



journal homepage: http://jac.ut.ac.ir

# All Ramsey $(2K_2, C_4)$ -Minimal Graphs

# Kristiana Wijaya\*1, Lyra Yulianti $^{\dagger 2},$ Edy<br/> Tri Baskoro $^{\ddagger 1},$ Hilda Assiyatun $^{\S 1}$ <br/>and Djoko Suprijanto $^{\P 1}$

<sup>1</sup>Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10 Bandung 40132 Indonesia
<sup>2</sup>Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus UNAND Limau Manis Padang 25136 Indonesia

#### ABSTRACT

Let F, G and H be non-empty graphs. The notation  $F \rightarrow (G, H)$  means that if any edge of F is colored by red or blue, then either the red subgraph of F contains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G, H)-minimal if  $F \rightarrow (G, H)$  and for every  $e \in E(F)$ ,  $(F - e) \not\rightarrow (G, H)$ . The set of all Ramsey (G, H)-minimal graphs is denoted by  $\Re(G, H)$ . In this paper, we characterize all graphs which are in  $\Re(2K_2, C_4)$ .

#### ARTICLE INFO

Article history: Received 5, June 2015 Received in revised form 17, September 2015 Accepted 24, October 2015 Available online 25, November 2015

Keyword: Ramsey minimal graph; edge coloring; graph  $2K_2$ ; cycle graph.

AMS subject Classification: 05D10, 05C55. .

<sup>\*</sup>Corresponding author. E-mail: kristiana.w@students.itb.ac.id

<sup>&</sup>lt;sup>†</sup>Email:lyra@fmipa.unand.ac.id

 $<sup>^{\</sup>ddagger}Email:ebaskoro@math.itb.ac.id$ 

<sup>§</sup>Email:hilda@math.itb.ac.id

 $<sup>\</sup>P{\text{Email:}} djoko@math.itb.ac.id$ 

### 1 Introduction

Let F be a graph without isolated vertices. Let G and H be non-empty graphs. We write  $F \to (G, H)$  to mean that any red-blue coloring on the edges of F contains a red copy of G or a blue copy of H. Any red-blue coloring on the edges of F is called a (G, H)-coloring if neither a red G nor a blue H occurs. If a graph F has a (G, H)-coloring, then we write  $F \not\rightarrow (G, H)$ . A graph F is called a Ramsey (G, H)-minimal if  $F \to (G, H)$ , but for every  $e \in E(F)$ ,  $(F - e) \not\rightarrow (G, H)$ . The set of all Ramsey (G, H)-minimal graphs is denoted by  $\Re(G, H)$ . The pair (G, H) is called Ramsey-finite if  $\Re(G, H)$  is finite and Ramsey-infinite if otherwise.

The characterization of all graphs in  $\mathfrak{R}(G, H)$  for any given graphs G and H is an interesting problem. However, it is a difficult even for small graphs G and H. There are many papers dealing with this characterization of the members of  $\mathfrak{R}(G, H)$ . Nešetřil and Rödl (1978) gave some properties of G and H such that (G, H) is Ramsey-infinite. Some researchers have characterized some infinite families of Ramsey  $(K_{1,2}, H)$ -minimal graphs (see [1, 4, 5, 6, 11, 15, 16]). Burr *et al.* [10] showed that the pair (G, H) is Ramsey infinite whenever both G and H are forests, with at least one of G or H having a nonstar component. Moreover, Borowiecka-Olszewska and Hałuszczak [7] gave a method for constructing infinitely many graphs which belong to  $\mathfrak{R}(K_{1,m}, \mathcal{G})$ , where  $m \geq 2$  and  $\mathcal{G}$  is a family of 2-connected graphs.

Burr *et al.* [8] proved that if G is a matching, then  $\Re(G, H)$  is Ramsey-finite for all graphs H. In the same paper, Burr *et al.* proved that for any graph H,  $\Re(K_2, H) = \{H\}$  and they gave some examples of the set  $\Re(2K_2, H)$  where  $H = 2K_2$  and  $H = C_3$ , that is  $\Re(2K_2, 2K_2) = \{C_5, 3K_2\}$  and  $\Re(2K_2, C_3) = \{K_5, 2C_3, G_1\}$  (see Figure 1). Moreover Burr *et al.* [9] investigated  $\Re(G, H)$  in the special case where G is a 2-matching and H is a *t*-matching. They also proved that  $\Re(2K_2, 3K_2) = \{C_7, 4K_2, G_2\}, \Re(2K_2, 4K_2) = \{5K_2, 2C_5, C_5, C_9, G_3, G_4\}$  (see Figure 1),  $\Re(2K_2, K_{1,2}) = \{C_4, C_5, 2K_{1,2}\}$ .



Figure 1: Graphs  $G_1, G_2, G_3$  and  $G_4$ .

Mengersen and Oeckermann [12] characterized graphs which belong to  $\Re(2K_2, K_{1,n})$  for  $n \geq 3$  and determined explicitly all graphs in  $\Re(2K_2, K_{1,n})$  for  $n \leq 3$ . Baskoro and Yulianti [3] determined all graphs in  $\Re(2K_2, P_n)$  for n = 4, 5. Moreover, Tatanto and Baskoro [14]

determined all graphs in  $\Re(2K_2, 2P_3)$ . Mushi and Baskoro [13] derived the properties of graphs belonging to the class  $\Re(3K_2, P_3)$  and obtained all graphs in this set, which can be also found in [9] without proof, except one graph. Recently, Baskoro and Wijaya [2] gave the necessary and sufficient conditions of graphs in  $\Re(2K_2, H)$  for any connected H.

**Theorem 1.1.** [2] Let H be any connected graph.  $F \in \Re(2K_2, H)$  if and only if the following conditions are satisfied:

- (i) for every  $v \in V(F), F v \supseteq H$ ,
- (ii) for every  $K_3$  in  $F, F E(K_3) \supseteq H$ ,
- (iii) for every  $e \in E(F)$ , there exists  $v \in V(F)$  or  $K_3$  in F such that  $(F e) v \not\supseteq H$  or  $(F e) E(K_3) \not\supseteq H$ .

They determined all graphs in  $\Re(2K_2, K_4)$  with at most 8 vertices. In this paper, we give some properties of graphs belonging to  $\Re(2K_2, C_n)$  for  $n \geq 3$ .

Furthermore, we characterize all graphs in the set  $\Re(2K_2, C_4)$ .

### 2 Main Results

As usual, V and E are used to denote the vertex set and the edge set of a graph G. If a vertex u is adjacent to v in G, then this edge is denoted by uv. The *degree* of a vertex v, denoted by d(v), is the number of edges incident to a vertex v. If G has n vertices, then the *degree sequence* of G is  $(d_1, d_2, \ldots, d_n)$ , where  $d_i$  is the degree of vertex i for every  $i \in [1, n]$  and  $d_1 \ge d_2 \ge \ldots \ge d_n$ .

Let G be a graph with n vertices and m edges. For  $v \in V(G)$ , define G - v as a subgraph of G obtained by removing the vertex v and all edges incident with v. Similarly, for  $e \in E(G)$ , define G - e as a subgraph of G obtained by deleting the edge e but leaving two vertices incident to e. A complete graph and cycle with n vertices is denoted by  $K_n$ and  $C_n$ , respectively.  $mK_2$  is a graph consisting of m disjoint copies of  $K_2$ . In this paper, we use the notation (uvwx) to describe a cycle  $C_4$  with the vertex set  $\{u, v, w, x\}$  and the edge set  $\{uv, vw, wx, ux\}$ . So, (uvwx) and (uwxv) denote two different cycles. Similarly, the notation (uvw) describes a triangle  $K_3$  with the edge set  $\{uv, vw, uw\}$ .

We will determine explicitly all graphs in  $\Re(2K_2, C_4)$  by using Theorem 1.1. In general, the case (ii) of Theorem 1.1 can be replaced by (ii') for every induced subgraph S of order 3 in  $F, F - E(S) \supseteq H$ .

The following result gives some properties of graphs in  $\Re(2K_2, C_n)$ , for any  $n \geq 3$ .

Lemma 2.1. Let  $F \in \mathfrak{R}(2K_2, C_n)$ . Then,

(i)  $|V(F)| \ge n+1$ ,

- (ii)  $d(v) \ge 2$  for every  $v \in V(F)$ ,
- (iii) every vertex v is contained in  $C_n$ , and
- (iv) every edge e is contained in  $C_n$ .

#### Proof.

- (i) If |V(F)| = n, then F v has n 1 vertices. So, F does not contain a cycle  $C_n$ , a contradiction to Theorem 1.1(i).
- (ii) Suppose that there exists a vertex v ∈ V(F) having d(v) = 1. Then v is incident to exactly an edge e. Thus, there exists a (2K<sub>2</sub>, C<sub>n</sub>)-coloring φ' on the edges of F − e. Next, we define a red-blue coloring φ on the edges of F such that φ(x) = φ'(x) for x ∈ E(F − e) and φ(e) = blue. It is easy to verify that φ is a (2K<sub>2</sub>, C<sub>n</sub>)-coloring of F, a contradiction.
- (iii) Suppose that there exists a vertex  $v \in V(F)$  not contained in any  $C_n$ . By the minimality of F, we have a  $(2K_2, C_n)$ -coloring  $\phi'$  of F v. Next, we define a redblue coloring  $\phi$  on the edges of F such that  $\phi(x) = \phi'(x)$  for  $x \in E(F - v)$  and  $\phi(x) =$  blue, for all edges x incident to v. Then,  $\phi$  is a  $(2K_2, C_n)$ -coloring of F, a contradiction.
- (iv) Suppose that there exists an edge  $e \in E(F)$  not contained in any  $C_n$ . By the minimality of F, we have a  $(2K_2, C_n)$ -coloring  $\phi'$  of F - e. Next, we define a red-blue coloring  $\phi$  on the edges of F such that  $\phi(x) = \phi'(x)$  for all  $x \in E(F - e)$  and  $\phi(e) =$ blue. Then, we obtain  $\phi$  as a  $(2K_2, C_n)$ -coloring of F, a contradiction.

The next result gives all disconnected graphs which belong to  $\Re(2K_2, C_n)$ .

**Theorem 2.2.** Let  $n \geq 3$ . The only disconnected graph in  $\Re(2K_2, C_n)$  is  $2C_n$ .

**Proof.** It is easy to see that  $2C_n \in \Re(2K_2, C_n)$ . Let  $F \in \Re(2K_2, C_n)$  be a disconnected graph. So, F contains more than one component. By Theorem 1.1(i), each component contains a cycle  $C_n$ . Then, the minimality of F implies that  $F = 2C_n$ .  $\Box$ By Theorem 2.2 and the minimality of graphs in  $\Re(2K_2, C_n)$ , we can conclude that any connected graph in  $\Re(2K_2, C_n)$  must satisfy the following lemma.

**Lemma 2.3.** Let F be a connected graph in  $\Re(2K_2, C_n)$  for  $n \geq 3$ . Then,

- (i) every two cycles of length n in F intersects in at least one vertex,
- (ii) F contains at least three cycles of length n.

**Proof.** Let F be a connected graph in  $\Re(2K_2, C_n)$ .

- (i) Assume that we have two disjoint cycles of length n in F. Then,  $F \supseteq 2C_n$ . This contradicts to the minimality of F.
- (ii) Let v be an intersection vertex of two cycles  $C_n$  in F. By Theorem 1.1(i), we have  $F v \supseteq C_n$ . Of course, the last cycle will be different from the previous two cycles. Therefore, F must contain at least 3 cycles of length n.

From now on, we will determine all graphs in  $\Re(2K_2, C_4)$ . By Theorem 2.2, a graph  $2C_4$  is the only disconnected graph in  $\Re(2K_2, C_4)$ . So, to complete our task, we must determine all connected graphs F in  $\Re(2K_2, C_4)$ . The minimality of F implies that  $F \not\supseteq 2C_4$ . To determine all connected graphs  $F \in \Re(2K_2, C_4)$ , we will find such graphs of certain order n. Trivially,  $n \ge 5$ . We will show that these graphs exist if  $n \le 10$ . The following theorem shows that  $K_5 - e$  is the only connected graph of order 5 in  $\Re(2K_2, C_4)$ .

**Theorem 2.4.** The only connected graph of order 5 in  $\Re(2K_2, C_4)$  is  $K_5 - e$ .

**Proof.** First, we show that  $K_5 - e \in \Re(2K_2, C_4)$ . For every  $v \in V(K_5 - e)$ ,  $(K_5 - e) - v$ can be either  $K_4$  or  $K_4 - e$ . Obviously,  $(K_5 - e) - v \supseteq C_4$ . Moreover, for every triangle  $K_3$ in  $K_5 - e$ , we obtain a graph of order 5,  $K_5 - e - E(K_3)$  with a degree sequence (4, 3, 2, 2, 1)or (3, 3, 2, 2, 2). Certainly,  $K_5 - e - E(K_3)$  contains a  $C_4$ . So,  $K_5 - e \to (2K_2, C_4)$ . Next, if an edge of  $K_5 - e$  is deleted, then we obtain two non-isomorphic graphs  $K_5 - 2e$ , say  $F_a$  with a degree sequence (4, 4, 3, 3, 2) or  $F_b$  with a degree sequence (4, 3, 3, 3, 3). For  $v \in V(F_a)$  with d(v) = 4, we obtain  $F_a - v$  which does not contain a  $C_4$ . For the graph  $F_b$ , we choose a triangle  $K_3$  where two edges of  $K_3$  incident to a vertex of degree 4 in  $F_b$ . We obtain  $F_b - E(K_3)$  which does not contain a  $C_4$ . So,  $K_5 - 2e \not\rightarrow (2K_2, C_4)$ . Hence,  $K_5 - e \in \Re(2K_2, C_4)$ .

Since  $K_5 \supseteq K_5 - e$ ,  $K_5 \notin \Re(2K_2, C_4)$ . Beside that, other non complete graphs of order 5 are subgraphs of  $K_5 - e$ . So,  $K_5 - e$  is the only graph of order 5 in  $\Re(2K_2, C_4)$ .  $\Box$ We need the following lemma to find all connected Ramsey  $(2K_2, C_4)$ -minimal graphs of order greater than 5.

**Lemma 2.5.** Let  $A_1$  and  $A_2$  be graphs of orders 7 and 6 containing two cycles of length 4, respectively, with  $E(A_1) = E(C_1) \cup E(C_2)$  and  $E(A_2) = E(C_1) \cup E(C_3)$ , where  $C_1 = (v_1v_2v_3v_4)$ ,  $C_2 = (v_4v_5v_6v_7)$  and  $C_3 = (v_3v_4v_5v_6)$ . Let F be a connected graph and  $F \in \Re(2K_2, C_4)$ . If F has order at least 6, then F must contain  $A_1$  or  $A_2$ . Precisely, we have

- (i) If F has order 6, then F contains  $A_2$ ,
- (ii) If F has order 7, then F contains  $A_1$  or  $A_5$ , where  $A_5$  is a graph having the vertex set  $V(A_5) = V(A_2) \cup \{v_7\}$  and the edge set  $E(A_5) = E(A_2) \cup \{v_2v_4, v_2v_7, v_4v_6\}$ ,
- (iii) If F has order at least 8, then F contains  $A_1$ .

**Proof.** Let  $F \in \Re(2K_2, C_4)$ . Then, F must contain a cycle of length 4, say  $C_1 = (v_1v_2v_3v_4)$ . Since there is no triangle in  $C_1$ , we take an induced subgraph S of order 3 to apply Theorem 1.1(ii'). So, by Theorem 1.1(ii'), for  $S = \{v_1, v_2, v_4\}$ , there must be a  $C_4$  in F - E(S). This  $C_4$  is formed by involving a vertex of  $C_1$  and three other vertices  $v_5, v_6, v_7$  in F, say  $C_4 = (v_4v_5v_6v_7)$  (the graph  $A_1$ ); or involving two vertices of  $C_1$  and two other vertices  $v_5, v_6$  in F, say  $C_4 = (v_3v_4v_5v_6)$  (the graph  $A_2$ ) or  $C_4 = (v_2v_3v_4v_5)$  (the graph  $A_3$ ); or involving three vertices of  $C_1$  and a vertex  $v_5$  in F, say  $C_4 = (v_2v_3v_4v_5)$  (the graph  $A_4$ ), as depicted in Figure 2. Let F be of order at least 6. We now consider that



Figure 2: The possibilities of forming  $C_4$  in F - E(S)for some  $V(S) = \{v_1, v_2, v_4\}$  when  $F \supseteq C_4$ .

F contains either  $A_3$  or  $A_4$ . If  $F \supseteq A_3$ , then by Theorem 1.1(i),  $F - v_3$  must contain a  $C_4$ . As a consequence, F will contain either  $A_1$  or  $A_2$ . If  $F \supseteq A_4$ , then by Theorem 1.1(i),  $F - v_2$  must contain a  $C_4$ . Since  $|V(F)| \ge 6$ , there exists at least a vertex in F other than  $V(C_1) \cup \{v_5\}$ . But every  $C_4$  in  $F - v_2$  will yield that F contains either  $A_1$  or  $A_2$  or  $A_3$ . Thus, the claim follows immediately.

- (i) Let F be of order 6. Clearly F does not contain  $A_1$ .
- (ii) Let F be of order 7. Then, F contains either  $A_1$  or  $A_2$ . Suppose that F contains  $A_2$ . Then, there must be a  $C_4$  in  $F v_3$ , by Theorem 1.1(i). This cycle is formed by involving three vertices in  $A_2$  and a vertex  $v_7$  in F. There are five possibilities (up to isomorphism), say  $C_4 = (v_2v_4v_6v_7)$ ,  $C_4 = (v_1v_4v_5v_7)$ ,  $C_4 = (v_1v_7v_4v_5)$ ,  $C_4 = (v_1v_4v_6v_7)$  or  $C_4 = (v_2v_6v_4v_7)$ , (see the graph  $A_5$ ,  $A_6$ ,  $A_7$ ,  $A_8$  or  $A_9$ , respectively, as depicted in Figure 3). From these possibilities, it is enough to consider  $F \supseteq A_5$ , since  $F v_4$  contains a  $C_4$ .
- (iii) Let F be of order at least 8. Then, F contains either  $A_1$  or  $A_2$ . If F contains  $A_2$ , then there must be a  $C_4$  in  $F v_3$ , by Theorem 1.1(i). This cycle can be formed by involving two vertices in  $A_2$  and two vertices  $v_7$  and  $v_8$  in F; or involving three vertices in  $A_2$  and a vertex  $v_7$  in F. But, if this  $C_4$  contains  $v_7$  and  $v_8$ , then F will contain either  $A_1$  or  $2C_4$ . So, this  $C_4$  is formed by involving  $v_7$  in F. By case (ii),



Figure 3: The possibilities of forming  $C_4$  in  $F - v_3$  when  $F \supseteq A_2$ .

*F* contains  $A_5$ . Next, by Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_3v_4v_6)$ . This cycle is formed by involving three vertices of  $A_5$  and a vertex  $v_8$  in *F*. So, the edge  $v_iv_8$  must be in *F* for some  $i \in [1, 7]$ . But, this cycle cannot involve the edge  $v_iv_8$  for every  $i \in [1, 7]$ , since it causes *F* containing  $A_1$ .

In the next result, we consider all graphs in Figure 4. First, we consider the graph  $F_1$  which has the vertex set  $V(F_1) = \{v_1, v_2, \ldots, v_6\}$  and the edge set  $E(F_1) = \{v_i v_{i+1} \mid i = 1, 2, \ldots, 5\} \cup \{v_1 v_4, v_1 v_6, v_3 v_6\}$ . We prove that the graph  $F_1$  is the only graph of order 6 in  $\Re(2K_2, C_4)$  by the following theorem.

**Theorem 2.6.** The only connected graph of order 6 in  $\Re(2K_2, C_4)$  is  $F_1$ .

**Proof.** First, we prove that  $F_1 \in \mathfrak{R}(2K_2, C_4)$ . We can verify easily that for every  $i \in [1, 6]$ ,  $F_1 - v_i$  contains a  $C_4$ . Next, consider two cycles of length 4, namely  $C_1 = (v_1v_2v_3v_4)$ ,  $C_3 = (v_3v_4v_5v_6)$  and an edge  $v_1v_6$  in  $F_1$ . If an edge e of the cycle  $C_1$  is deleted from F, then we obtain  $(F_1 - e) - v_6 \not\supseteq C_4$ . Moreover,  $(F_1 - e) - v_1 \not\supseteq C_4$  if an edge e on the cycle  $C_3$  is deleted from F. Finally,  $(F_1 - v_1v_6) - v_3 \not\supseteq C_4$ . So,  $F_1 \in \mathfrak{R}(2K_2, C_4)$ .

Now, we prove that the connected graph of order 6 in  $\Re(2K_2, C_4)$  is  $F_1$ . Let F be a connected graph having the vertex set  $V(F) = \{v_1, v_2, \ldots, v_6\}$ . Suppose that  $F \in \Re(2K_2, C_4)$  but  $F \neq F_1$ . By Lemma 2.5(i), F contains  $A_2$ . By the minimality of F,  $F \not\supseteq 2C_4$  and  $F \not\supseteq K_5 - e$ . By Theorem 1.1(i),  $F - v_3$  must contain a  $C_4$ . Since  $F \neq F_1$ , the edges  $v_1v_6, v_2v_5 \notin E(F)$ . So, there must be the edges  $v_2v_4$  and  $v_1v_5$  in F (the graph  $A_{21}$ ) or edges  $v_2v_6$  and  $v_4v_6$  in F (the graph  $A_{22}$ ) (see Figure 5). Next, if F contains either  $A_{21}$  or  $A_{22}$ , then  $F - v_4$  must contain a  $C_4$ , by Theorem 1.1(i). This cycle is formed by involving an edge  $v_3v_5$  in F when  $F \supseteq A_{21}$  (see the graph  $A_{2a}$ ) and an edge  $v_1v_3$  in F when  $F \supseteq A_{22}$  (see the graph  $A_{2a}$ ). Otherwise F contains  $F_1$ .

Furthermore, by Theorem 1.1(ii), we must form a  $C_4$  in  $F - E(K_3)$  for some  $K_3 = (v_1v_4v_5)$  when F contains  $A_{2a}$  or  $K_3 = (v_3v_4v_6)$  when F contains  $A_{2b}$ . As a consequence, F will contain  $F_1$ , a contradiction.

Next, we will find all Ramsey  $(2K_2, C_4)$ -minimal graphs of order 7. We consider the graphs  $F_2$ ,  $F_3$ ,  $F_4$  and  $F_5$  as depicted in Figure 4. We will prove that  $F_2$ ,  $F_3$ ,  $F_4$  and  $F_5$ 



Figure 4: All connected Ramsey  $(2K_2, C_4)$ -minimal graphs.



Figure 5: The process of forming a  $C_4$  when F contains  $A_2$ .

are the only Ramsey  $(2K_2, C_4)$ -minimal graphs of order 7 as follows.

**Theorem 2.7.** The only connected graphs of order 7 in  $\Re(2K_2, C_4)$  are  $F_2$ ,  $F_3$ ,  $F_4$  and  $F_5$ .

**Proof.** We can show easily that  $F_2$ ,  $F_3$ ,  $F_4$ ,  $F_5$  satisfy Theorem 1.1 (i) and (ii). To show the minimality of  $F_2$ , consider the first line of Figure 6. Let e be any edge in  $F_2$ . Then, e must be in a (bold)  $C_4$ . Now, consider F - e. Then, color all dash-line edges by red and the remaining edges by blue. Thus, this coloring is a  $(2K_2, C_4)$ -coloring of  $F_2 - e$ . Therefore,  $F_2$  is a Ramsey  $(2K_2, C_4)$ -minimal graph. Similarly, by considering Figure 6, we can show the minimality of  $F_3$ ,  $F_4$  and  $F_5$ .



Figure 6: Some red-blue coloring of  $F_2$ ,  $F_3$ ,  $F_4$  and  $F_5$  contain a red  $K_2$  and a blue  $C_4$ .

Now, we prove that the connected graphs of order 7 in  $\Re(2K_2, C_4)$  are  $F_2$ ,  $F_3$ ,  $F_4$  and  $F_5$ . Let  $F \in \Re(2K_2, C_4)$  be a connected graph having the vertex set  $V(F) = \{v_1, v_2, \ldots, v_7\}$ . By the minimality, F does not contain  $K_5 - e$  or  $F_1$ . By Lemma 2.5(ii), F contains  $A_1$  or  $A_5$ .

First, we observe that F contains  $A_1$ . There must be a  $C_4$  in  $F - v_4$  by Theorem 1.1(i). Up to isomorphism, there are five possibilities to form this  $C_4$  by involving some edges

other than  $e \in E(A_1)$ , that is  $C_4 = (v_1v_3v_2v_6)$  (the graph  $B_1$ ),  $C_4 = (v_1v_2v_3v_7)$  (the graph  $B_2$ ),  $C_4 = (v_1v_3v_2v_7)$  (the graph  $B_3$ ),  $C_4 = (v_1v_2v_6v_7)$  (the graph  $B_4$ ) or  $C_4 = (v_1v_3v_5v_7)$  (the graph  $B_5$ ), as depicted in Figure 7.



Figure 7: The possibilities of forming  $C_4$  in  $F - v_4$  when  $F \supseteq A_1$ .

Now, consider that F contains  $B_i$  for every  $i \in [1, 5]$ . If  $F \supseteq B_1$ , then  $F = B_1$  since  $B_1$  is isomorphic to  $F_2$ . Consider a triangle  $K_3 = (v_1v_4v_7)$ . If  $F \supseteq B_i$  for  $i \in [2, 5]$ , then there must be a  $C_4$  in  $F - E(K_3)$ , by Theorem 1.1(ii). But this  $C_4$  makes F not minimal, when  $F \supseteq B_i$  for i = 2, 3, 5. Next, if  $F \supseteq B_4$ , this cycle is formed by involving an edge in F, namely  $v_2v_5$  or  $v_3v_5$ . We obtain the graph F with either the edge set  $E(F) = E(B_4) \cup \{v_2v_5\}$ or  $E(F) = E(B_4) \cup \{v_3v_5\}$  which is isomorphic to either  $F_3$  or  $F_4$ , respectively. So,  $F_2$ ,  $F_3$  and  $F_4$  are all Ramsey  $(2K_2, C_4)$ -minimal graphs of order 7 containing  $A_1$ .

Now, we will find all Ramsey  $(2K_2, C_4)$ -minimal graphs of order 7 containing  $A_5$ . By Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_3v_4v_6)$ . Since F does not contain  $A_1$ , one of the edges  $v_1v_5, v_1v_6, v_1v_7, v_2v_5, v_4v_7, v_5v_7$  does not involve in F. By the minimality, this cycle is only formed by involving an edge  $v_2v_6$  in F. We obtain the graph F with  $E(F) = E(A_5) \cup \{v_2v_6\}$  which is isomorphic to  $F_5$ .

Next, we will determine all graphs of order 8 in  $\Re(2K_2, C_4)$ . We consider the graphs  $F_6$ ,  $F_7$ ,  $F_8$ ,  $F_9$ ,  $F_{10}$ ,  $F_{11}$  and  $F_{12}$  as depicted in Figure 4. The following theorem prove that  $F_6$ ,  $F_7$ ,  $F_8$ ,  $F_9$ ,  $F_{10}$ ,  $F_{11}$  and  $F_{12}$  are the only Ramsey  $(2K_2, C_4)$ -minimal graphs of order 8.

**Theorem 2.8.** The only connected graphs of order 8 in  $\Re(2K_2, C_4)$  are  $F_6$ ,  $F_7$ ,  $F_8$ ,  $F_9$ ,  $F_{10}$ ,  $F_{11}$  and  $F_{12}$ .

**Proof.** We can easily notice that for  $i \in [6, 12]$ , the graph  $F_i$  satisfy Theorem 1.1 (i) and (ii). The proof of the minimality of  $F \in \{F_6, F_7, \ldots, F_{12}\}$  is done in the same fashion as in Theorem 2.7. In Figure 8, for any edge  $e \in E(F)$ , we construct a red-blue coloring such that there exist a red  $K_2$  and exactly a blue  $C_4$ . Thus for every edge  $e \in E(F)$ , we obtain a  $(2K_2, C_4)$ -coloring of F - e.

Now, we prove that the connected graphs of order 8 in  $\Re(2K_2, C_4)$  are  $F_6$ ,  $F_7$ ,  $F_8$ ,  $F_9$ ,  $F_{10}$ ,  $F_{11}$  and  $F_{12}$ . Let  $F \in \Re(2K_2, C_4)$  be a connected graph with the vertex set V(F) =



Figure 8: Some red-blue coloring of F of order 8 contain a red  $K_2$  and a blue  $C_4$ .

 $\{v_1, v_2, \ldots, v_8\}$ . By the minimality, F does not contain  $2C_4$ ,  $K_5 - e$ ,  $F_1$ ,  $F_2$ ,  $F_3$ ,  $F_4$  or  $F_5$ . By Lemma 2.5(iii), F contains  $A_1$ . There must be a  $C_4$  in  $F - v_4$  by Theorem 1.1(i). This cycle is formed by involving three vertices in  $A_1$  and a vertex, say  $v_8$ . Up to isomorphism, there are six possibilities, say  $C_4 = (v_1v_2v_8v_6)$  (the graph  $D_1$ ),  $C_4 = (v_1v_2v_6v_8)$  (the graph  $D_2$ ),  $C_4 = (v_1v_3v_8v_6)$  (the graph  $D_3$ ),  $C_4 = (v_1v_2v_8v_7)$  (the graph  $D_4$ ),  $C_4 = (v_1v_7v_2v_8)$  (the graph  $D_5$ ) or  $C_4 = (v_1v_3v_7v_8)$  (the graph  $D_6$ ), as illustrated in Figure 2.

Now, we consider that F contains  $D_i$  for every  $i \in [1, 6]$ . The graphs  $D_1, D_2$  and  $D_3$  are isomorphic to  $F_6$ ,  $F_7$  and  $F_8$ , respectively. Furthermore, if F contains either  $D_4$  or

20



Figure 9: The possibilities of forming  $C_4$  in  $F - v_4$ when  $F \supseteq A_1$  by involving  $v_8$  in F.

 $D_5$ , then there exists a triangle  $K_3 = (v_1v_4v_7)$  which yields that  $F - E(K_3)$  does not contain a  $C_4$ . If  $F \supseteq D_4$ , then this cycle is formed by involving three edges in F, say either  $C_4 = (v_1v_5v_7v_8)$  or  $C_4 = (v_3v_5v_6v_8)$ . We obtain the graph F with either the edge set  $E(F) = E(D_4) \cup \{v_1v_5, v_1v_8, v_5v_7\}$  or  $E(F) = E(D_4) \cup \{v_3v_5, v_3v_8, v_6v_8\}$  which is isomorphic to either  $F_9$  or  $F_{10}$ , respectively. Next, if  $F \supseteq D_5$ , then this cycle is formed by involving two edges in F, say either  $v_2v_4, v_3v_5 \in E(F)$  or  $v_3v_5, v_3v_7 \in E(F)$ . We obtain the graph F with either the edge set  $E(F) = E(D_5) \cup \{v_2v_4, v_3v_5\}$  or E(F) = $E(D_5) \cup \{v_3v_5, v_3v_7\}$  which is isomorphic to either  $F_9$  or  $F_{12}$ , respectively. Moreover, we consider F containing  $D_6$ . There exists a triangle  $K_3 = (v_3v_4v_7)$  such that  $F - E(K_3)$  does not contain a  $C_4$ . By the minimality, this  $C_4$  is formed by involving two edges in F, say  $v_1v_7, v_6v_8 \in E(F)$ . We obtain the graph F with the edge set  $E(F) = E(D_6) \cup \{v_1v_7, v_6v_8\}$ which is isomorphic to  $F_{11}$ .

In the next result, we will find all graphs of order 9 which belong to  $\Re(2K_2, C_4)$ . We consider the graph of order 9 in Figure 4, namely  $F_{13}, F_{14}, \ldots, F_{22}$ .

**Theorem 2.9.** The only connected graphs of order 9 in  $\Re(2K_2, C_4)$  are  $F_{13}, F_{14}, \ldots, F_{22}$ .

**Proof.** We can easily notice that  $F_{13}, F_{14}, \ldots, F_{22}$  satisfy Theorem 1.1 (i) and (ii). The proof of the minimality is done in the same fashion as in Theorem 2.7. In Figure 10 and 11, for every edge e in  $F \in \{F_{13}, F_{14}, \ldots, F_{22}\}$ , we construct a red-blue coloring of F such that there exists a red  $K_2$  and exactly a blue  $C_4$ . Thus, for every  $e \in E(F)$  we obtain a  $(2K_2, C_4)$ -coloring of F - e.

Now, we prove that the connected graphs of order 9 in  $\Re(2K_2, C_4)$  are  $F_{13}, F_{14}, \ldots, F_{22}$ . Let  $F \in \Re(2K_2, C_4)$  be a connected graph having the vertex set  $V(F) = \{v_1, v_2, \ldots, v_9\}$ .



Figure 10: Some red-blue coloring of  $F_{13}$ ,  $F_{14}$ ,  $F_{15}$ ,  $F_{16}$  and  $F_{17}$  contain a red  $K_2$  and a blue  $C_4$ .

By Lemma 2.5(iii), F contains  $A_1$ . By Theorem 1.1(i), there must be a  $C_4$  in  $F - v_4$ . Then, this  $C_4$  must contain at least one vertex of  $v_8$  and  $v_9$ . So, (up to isomorphism) there are seven possibilities to form this cycle, that is  $C_4 = (v_1v_8v_7v_9)$  (the graph  $E_1$ ),  $C_4 = (v_1v_8v_6v_9)$  (the graph  $E_2$ ),  $C_4 = (v_2v_8v_6v_9)$  (the graph  $E_3$ ),  $C_4 = (v_1v_7v_8v_9)$  (the graph  $E_4$ ),  $C_4 = (v_1v_3v_7v_8)$  (the graph  $E_5$ ),  $C_4 = (v_1v_2v_8v_7)$  (the graph  $E_6$ ) or  $C_4 = (v_1v_7v_2v_8)$  (the graph  $E_7$ ), as illustrated in Figure 12.

Now, consider that F contains  $E_i$  for every  $i \in [1,7]$ . The graphs  $E_1$ ,  $E_2$  and  $E_3$  are isomorphic to  $F_{13}$ ,  $F_{14}$  and  $F_{15}$ , respectively. If  $F \supseteq E_4$ , then by Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_1v_4v_7)$ . By the minimality property and up to isomorphism, there are three possibilities to form this cycle, that is  $C_4 = (v_1v_2v_4v_8)$ ,  $C_4 = (v_1v_3v_4v_8)$  or  $C_4 = (v_1v_3v_7v_8)$ . We obtain the graph F having the edge set  $E(F) = E(E_4) \cup \{v_1v_8, v_2v_4, v_4v_8\}$ ,  $E(F) = E(E_4) \cup \{v_1v_3, v_1v_8, v_4v_8\}$  or  $E(F) = E(E_4) \cup \{v_1v_3, v_1v_8, v_4v_8\}$  or  $E(F) = E(E_4) \cup \{v_1v_3, v_1v_8, v_3v_7\}$ which is isomorphic to  $F_{16}$ ,  $F_{17}$  or  $F_{19}$ , respectively. If  $F \supseteq E_5$ , then by Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_3v_4v_7)$ . By the minimality property, there are five possibilities to form this  $C_4$ , that is  $C_4 = (v_1v_4v_8v_9)$ ,  $C_4 = (v_1v_7v_8v_9)$ ,  $C_4 =$ 



Figure 11: Some red-blue coloring of  $F_{18}$ ,  $F_{19}$ ,  $F_{20}$ ,  $F_{21}$  and  $F_{22}$  contain a red  $K_2$  and a blue  $C_4$ .

 $(v_1v_7v_9v_8), C_4 = (v_4v_8v_9v_5) \text{ or } C_4 = (v_1v_7v_6v_9).$  We obtain the graph F having the edge set  $E(F) = E(E_5) \cup \{v_1v_9, v_4v_8, v_8v_9\}, E(F) = E(E_5) \cup \{v_1v_7, v_1v_9, v_8v_9\}, E(F) = E(E_5) \cup \{v_1v_7, v_1v_9, v_8v_9\}, E(F) = E(E_5) \cup \{v_4v_8, v_5v_9, v_8v_9\} \text{ or } E(F) = E(E_5) \cup \{v_1v_7, v_1v_9, v_6v_9\}$ which is isomorphic to  $F_{18}, F_{19}, F_{22}, F_{20}$  or  $F_{21}$ , respectively. Next, if F contains either  $E_6$  or  $E_7$ , then by Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_1v_4v_7)$ . If  $F \supseteq E_6$ , then this  $C_4$  can be formed by involving four edges in F, that is either  $C_4 = (v_1v_5v_9v_6)$  or  $C_4 = (v_1v_5v_7v_9)$ . We obtain the graph F having either the edge set  $E(F) = E(E_6) \cup \{v_1v_5, v_1v_6, v_5v_9, v_6v_9\}$  or  $E(F) = E(E_6) \cup \{v_1v_5, v_1v_9, v_5v_7, v_7v_9\}$  which is isomorphic to either  $F_{20}$  or  $F_{21}$ , respectively. If  $F \supseteq E_7$ , then this  $C_4$  is formed by involving three edges in F, that is  $C_4 = (v_3v_7v_6v_9)$ . We obtain the graph F with the edge set  $E(F) = E(E_7) \cup \{v_3v_7, v_3v_9, v_6v_9\}$  which is isomorphic to  $F_{20}$ . Hence, the connected graphs of order 9 in  $\Re(2K_2, C_4)$  are  $F_{13}, F_{14}, \ldots, F_{22}$ .

Finally, we will find all graphs of order 10 belonging to  $\Re(2K_2, C_4)$ . We consider the graphs  $F_{23}$  and  $F_{24}$  in Figure 4.

**Theorem 2.10.** The only connected graphs of order 10 in  $\Re(2K_2, C_4)$  are  $F_{23}$  and  $F_{24}$ .

23



Figure 12: The possibilities of forming a  $C_4$  in  $F - v_4$  when  $F \supseteq A_4$ by involving two vertices  $v_8$  and  $v_9$  in F.

**Proof.** We can notice easily that  $F_{23}$  and  $F_{24}$  satisfy Theorem 1.1 (i) and (ii). The proof of the minimality of  $F_{23}$  and  $F_{24}$  is done in the same fashion as in Theorem 2.7. In Figure 13, for every edge e in  $F \in \{F_{23}, F_{24}\}$  we construct a red-blue coloring of F such that there exists a red  $K_2$  and exactly a blue  $C_4$ . Thus, we obtain a  $(2K_2, C_4)$ -coloring of F - e.



Figure 13: The red-blue coloring of F of order 10 contains a red  $K_2$  and a blue  $C_4$ .

Now, we prove that the connected graphs of order 10 in  $\Re(2K_2, C_4)$  are  $F_{23}$  and  $F_{24}$ . Let F be a connected graph in  $\Re(2K_2, C_4)$  where  $V(F) = \{v_1, v_2, \ldots, v_{10}\}$ . By Lemma 2.5(iii), F contain  $A_1$ . By Theorem 1.1(i), F must contain a  $C_4$  in  $F - v_4$ . Since F does not contain  $2C_4$ , this  $C_4$  must contain a vertex in cycle  $C_1 = (v_1v_2v_3v_4)$  and a vertex in cycle  $C_2 = (v_4v_5v_6v_7)$ . So, this cycle is formed by involving two vertices, say  $v_7$  and  $v_8$  in F, that is  $C_4 = (v_1v_7v_8v_9)$  (the graph  $E_4$  in Figure 12). Next, if F contains  $E_4$ , then by Theorem 1.1(ii),  $F - E(K_3)$  must contain a  $C_4$  for some  $K_3 = (v_1v_4v_7)$ . By the minimality and up to isomorphism, this  $C_4$  is formed by involving three edges in  $E_4$  and a vertex  $v_{10}$  in F, say either  $C_4 = (v_1v_3v_7v_{10})$  or  $C_4 = (v_1v_5v_{10}v_6)$ . We obtain the graph F having either the edge set  $E(F) = E(E_4) \cup \{v_1v_3, v_1v_{10}, v_3v_7, v_7v_{10}\}$  or  $E(F) = E(E_4) \cup \{v_1v_5, v_1v_6, v_5v_{10}, v_6v_{10}\}$  which is isomorphic to either  $F_{23}$  and  $F_{24}$ , respectively.

**Lemma 2.11.** The order of a connected graph F in  $\Re(2K_2, C_4)$  is at most 10.

**Proof.** Let F be a connected graph in  $\Re(2K_2, C_4)$  and |V(F)| = 11 where  $V(F) = \{v_1, v_2, \ldots, v_{11}\}$ . By Lemma 2.5(iii), F contains  $A_1$ . By Theorem 1.1 and the minimality of F, there is only one possibility to form this  $C_4$ , say  $(v_1v_7v_8v_9)$  (the graph  $E_4$  in Figure 12). Next, by Theorem 1.1(iii), there must be a  $C_4$  in  $F - E(K_3)$  for some  $K_3 = (v_1v_4v_7)$ . This  $C_4$  must contain both vertices  $v_{10}$  and  $v_{11}$ . Since F does not contain  $2C_4$ , at least another vertex must be contained in two different cycles of length 4 in F, that is  $v_1, v_4$  or  $v_7$ . Without loss of generality, we may assume  $v_1$  is contained in  $C_4 \subseteq F - E(v_1v_4v_7)$ . So, up to isomorphism, the other vertex is either  $v_4$  or  $v_5$ . But the resulted graph contains either  $F_{13}$  or  $F_{14}$ . It implies that F is not minimal.

By Theorems 2.2, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10 and Lemma 2.11, we have the following theorem.

**Theorem 2.12.** 
$$\Re(2K_2, C_4) = \{2C_4, K_5 - e\} \cup \{F_i \mid i \in [1, 24]\}.$$

# Acknowledgment

This research was supported by Research Grant "Program Hibah Riset Unggulan ITB-DIKTI" 2015, Ministry of Research, Technology and Higher Education.

## References

- E. T. Baskoro, T. Vetrík and L. Yulianti, A note on Ramsey (K<sub>1,2</sub>, C<sub>4</sub>)-minimal graphs of diameter 2, Proceedings of the International Conference 70 Years of FCE STU, Bratislava, Slovakia (2008), 1–4.
- [2] E.T. Baskoro and K. Wijaya, On Ramsey  $(2K_2, K_4)$ -minimal graphs, Mathematics in the 21st Century, Springer Proceedings in Mathematics & Statistics **98** (2015), 11–17.
- [3] E.T. Baskoro and L. Yulianti, On Ramsey minimal graphs for  $2K_2$  versus  $P_n$ , Advanced and Applications in Discrete Mathematics 8:2 (2011), 83–90.
- [4] E.T. Baskoro, L. Yulianti and H. Assiyatun, Ramsey  $(K_{1,2}, C_4)$ -minimal graphs, Journal of Combinatorial Mathematics and Combinatorial Computing **65** (2008), 79–90.

- [5] M. Borowiecki, M. Hałuszczak and E. Sidorowicz, On Ramsey minimal graphs, *Discrete Mathematics* 286:1-2 (2004), 37–43.
- [6] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey  $(K_{1,2}, K_3)$ -minimal graphs, The Electronic Journal of Combinatorics **12** (2005) #R20.
- [7] M. Borowiecka-Olszewska and M. Hałuszczak, On Ramsey  $(K_{1,m}, \mathcal{G})$ -minimal graphs, Discrete Mathematics **313:19** (2012), 1843–1855.
- [8] S.A. Burr, P. Erdös, R.J. Faudree and R.H. Schelp, A class of Ramsey-finite graphs, Proceeding of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing (1978), 171–180.
- [9] S.A. Burr, P. Erdös, R.J. Faudree and R.H. Schelp, Ramsey minimal graphs for matchings, *The Theory and Applications of Graphs (Kala-mazoo, Mich.)* (1980), 159–168. Wiley, New York, 1981.
- [10] S.A. Burr, P. Erdös, R.Faudree, C. Rousseau and R. Schelp, Ramsey minimal graphs for forests, *Discrete Mathematics* 38:1 (1982), 23–32.
- [11] M. Hałuszczak, On Ramsey  $(K_{1,2}, K_n)$ -minimal graphs, Discussiones Mathematicae, Graph Theory **32** (2012), 331–339.
- [12] I. Mengersen and J. Oeckermann, Matching-star Ramsey sets, Discrete Applied Mathematics 95 (1999), 417–424.
- [13] H. Muhshi and E.T. Baskoro, On Ramsey  $(3K_2, P_3)$ -minimal graphs, AIP Conference Proceeding 1450 (2012), 110–117.
- [14] D. Tatanto and E.T. Baskoro, On Ramsey  $(2K_2, 2P_n)$ -minimal graphs, AIP Conference Proceeding 1450 (2012), 90–95.
- [15] T. Vetrík, L. Yulianti and E. T. Baskoro, On Ramsey  $(K_{1,2}, C_4)$ -minimal graphs, Discussiones Mathematicae Graph Theory **30** (2010), 637–649.
- [16] L. Yulianti, H. Assiyatun, S. Uttunggadewa and E.T. Baskoro, On Ramsey  $(K_{1,2}, P_4)$ -minimal graphs, Far East Journal of Mathematical Sciences **40:1** (2010), 23-36.