can easily notice that for i ∈ [6, 12], the graph Fi satisfy Theorem 1.1 (i) and

(ii). The proof of the minimality of F ∈ {F6, F7, . . . , F12} is done in the same fashion as

in Theorem 2.7. In Figure 8, for any edge e ∈ E(F ), we construct a red-blue coloring

such that there exist a red K2 and exactly a blue C4. Thus for every edge e ∈ E(F ), we

obtain a (2K2, C4)−coloring of F − e.

Now, we prove that the connected graphs of order 8 in R(2K2, C4) are F6, F7, F8, F9,

F10, F11 and F12. Let F ∈ R(2K2, C4) be a connected graph with the vertex set V (F ) =
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Figure 8: Some red-blue coloring of F of order 8 contain a red K2 and a blue C4.

{v1, v2, . . . , v8}. By the minimality, F does not contain 2C4, K5 − e, F1, F2, F3, F4 or F5.

By Lemma 2.5(iii), F contains A1. There must be a C4 in F −v4 by Theorem 1.1(i). This

cycle is formed by involving three vertices in A1 and a vertex, say v8. Up to isomorphism,

there are six possibilities, say C4 = (v1v2v8v6) (the graph D1), C4 = (v1v2v6v8) (the graph

D2), C4 = (v1v3v8v6) (the graph D3), C4 = (v1v2v8v7) (the graph D4), C4 = (v1v7v2v8)

(the graph D5) or C4 = (v1v3v7v8) (the graph D6), as illustrated in Figure 2.

Now, we consider that F contains Di for every i ∈ [1, 6]. The graphs D1, D2 and D3

are isomorphic to F6, F7 and F8, respectively. Furthermore, if F contains either D4 or
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Figure 9: The possibilities of forming C4 in F − v4
when F ⊇ A1 by involving v8 in F.

D5, then there exists a triangle K3 = (v1v4v7) which yields that F − E(K3) does not

contain a C4. If F ⊇ D4, then this cycle is formed by involving three edges in F, say

either C4 = (v1v5v7v8) or C4 = (v3v5v6v8). We obtain the graph F with either the edge

set E(F ) = E(D4) ∪ {v1v5, v1v8, v5v7} or E(F ) = E(D4) ∪ {v3v5, v3v8, v6v8} which is

isomorphic to either F9 or F10, respectively. Next, if F ⊇ D5, then this cycle is formed

by involving two edges in F, say either v2v4, v3v5 ∈ E(F ) or v3v5, v3v7 ∈ E(F ). We

obtain the graph F with either the edge set E(F ) = E(D5) ∪ {v2v4, v3v5} or E(F ) =

E(D5) ∪ {v3v5, v3v7} which is isomorphic to either F9 or F12, respectively. Moreover, we

consider F containing D6. There exists a triangle K3 = (v3v4v7) such that F−E(K3) does

not contain a C4. By the minimality, this C4 is formed by involving two edges in F, say

v1v7, v6v8 ∈ E(F ). We obtain the graph F with the edge set E(F ) = E(D6)∪{v1v7, v6v8}

which is isomorphic to F11.

In the next result, we will find all graphs of order 9 which belong to R(2K2, C4). We

consider the graph of order 9 in Figure 4, namely F13, F14, . . . , F22.

Theorem 2.9. The only connected graphs of order 9 in R(2K2, C4) are F13, F14, . . . , F22.

Proof. We can easily notice that F13, F14, . . . , F22 satisfy Theorem 1.1 (i) and (ii). The

proof of the minimality is done in the same fashion as in Theorem 2.7. In Figure 10 and

11, for every edge e in F ∈ {F13, F14, . . . , F22}, we construct a red-blue coloring of F such

that there exists a red K2 and exactly a blue C4. Thus, for every e ∈ E(F ) we obtain a

(2K2, C4)−coloring of F − e.

Now, we prove that the connected graphs of order 9 in R(2K2, C4) are F13, F14, . . . , F22.

Let F ∈ R(2K2, C4) be a connected graph having the vertex set V (F ) = {v1, v2, . . . , v9}.
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Figure 10: Some red-blue coloring of F13, F14, F15, F16 and F17

contain a red K2 and a blue C4.

By Lemma 2.5(iii), F contains A1. By Theorem 1.1(i), there must be a C4 in F − v4.

Then, this C4 must contain at least one vertex of v8 and v9. So, (up to isomorphism)

there are seven possibilities to form this cycle, that is C4 = (v1v8v7v9) (the graph E1),

C4 = (v1v8v6v9) (the graph E2), C4 = (v2v8v6v9) (the graph E3), C4 = (v1v7v8v9) (the

graph E4), C4 = (v1v3v7v8) (the graph E5), C4 = (v1v2v8v7) (the graph E6) or C4 =

(v1v7v2v8) (the graph E7), as illustrated in Figure 12.

Now, consider that F contains Ei for every i ∈ [1, 7]. The graphs E1, E2 and E3 are

isomorphic to F13, F14 and F15, respectively. If F ⊇ E4, then by Theorem 1.1(ii), F −

E(K3) must contain a C4 for some K3 = (v1v4v7). By the minimality property and up to

isomorphism, there are three possibilities to form this cycle, that is C4 = (v1v2v4v8), C4 =

(v1v3v4v8) or C4 = (v1v3v7v8). We obtain the graph F having the edge set E(F ) = E(E4)∪

{v1v8, v2v4, v4v8}, E(F ) = E(E4)∪ {v1v3, v1v8, v4v8} or E(F ) = E(E4)∪ {v1v3, v1v8, v3v7}

which is isomorphic to F16, F17 or F19, respectively. If F ⊇ E5, then by Theorem 1.1(ii),

F −E(K3) must contain a C4 for some K3 = (v3v4v7). By the minimality property, there

are five possibilities to form this C4, that is C4 = (v1v4v8v9), C4 = (v1v7v8v9), C4 =
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Figure 11: Some red-blue coloring of F18, F19, F20, F21 and F22

contain a red K2 and a blue C4.

(v1v7v9v8), C4 = (v4v8v9v5) or C4 = (v1v7v6v9). We obtain the graph F having the edge

set E(F ) = E(E5)∪{v1v9, v4v8, v8v9}, E(F ) = E(E5)∪{v1v7, v1v9, v8v9}, E(F ) = E(E5)∪

{v1v7, v7v9, v8v9}, E(F ) = E(E5)∪ {v4v8, v5v9, v8v9} or E(F ) = E(E5)∪ {v1v7, v1v9, v6v9}

which is isomorphic to F18, F19, F22, F20 or F21, respectively. Next, if F contains either

E6 or E7, then by Theorem 1.1(ii), F −E(K3) must contain a C4 for some K3 = (v1v4v7).

If F ⊇ E6, then this C4 can be formed by involving four edges in F, that is either

C4 = (v1v5v9v6) or C4 = (v1v5v7v9). We obtain the graph F having either the edge set

E(F ) = E(E6) ∪ {v1v5, v1v6, v5v9, v6v9} or E(F ) = E(E6) ∪ {v1v5, v1v9, v5v7, v7v9} which

is isomorphic to either F20 or F21, respectively. If F ⊇ E7, then this C4 is formed by

involving three edges in F, that is C4 = (v3v7v6v9). We obtain the graph F with the edge

set E(F ) = E(E7) ∪ {v3v7, v3v9, v6v9} which is isomorphic to F20. Hence, the connected

graphs of order 9 in R(2K2, C4) are F13, F14, . . . , F22.

Finally, we will find all graphs of order 10 belonging to R(2K2, C4). We consider the

graphs F23 and F24 in Figure 4.

Theorem 2.10. The only connected graphs of order 10 in R(2K2, C4) are F23 and F24.



23 K. Wijaya / Journal of Algorithms and Computation 46 (2015) PP. 9 - 25

Figure 12: The possibilities of forming a C4 in F − v4 when F ⊇ A4

by involving two vertices v8 and v9 in F.

Proof. We can notice easily that F23 and F24 satisfy Theorem 1.1 (i) and (ii). The proof

of the minimality of F23 and F24 is done in the same fashion as in Theorem 2.7. In Figure

13, for every edge e in F ∈ {F23, F24} we construct a red-blue coloring of F such that

there exists a red K2 and exactly a blue C4. Thus, we obtain a (2K2, C4)−coloring of

F − e.

Figure 13: The red-blue coloring of F of order 10 contains a red K2 and a blue C4.

Now, we prove that the connected graphs of order 10 in R(2K2, C4) are F23 and F24.

Let F be a connected graph in R(2K2, C4) where V (F ) = {v1, v2, . . . , v10}. By Lemma

2.5(iii), F contain A1. By Theorem 1.1(i), F must contain a C4 in F−v4. Since F does not

contain 2C4, this C4 must contain a vertex in cycle C1 = (v1v2v3v4) and a vertex in cycle

C2 =(v4v5v6v7). So, this cycle is formed by involving two vertices, say v7 and v8 in F, that

is C4 = (v1v7v8v9) (the graph E4 in Figure 12). Next, if F contains E4, then by Theorem
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1.1(ii), F −E(K3) must contain a C4 for some K3 = (v1v4v7). By the minimality and up

to isomorphism, this C4 is formed by involving three edges in E4 and a vertex v10 in F, say

either C4 = (v1v3v7v10) or C4 = (v1v5v10v6). We obtain the graph F having either the edge

set E(F ) = E(E4) ∪ {v1v3, v1v10, v3v7, v7v10} or E(F ) = E(E4) ∪ {v1v5, v1v6, v5v10, v6v10}

which is isomorphic to either F23 and F24, respectively.

Lemma 2.11. The order of a connected graph F in R(2K2, C4) is at most 10.

Proof. Let F be a connected graph in R(2K2, C4) and |V (F )| = 11 where V (F ) =

{v1, v2, . . . , v11}. By Lemma 2.5(iii), F contains A1. By Theorem 1.1 and the minimality

of F, there is only one possibility to form this C4, say (v1v7v8v9) (the graph E4 in Figure

12). Next, by Theorem 1.1(iii), there must be a C4 in F −E(K3) for some K3 = (v1v4v7).

This C4 must contain both vertices v10 and v11. Since F does not contain 2C4, at least

another vertex must be contained in two different cycles of length 4 in F, that is v1, v4 or

v7. Without loss of generality, we may assume v1 is contained in C4 ⊆ F −E(v1v4v7). So,

up to isomorphism, the other vertex is either v4 or v5. But the resulted graph contains

either F13 or F14. It implies that F is not minimal.

By Theorems 2.2, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10 and Lemma 2.11, we have the following

theorem.

Theorem 2.12. R(2K2, C4) = {2C4, K5 − e} ∪ {Fi | i ∈ [1, 24]}.
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[15] T. Vetŕık, L. Yulianti and E. T. Baskoro, On Ramsey (K1,2, C4)−minimal graphs,

Discussiones Mathematicae Graph Theory 30 (2010), 637–649.

[16] L. Yulianti, H. Assiyatun, S. Uttunggadewa and E.T. Baskoro, On Ramsey

(K1,2, P4)−minimal graphs, Far East Journal of Mathematical Sciences 40:1 (2010),

23–36.


