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1 Introduction

The concept of mean labeling was introduced in 2003 by Somasundaram and Ponraj [7].

A graph G of order m and size n is said to be a mean graph if there exists an injective

function f : V (G) → {0, 1, 2, . . . , n} such that when each edge uv has assigned the weight
⌈

f(u)+f(v)
2

⌉

, the resulting weights are distinct. Only a few families of trees are known to

be mean graphs. The above authors proved the following are mean graphs: the path Pn

for every n, the star Sn = K1,n if and only if n ≤ 3, bistars Bm,n where m > n if and only

if m < n+ 2, the subdivision graph of the star K1,n if and only if n < 4.

Recently Barrientos and Krop [1] proved that mean graphs must satisfy the following

necessary conditions:

Proposition 1. If G is a mean graph of order m and size n, then (a) n + 1 ≥ m, (b)

∆(G) ≤ n+3
2
, when n is odd and ∆(G) ≤ n+2

2
when n is even.

We refer to part (b) as the degree condition. We have conjectured that all trees that satisfy

the degree condition are mean graphs. Throughout the rest of this paper, we consider

only graphs that satisfy this degree condition.

A more restrictive variation of mean labeling was also introduced in [1]. Let G be a

mean bipartite graph. A mean labeling f of G is called an α-mean labeling if for every

uv ∈ E(G), f(u) and f(v) have different parity. We proved that the complemetary

labeling, f̄ , of an α-mean labeling f , is an α-mean labeling. This is not the case with

regular mean labelings.

In this paper we study mean labelings of graphs of the form G ⊙ H , where G is an α-

graph of size n and order n + 1 such that the absolute difference of the cardinalities of

its bipartite sets is at most 1, and ⊙ denotes the corona product. The corona of two

graphs was introduced in 1970 by Frucht and Harary [4]. Given two graphs G and H ,

their corona product is the graph with vertex set

V (G⊙H) = V (G) ∪





⋃

i∈V (G)

V (Hi)





and edge set

E(G⊙H) = E(G) ∪





⋃

i∈V (G)

E(Hi)



 ∪ {(i, ui) : i ∈ V (G), ui ∈ V (Hi)}

In Section 2 we analyze the relationship between α-labelings and α-mean labelings. In

Section 3 we present mean labelings of graphs obtained using the corona product. In
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Section 4 we study coronas of the form Cn ⊙ mK1, where n is an even number. In

Section 5 we consider pseudo-mean labelings of some of the graphs considered in the

previous sections. We present there a pseudo-mean labeling of the complete graph that

uses Fibonacci numbers. Finally we close the paper with some questions that arose during

this project.

For more information about graph labelings, the reader is referred to Gallian’s survey [5].

Graphs considered in this paper are finite, with no loops or multiple edges. We follow the

notation used in [3] and [5].

2 Alpha Versus Alpha-Mean

Recall that a graph G of order m and size n is a graceful graph if there exists an injective

function f : V (G) → {0, 1, . . . , n} such that when the edge uv is assigned the weight

|f(u) − f(v)|, the set of all weights is {1, 2, . . . , n}. In addition, if there is an integer λ

such that f(u) ≤ λ < f(v) or f(v) ≤ λ < f(u) for every edge uv in G then f is said to

be an α-labeling and G is an α-graph. The number λ is named the boundary value of f .

It is well-known that if G is an α-graph, then G is bipartite. If G is a bipartite graph and

{A,B} is the bipartition of V (G), we assume that with out loss of generality |A| ≥ |B|.

We refer to A and B as the stable sets of G.

Let Mn denote the family of all mean graphs of order n+ 1 and size n, and An ⊂ Mn be

the subfamily of all α-mean graphs such that the cardinalities of their stable sets differ by

at most one unit. Notice that mean trees are members of Mn. In [1] it was proved that if

T is an α-tree of size n such that the cardinalities of its stable sets differ by at most one

unit, then T ∈ An. Now we generalize this result to include all α-graphs of order n + 1

and size n whose stable sets satisfy the same condition.

Theorem 2. G ∈ An if and only if G is an α-graph.

Proof. Let G be an α-graph. Let f be an α-labeling of G with boundary value λ such

that f(v) = λ for some v ∈ A. Let g be a new labeling of G defined as:

g(v) =







2f(v), if v ∈ A;

(2n+ 1)− 2f(v) + 1, if v ∈ B.

Hence, the labels assigned by g on the vertices of A are 0, 2, . . . , 2λ, and on the vertices

of B are 1, 3, . . . , 2(n− λ)− 1. When n is even, λ = n
2
; thus the labels assigned on A and

B are 0, 2, . . . , n and 1, 3, . . . , n− 1 respectively. When n is odd, λ = n−1
2
; then the labels
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are 0, 2, . . . , n − 1 and 1, 3, . . . , n, respectively. Let e = uv ∈ E(G) such that u ∈ A and

v ∈ B. Thus the weight of uv is given by

⌈

g(u) + g(v)

2

⌉

=

⌈

2f(u) + (2n+ 1)− 2f(v) + 1

2

⌉

=

⌈

2n− 2(f(v)− f(u)) + 2

2

⌉

= n+ 1− (f(v)− f(u)).

Since f is an α-labeling of G, {f(v)−f(u) : uv ∈ E(G)} = {1, 2, . . . , n}, therefore the set

of weights induced by g on the edges of G is {1, 2, . . . , n} and G is a mean graph. Given

that g assigns even numbers to the elements of A and odd numbers to the elements of B,

g is an α-mean labeling of G.

Suppose now that G ∈ An. Let g be an α-mean labeling of G, then g(w) is even when

w ∈ A and is odd when w ∈ B. Let f be a new labeling of G defined as:

f(w) =







g(w)/2, if w ∈ A;

(2n+ 1− g(w))/2, if w ∈ B.

We claim that f is an α-labeling of G. In fact, the labels assigned by f on the vertices

of A are 0, 1, . . . ,
⌈

n−1
2

⌉

, and on the vertices of B are
⌈

n+1
2

⌉

,
⌈

n+3
2

⌉

, . . . , n. So, f assigns,

injectively, the labels 0, 1, . . . , n.

For any k ∈ {1, 2, . . . , n}, there exists an edge e = uv ∈ G, with u ∈ A and v ∈ B, such

that
⌈

g(u)+g(v)
2

⌉

= k. If g(u) = 2a and g(v) = 2b + 1, for certain non-negative integers a

and b, then a+ b+ 1 = k. Thus,

|f(u)− f(v)| = |a+ b− n| = |a+ b+ 1− (n+ 1)| = n+ 1− k.

Since 1 ≤ k ≤ n, we have 1 ≤ n + 1 − k ≤ n. Therefore f is an α-labeling of G, whose

boundary value is λ =
⌈

n−1
2

⌉

.

3 Mean Coronas of α-mean Graphs

In [2], Bailey and Barrientos proved that if G is a graph such that the difference of the

cardinalities of its stable sets is at most one, then G⊙mK1 is a mean graph when G is a

mean graph and α-mean when G is an α-graph. Here we extend this result proving that

for m ∈ {2, 3, 4}, the corona G ⊙ mK1 is a mean graph when G is an α-mean graph of
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size n and order n + 1 such that the cardinalities of its stable sets differs by at most one

unit. Recall that when G has size n, G⊙mK1 has size m(n + 1) + n.

Proposition 3. If G ∈ An, then G⊙mK1 is a mean graph for every m ∈ {2, 3, 4}.

Proof. Let G ∈ An. We split the proof into cases depending of the value of m.

Case I: When m = 2. Let f be an α-mean labeling of G. Consider now the following

labeling of the vertices of G:

g(v) =







3f(v) + 2, if f(v) is even;

3f(v) + 1, if f(v) is odd.

This labeling assigns all even numbers in the interval [0, 3n + 2] that are not congruent

to 0 (mod 6). That is, if f(v) is even, g(v) = 6k + 2 for some k ∈ {0, 1, . . . ,
⌊

n
2

⌋

}; if f(v)

is odd, g(v) = 6k + 4 for some k ∈ {0, 1, . . . ,
⌊

n−1
2

⌋

}. The weights induced by g on the

edges of G are of the form 6k+3, when the weight of the edge under f is odd, and f is of

the form 6k, when the weight of the edge under f is even, for some k ∈ {0, 1, . . . ,
⌊

n−1
2

⌋

}

or k ∈ {0, 1, . . . ,
⌊

n
2

⌋

}, respectively.

Now we attach to each vertex of G two pendant vertices to obtain G ⊙ 2K1. If f(v)

is even, the pendant vertices adjacent to v have labels g(v) − 2 = 6k and g(v) − 1 =

6k + 1, respectively. In this way the weights of these edges are 6k + 1 and 6k + 2,

for k ∈ {0, 1, . . . ,
⌊

n
2

⌋

}. If f(v) is odd, the pendant vertices adjacent to v have labels

g(v)− 1 = 6k + 3 and g(v) + 1 = 6k + 5, respectively. So the weights of these edges are

6k + 4 and 6k + 5 for k ∈ {0, 1, . . . ,
⌊

n−1
2

⌋

}.

Therefore, g is a mean labeling of G⊙ 2K1.

Case II: When m = 3. In this case, g(v) = 4f(v) + 2. The three pendant vertices,

attached to every vertex v of G, have labels g(v)− 2, g(v)− 1, and g(v) + 1.

Case III: When m = 4. Now, g(v) = 5f(v) + 2 if f(v) 6= n, and g(v) = 5f(v) + 3

if f(v) = n. The four pendant vertices, attached to every vertex v of G, have labels

g(v) − 3, g(v) − 1, g(v) + 1, and g(v) + 3 when f(v) 6= 0, n. If f(v) = 0, the labels are

g(v)−2, g(v)−1, g(v)+1, and g(v)+3. If f(v) = n, the labels are g(v)−4, g(v)−2, g(v)−1,

and g(v) + 1.

In Figure 1 we show an example of this labeling corresponding to Case I.

Recall that all α-mean trees belong to An. In the next theorem we extend the previous

result in the case where G has odd size.

Theorem 4. Let n be a positive odd integer. If G ∈ An, then the corona G⊙mK1 is an

α-mean graph for all m ≥ 1.
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Figure 1: Mean labeling of G⊙ 2K1

Proof. Let V (G) = {v0, v1, . . . , vn} where n is a positive odd number and f be an α-mean

labeling of G. We assume that f(vi) = i for all i ∈ {0, 1, . . . , n}. The m pendant vertices

adjacent to vi are denoted by vi,j for 1 ≤ j ≤ m. Consider the following labeling of

G⊙mK1:

g(vi) =







i(m+ 1), if i is even;

i(m+ 1) +m, if i is odd;

and

g(vi,j) =







i(m+ 1) + 2j − 1, if i is even;

(i− 1)(m+ 1) + 2j, if i is odd.

Clearly g assigns the labels 0, 1, . . . , n(m + 1) + m. Over the vertices of G, g is just an

amplification of f , thus the weights induced on G are m+1, 2(m+1), . . . , n(m+1). The

edges of the form vivi,j have weights i(m+1)+ j for all 0 ≤ i ≤ n. Since for every edge of

G⊙mK1 the labels of the end vertices have different parity, the labeling g is an α-mean

labeling of G⊙mK1.

The case where n is a positive even number is discussed in the last section.

In the rest of this section we study coronas of the form G⊙ Pm, where m ∈ {2, 3} and G

is an α-graph such that the absolute difference between the cardinalities of its stable sets

is at most one.

Proposition 5. Let G be an α-graph such that the cardinalities of its stable sets differ by

at most one. If G has size n and order n+ 1, then G⊙ P2 is a mean graph.

Proof. Let G be an α-graph of size n and order n + 1 such that |A| − |B| ≤ 1, where

{A,B} is the bipartition of V (G) and |A| ≥ |B|. Suppose that f is an α-labeling of G

with boundary value λ such that λ is assigned by f to a vertex of A.
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First we label the vertices of G and later we label the vertices of each copy of P2.

Let g : V (G⊙ P2) → {0, 1, . . . , 4n+ 3} be defined on the vertices of G by

g(v) =







8f(v) + 3, if v ∈ A;

8(n− f(v)) + 4, if v ∈ B.

If uv ∈ E(G), where v ∈ A and u ∈ B, its weight under g is:

⌈

g(v) + g(u)

2

⌉

=

⌈

8f(v) + 3 + 8(n− f(u)) + 4

2

⌉

=

⌈

8n+ 7 + 8(f(v)− f(u))

2

⌉

=

⌈

8n+ 7− 8(f(u)− f(v))

2

⌉

= 4(n+ 1− (f(u)− f(v))).

Since {f(u)− f(v) : uv ∈ E(G)} = {1, 2, . . . , n}, the weights induced by g on the edges

of G form the set WG = {4, 8, . . . , 4n}.

Now we extend g to the vertices of the n+ 1 copies of P2. Let x and y be the vertices of

P2 adjacent to v, v ∈ V (G).

If v ∈ A, g(x) = g(v) − 3 = 8f(v) and g(y) = g(v) − 1 = 8f(v) + 2. In this way the

weights of the edges vx, vy, and xy are 8f(v) + 2, 8f(v) + 3, and 8f(v) + 1, respectively.

Since {f(v) : v ∈ A} = {0, 1, . . . , λ}, the set WA = {8f(v) + 1, 8f(v) + 2, 8f(v) + 3 :

v ∈ A} = {1, 2, 3, 9, 10, 11, . . . , 8λ + 1, 8λ + 2, 8λ + 3}. If v ∈ B, g(x) = g(v) + 2 =

8(n− f(v)) + 6, g(y) = g(v) + 3 = 8(n− f(v)) + 7. Thus the weights of the edges vx, vy,

and xy are 8(n− f(v)) + 5, 8(n− f(v)) + 6, and 8(n− f(v)) + 7, respectively. In this case

{f(v) : v ∈ B} = {λ + 1, λ + 2, . . . , n}, therefore WB = {8(n − f(v)) + 5, 8(n− f(v)) +

6, 8(n−f(v))+7 : v ∈ B} = {5, 6, 7, 13, 14, 15, . . . , 8(n−λ)−3, 8(n−λ)−2, 8(n−λ)−1}.

Suppose first that n is even. In this case |A| = |B| + 1 and λ = n
2
. So WA =

{1, 2, 3, 9, 10, 11, . . . , 4n+ 1, 4n+ 2, 4n+ 3} and WB = {5, 6, 7, 13, 14, 15, . . . , 4n− 3, 4n−

2, 4n − 1}. Suppose now that n is odd. In this case |A| = |B| and λ = n−1
2
. Hence

WA = {1, 2, 3, 9, 10, 11, . . . , 4n− 3, 4n− 2, 4n− 1} and WB = {5, 6, 7, 13, 14, 15, . . . , 4n+

1, 4n+ 2, 4n+ 3}. In either case WG ∪WA ∪WB = {1, 2, . . . , 4n+ 3}.

Therefore, g is a mean labeling of G⊙ P2.

Similarly, we can prove that P2 can be replaced by P3 and the graph G ⊙ P3 is a mean

graph provided that G satisfies the conditions of the previous proposition. In this case
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g : V (G⊙ P3) → {0, 1, . . . , 6n+ 5}. When v is a vertex of G, we define:

g(v) =







6f(v) + 5, if v ∈ A;

6f(v), if v ∈ B.

If x, y, and z are the consecutive vertices of P3 adjacent to v, v ∈ V (G), the labeling g is

defined on them as: g(x) = g(v) − 3, g(y) = g(v)− 5, g(z) = g(v) − 1 when v ∈ A; and

g(x) = g(v) + 2, g(y) = g(v) + 5, g(z) = g(v) + 4 when v ∈ B.

Proposition 6. Let G be an α-graph such that the cardinalities of its bipartite sets differ

by at most one. If G has size n and order n+ 1, then G⊙ P3 is a mean graph.

In Figure 2 we show an example of this labeling where G = C6 ∪K2.

Figure 2: Mean labeling of (C6 ∪K2)⊙ P3

4 Mean Coronas of Even Cycles

In this section we study mean labelings of the coronas Cn ⊙mK1 where n is even; here

V (Cn ⊙mK1) = {vi : 1 ≤ i ≤ n} ∪ {ui,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Cn ⊙mK1) =

{vivi+1 : 1 ≤ i ≤ n and n+1 = 0}∪{viui,j : 1 ≤ i ≤ n and 1 ≤ j ≤ m}. Thus, Cn⊙mK1

is a graph where both, order and size, are equal to n(m+ 1).

Proposition 7. The corona Cn ⊙ mK1 is a mean graph for every even value of n ≥ 4

and m ≥ 1.

Proof. We analyze two cases depending of the congruence of n modulo 4. Let f : V (Cn⊙

mK1) → {0, 1, . . . , n(m+ 1)}.
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Case I: When n ≡ 0(mod 4).

f(vi) =







(m+ 1)(i− 1) + δo, if i is odd;

(m+ 1)i+ δe, if i is even.

where

δo =



















0, if i ≤ n
2
− 1,

1, if i = n
2
+ 1,

2, if i ≥ n
2
+ 3

and δe =







1, if i ≤ n
2
,

0, if i ≥ n
2
+ 2.

The pendant vertices are labeled as follows:

f(ui,j) =



























f(vi) + 2j − 1, if i odd, i 6= n
2
+ 1, 1 ≤ j ≤ m;

f(vi)− 1, if i = n
2
+ 1, j = 1;

f(vi) + 2j − 2, if i = n
2
+ 1, 2 ≤ j ≤ m;

f(vi) + 2j + 1, if i even, 1 ≤ j ≤ m.

For 1 ≤ i ≤ n
2
− 1, vivi+1 has weight (m + 1)i. For n

2
≤ i ≤ n − i, vivi+1 has weight

(m + 1)i + 1 and v1vn has weight n
2
(m + 1). The pendant edges viui,j have weights

(m + 1)(i − 1) + j when 1 ≤ i ≤ n
2
and (m + 1)(i − 1) + j + 1 when n

2
+ 1 ≤ i ≤ n.

Therefore, the set of induced weights is {1, 2, . . . , n(m+ 1)}.

Notice that the smallest label assigned is 0 on v1 and the largest is n(m + 1) on vn.

Moreover, when i ≤ n
2
− 1 is odd, f(vi) = (m+1)(i− 1), f(vi−1) = (m+1)(i− 1)− 1 and

f(vi+1) = (m+1)i+(m−1); f(ui−1,1) = (m+1)(i−1)−2 and f(ui+1,m) = (m+1)(i−1)+2.

When i ≥ n
2
+ 2 is even (except when i = n

2
+ 2, here f(vi−1) = (m+ 1)i− 2m), f(vi) =

(m+1)i, f(vi−1) = (m+1)i−(2m+1) and f(vi+1) = (m+1)i+1; f(ui−1,m) = (m+1)i−2

and f(ui+1,1) = (m+ 1)i+ 2.

Therefore, f is a mean labeling of Cn ⊙mK1 when n ≡ 0(mod 4).

Case II: When n ≡ 2(mod 4).

Given the similarity with the previous case, we omit the details and just present the

labeling.

f(vi) =







(m+ 1)(i− 1) + δo, if i is odd ;

(m+ 1)i+ δe, if i is even .
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where

δo =







0, if i ≤ n−4
2
,

1, if i ≥ n
2

and δe =







1, if i ≤ n−2
2
,

0, if i ≥ n+2
2
.

In this case the pendant vertices are labeled as follows:

f(ui,j) =







f(vi) + 2j − 1, if i odd,

f(vi)− 2j + 1, if i even.

5 Pseudo-Mean Labelings

A pseudo-mean labeling of a graph G is size n is an injective function f : V (G) →

{0, 1, . . . , s} where s > n, such that all the induced weights are distinct. This definition

was intoduced in [2]. We can use this definition in a different manner. For instance, if G

is not a mean graph, it would be useful to know how to close it is to actually being one.

We just need to determine the smallest value of s that allows us to produce the weights

1, 2, . . . , n under a pseudo-mean labeling of G.

Let G ∈ An where n is even. If we label the vertices of G ⊙ mK1, m ≥ 2, using the

labeling g described in Theorem 4, the result is a pseudo-mean labeling of G ⊙ mK1,

whose largest label is m− 1 units larger than the size of G⊙mK1.

In fact, let n = 2k. Thus, an α-mean labeling of G has k + 1 even-labeled vertices and

k odd-labeled vertices. Therefore, when G ⊙ mK1 is labeled using g in Theorem 4, we

obtain m(k + 1) + k odd-labeled vertices. Since the size of G⊙mK1 is (n+ 1)m+ n and

the largest odd label used is 2(m(k + 1) + k) − 1 = (n + 1)m + n + m − 1, we have a

pseudo-mean labeling of G⊙mK1 whose largest label is m− 1 units larger than the size

of G⊙mK1.

Proposition 8. Let G ∈ An. For every m ≥ 2 and n even, there exists a pseudo-mean

labeling of G ⊙ mK1 where the largest label used is m − 1 units larger than the size of

G⊙mK1.

Consider now the complete graph Kn, it is well known that when the integers 20, . . . , 2n−1

are assigned to its vertices all the induced weights are distinct. Thus, subtracting 1 from

each power of 2 we have a pseudo-mean labeling of Kn with s = 2n−1−1. Now we present

another labeling of Kn that reduces the value of s considerably.
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Let Fn be the nth Fibonacci number, with F0 = F1 = 1. We know that 2n−1 > Fn+2

for large values of n. Hence, by assigning F3, F4, . . . , Fn+2 to the vertices of Kn we also

obtain a pseudo-mean labeling but now the largest label used is significantly smaller.

Proposition 9. A pseudo-mean labeling of Kn exists where the largest label used is Fn+2−

3.

Figure 3: Pseudo-mean labelings of K6 and K7

6 Open Problems

1. Are all trees that satisfy the degree condition mean trees?

2. For all m ≥ 1, find a mean labeling of Cn ⊙mK1 where n is odd.

3. For all m ≥ 2, find a mean labeling of G⊙mK1 where G ∈ An and n is even.
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