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Abstract 

Nowadays, 5-aminolevulinic acid (5-ALA) plays an influential role in the detection 
of malignant tumors as a photodynamic diagnosis tool. Nevertheless, an outlook 
regarding 5-ALA applicability in magnetic resonance imaging (MRI) has recently 
emerged. Many studies confirmed the impact of 5-ALA on promoting intracellular 
Heme synthesis and iron metabolism, which support the capability of 5-ALA in MRI 
owing to the susceptibility effect of iron. Therefore, concerning the high safety and high 
affinity of 5-ALA to tumor cells, 5-ALA-based MRI could be an intriguing method for 
malignant foci identification. 
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Introduction 
5-aminolevulinic acid (5-ALA) is an amino acid 

prodrug in the Heme synthesis pathway [1, 2]. The 
polymerization of eight 5-ALA leads to the fluorescent 
protoporphyrin IX (PpIX) synthesis, functioning as a 
direct biological precursor of Heme [3-5]. The 
exogenous 5-ALA administration results in selective 
accumulation of the PpIX in cancerous and 
precancerous lesions, allowing for discrimination 
between tumors and normal cells [6, 7]. So, 5-ALA has 
been approved using the US food and drug 
administration as a photodynamic diagnostic (PDD) tool 
for high-grade glioma resection [8]. Moreover, as an 

effective photosensitizer, higher accumulation of PpIX 
in malignant cells than normal cells has been employed 
for photodynamic therapy (PDT) of many types of 
cancers including lung, colon, gastric, breast, ovarian, 
brain, renal, melanoma, and prostate cancers [9]. PDD 
and PDT are two major applications of 5-ALA in 
medicine. 

Several reports have studied the effect of exogenous 
5-ALA on iron metabolism, confirming iron 
accumulation following exogenous 5-ALA 
administration [10, 11] The ability of 5-ALA to change 
the susceptibility effect associated with iron 
accumulation in the Heme signaling pathway inspired 
researchers to employ this amino acid as a free metal 
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further Heme synthesis to assure sufficient availability 
of iron for Heme generation in erythroid cells [10, 44]. 

However, the level of TfR expression is not affected 
by the intracellular Heme level in non-erythroid cells. 
Mitochondrial iron level is involved in the TfR 
expression on the cell surface and iron uptake, through 
activation of iron regulatory protein (IRP)/iron 
responsive element (IRE) system. IRPs and IREs are the 
proteins controlling iron homeostasis in the cell [43]. 
When a high amount of iron is available, the expression 
of TfR is prevented through the IRP/IRE system. On the 
other hand, in iron starvation, IRPs bind to IREs of TfR 
messenger RNA and increases the TfR synthesis. For 
instance, non-erythroid malignant cells possess a low 
intracellular iron level which is related to the 
competition between Heme synthesis and cellular 
growth process for iron consumption [31]. Hence, non-
erythroid malignant cells having intracellular iron 
starvation are easily subjected to IRP/IRE system 
activation, leading to the high expression of TfR. 

 
The effect of exogenous 5-ALA on cellular iron 
metabolism 

To identify the impact of 5-ALA on Heme formation 
and iron metabolism, a series of studies were performed 
on erythroid and non-erythroid cells (Table 2).  

The addition of exogenous 5-ALA bypasses the 
synthesis of endogenous 5-ALA as a first and rate-
limiting phase in the Heme biosynthesis [45]. Heme 
synthesis in many cell lines, including human epithelial 
colorectal adenocarcinoma cells (Caco-2) [46], friend 
erythroleukemia cells [47], mouse macrophages 
(RAW264) [21], human gastric cancer cells (MKN28) 
[45], murine erythroleukemia cells (MEL) [48], human 
Caucasian chronic myelogenous leukemia (K562) [23], 
human primary glioblastoma (U-87) [12] and cervical 
cancer cells (Hela) [11] increased after exposure to 5-
ALA (Fig. 4). Notably, the combination of 5-ALA and 
sodium ferrous citrate promoted Heme synthesis due to 
the availability of the required iron [45, 46].  

5-ALA can also affect iron metabolism through its 
effect on the level of TfR expression in erythroid cells 
(Fig. 4). It has been confirmed that TfR expression and 
iron uptake are stimulated by 5-ALA administration 
[10] to provide sufficient iron for Heme synthesis [48, 
49]. Treatment of MEL cells with 5-ALA increased TfR 
expression and also iron incorporation into the cells [10] 
Furthermore, the incubation of murine erythroleukemia 
cells with 5-ALA after 48 h led to a dose-dependent 
increase in TfR messenger RNA levels. 

The up-regulation of TfR synthesis was observed in 
non-erythroid cells treated with 5-ALA. Activation of 
the IRE/IRP system in the situation of iron starvation 

was suggested as a possible mechanism of the up-
regulation. It has been shown that the incubation of 
cervical cancer cells (Hela cells) with low concentration 
of 5-ALA leads to an increase in the number of TfR 
[11]. Besides, Cho et al. evaluated the impact of 5-ALA 
on human primary glioblastoma (U-87) cell line as well 
as an animal model [12]. The results showed that 5-
ALA administration increased the intracellular iron 
concentration in both U-87 cells and animal xenograft 
model through promoting the synthesis of Heme. 

Moreover, it has been demonstrated that 5-ALA not 
only could affect TfR expression, but also ferritin 
content (Fig. 4). 5-ALA can release iron from ferritin 
[50, 51] as well as mobilize ferritin-iron through 
inducing oxidative stress, confirmed by in vitro and in 
vivo analyses, respectively [52, 53]. On the other hand, 
5-ALA can stimulate the further synthesis of ferritin by 
activating the IRP system. It has been suggested that 5-
ALA may increase the non-Heme iron content in rat 
liver leading to the formation of numerous ferritin 
granules [54] observed in liver biopsy samples of 
patients suffered from acute intermittent (AIP). 

 
The effect of intracellular iron-containing molecules 
in MRI 

Mainly, two forms of the iron complex are known to 
appear in the cells, including Heme and non-Heme 
molecules [55]. As mentioned in previous sections, 
while Heme contributes to hemoglobin formation, iron-
containing non-Heme complexes like ferritin and 
hemosiderin are responsible for intracellular iron 
storage [56]. It has been suggested that ferritin and 
hemosiderin are only types of intracellular iron 
complexes which are detectable in MRI [57]. Many 
studies have documented the MRI capability for 
detecting iron deposition in the body [58-61]. 

Intracellular iron overload is indirectly identified by 
the susceptibility effects of the iron on the shortening of 
water proton MR relaxation times. Proton nuclei are the 
main constituent of tissues, producing a magnetic field 
with the ability to interact with an external magnetic 
field (B0) (Fig 5. a). In the presence of an external 
magnetic field, proton nuclei align in a direction parallel 
to the magnetic field (Fig 5. b). After the emission of 
radiofrequency (RF) pulses, the proton nuclei absorb the 
RF energy (Fig 5. c). Turning off the RF pulse, the 
absorbed energy by nuclei is released and return to the 
normal state by two characteristic parameters called T1 
and T2 relaxation times in the longitudinal and 
transverse planes, respectively (Fig 5. d). In the case of 
accumulated iron acting as a magnet, the magnetic field 
inhomogeneity is generated in the surrounding tissues. 
Therefore, the moving water protons experiencing 
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different magnetic field become desynchronized from 
each other (Fig 5. e) [62]. This phenomenon leads to the 
significant alterations in tissue relaxation times. While 
T1 decreases only moderately, T2 or T2* demonstrates a 
substantial decrease [63].  

 
ALA in MRI 

Despite several studies performed on the potential of 

5-ALA for altering cellular iron metabolism, only one 
research studied the potential application of 5-ALA in 
MRI through the susceptibility effect of iron. Cho et al. 
hypothesized that 5-ALA may be useful for malignant 
glioma cell detection by MRI via promoting the 
synthesis of Heme [12]. For the in vitro study, U-87 cell 
was treated with 5-ALA for 6 h and intracellular 
concentrations of iron and Heme were then measured. 

Cell line or sample Treatment 
 

TfR Ferritin HO-1 Heme Iron uptake/ 
accumulation 

In vitro/ 
In vivo 

Ref 

MEL 5-ALA Increased - - Increased Increased In vitro [10] 
Liver biopsy 

samples obtained 
from AIP patients 

5-ALA - Increased - - Increased In vivo [54] 

Caco-2 5-ALA+ 
sodium 
ferrous 
citrate 

- - Increased Increased - In vitro [46] 

MELC 5-ALA - - - - Increased In vitro [82] 
MELC 5-

ALA+He
min 

- - - Increased Decreased In vitro [82] 

MEL 5-ALA Increased - - - Increased In vitro [48] 
K562 5-ALA - - - - Increased (in a 

dose 
dependent 
manner) 

In vitro [23] 

Horse spleen 
ferritin 

5-ALA - Increased - - - In vitro [50] 

Horse spleen and 
rat liver 

5-ALA - Increased - - Iron 
accumulation in 
the liver of 5-

ALA-treated rats 
was observed 

In vitro/ 
In vivo 

[51] 

Brain tissue 5-ALA - - - - total non-
Heme iron in 

the cortex was 
increased 

In vivo [83] 

Brain tissue 5-ALA - Ferritin in 
the cortex 

and in 
striatum 
increased 

- - Total iron in 
the cortex was 

increased 

In vivo [83] 

U-87 5-ALA - - - Increased Increased In vitro/ 
In vivo 

[12] 

MEL 5-ALA Increased - - - Increased In vitro [10] 
RAW264 5-ALA+ 

sodium 
ferrous 
citrate 

- - Increased Increased - In vitro [19] 

MKN28 5-ALA+ 
sodium 
ferrous 
citrate 

- - - Increased - In vitro [84] 

Hela 5-ALA Increased - - Increased - In vitro [11] 
Caco-2: Human epithelial colorectal adenocarcinoma; MELC: Mouse erythroleukaemia; K562: Human Caucasian chronic myelogenous 
leukemia; U-87: Human primary glioblastoma; RAW264: Mouse macrophage; MKN28: Human gastric cancer; HeLa: Cervical cancer. 
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previous studies [66]. Therefore, it is possible that not 
only Heme accumulation is contributed to creating MR 
images contrast after 5-ALA application, but also 
ferritin may be thought to be the source of susceptibility 
resulting in a decrease in T2* value. It is conceivable 
that the signal intensity on T2-based MR images could 
be decreased by increased level of intracellular ferritin 
containing 4,500 iron ions with superparamagnetic 
property. The MRI signal loss originated form 
intracellular ferritin accumulation has been shown by 
many previous studies [67, 68]. However, the effect of 
5-ALA on the expression of proteins involved in 
cellular iron metabolisms like ferritin and TfR has not 
been identified so far in glioma cells, and further efforts 
should be taken to assess this issue.  

One of the main limitations of the study performed 
by Cho et al. was the application of a high dose of 5-
ALA (100 mg/kg) than the standard one (20 mg/kg) 
which could be resulted in toxic side effects. No 
sufficient MR images contrast was achieved using the 
standard dose of 5-ALA. The authors performed MRI of 
mouse brain tumor 24 h after 5-ALA administration, 
based on the in vitro results, without in vivo 
optimization of the imaging time. The required dose of 
5-ALA for creating MR images contrast and the time of 
MRI after 5-ALA administration are interdependent 
parameters, and desirable contrast on MR images with 
the standard dose of 5-ALA may be achieved using the 
optimized imaging time for 5-ALA–enhanced MRI.  

Low intrinsic sensitivity in MRI with 5-ALA may 
also be attributed to the limited uptake of 5-ALA or 
limited uptake of iron into tumor cells. 5-ALA is a polar 
amino acid. Therefore, its absorption into the cells can 
be hampered by the hydrophilic nature of 5-ALA [69]. 
To circumvent this obstacle, many strategies, including 
derivatization, the use of different drug delivery 
systems, such as esterified 5-ALA prodrug derivatives, 
liposomes [70], and the methyl and hexyl ester 
derivatives may be useful to enhance the intracellular 5-
ALA uptake [71]. Moreover, limited iron accumulation 
by tumor cells in 5-ALA-based MRI may be further 
modified using iron chelators before 5-ALA 
administration due to the ability of iron chelators to 
decrease the intracellular labile iron [40]. It may be 
useful for inducing further IRP/IRE system activation, 
arising from intracellular iron starvation, leading to TfR 
expression and iron accumulation enhancement. Many 
previous studies confirmed the effect of iron chelators 
like deferoxamine mesylate (DFO) on the increase of 
PpIX accumulation due to a decrease in the intracellular 
labile iron (Table 1). We hope that further investigation 
regarding the application of 5-ALA in MRI in 
accompanied with an iron chelator will facilitate the 

application of 5-ALA in MRI with the standard dose. 
This strategy may enhance the intrinsic sensitivity of 5-
ALA-based MRI. Moreover, not just intrinsic sensitivity 
enhancement may be effective to the feasible 
application of 5-ALA as a CA in MRI, but also the MRI 
detection sensitivity improvement can be useful in this 
respect. 

MRI sensitivity is also associated with the performed 
imaging protocol. To detect accumulated iron in tissues, 
there are three main methods, including T2* as a 
qualitative method demonstrating susceptibility effect of 
the iron [72], susceptibility-weighted imaging as a 
qualitative method accompanied with additional image 
processing to enhance image contrast [73], and 
quantitative susceptibility method (QSM) that directly 
quantify susceptibility values of the iron [74]. All of 
these protocols demonstrate susceptibility effects. 
However, the sensitivity of QSM as a quantitative tool 
for directly measuring the susceptibility value of the 
tissue is higher than that of two other protocols [75]. 
Application of quantitative assessment of the iron 
accumulation using QSM may be a promising strategy 
providing a more sensitive and accurate estimation of 
iron changes creating sufficient contrast in MRI. The 
ability of QSM regarding the quantifying iron 
deposition, confirmed by previous studies, suggests the 
possible efficacy of this method as an alternative for the 
T2* method. 

Another study regarding 5-ALA utility in MRI was 
performed by Yamamoto et al. in 2017 [76]. In this 
study, it was proposed the potential of 5-ALA-induced 
PpIX for enhancing the T2 signal intensity in high-grade 
glioma. So, patients bearing Glioblastoma multiforme 
(GBM) and anaplastic oligodendroglioma (AO) were 
imaged with an MRI scanner using T2 weighted imaging 
protocol, at before and 2.5 h after 5-ALA administration 
(20 mg/kg). A modified operating microscope 
fluorescence was then used to analyze the quantities of 
PpIX in tumors. All GBM tumors with strong 
fluorescence exhibited the augmented MRI T2 signal 
after 5-ALA administration, while no T2 signal 
enhancement was observed in the AO group, which has 
no fluorescence. It was thereby indicated that there is a 
relationship between the accumulation of PpIX in tumor 
cells and T2 signal enhancement. The authors suggested 
that the T2 signal enhancement after 5-ALA 
administration is possibly due to water solubility of 5-
ALA contrary to the water insolubility of PpIX. This 
difference may be responsible for increasing the water 
content in tumor cells following the conversion of 5-
ALA to PpIX and changing the T2 signal on MR 
images. However, the authors of this study believed that 
the underlying mechanism associated with T2 signal 
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enhancement after 5-ALA administration was not fully 
understood. As well as the effect of 5-ALA on changing 
the T2 signal intensity for clinical application is not 
sufficient. Therefore, especially the ability of 5-ALA to 
changing the T2 effect in the infiltrative area of tumors 
with weak PpIX accumulation will be questioned. The 
previous studies demonstrated that the amount of PpIX 
accumulation could be an indication of tumor 
malignancy in a different area of the tumor. Active 
tumor cells show strong fluorescence, but the infiltrative 
area in tumor margin possess weak fluorescence 
intensity [77]. This PpIX accumulation diversity in the 
tumor may lead to induce different water content in 
various areas of tumors, providing unique capabilities 
for discriminative detection of tumor cells using T2 
weighted MR images contrast. Accordingly, Further 
studies regarding the utility of 5-ALA in MRI using 
water-sensitive sequence like diffusion-weighted 
imaging as an MRI technique, based on measuring the 
random motion of water molecules [78], will become 
necessary. 

 

Conclusions and prospects 
In this review, we attempt to collect available 

documents as for the effect of exogenous 5-ALA on 
Heme biosynthesis and iron metabolism, justifying the 
utilization of 5-ALA in MRI. Foremost, to achieve the 
overall conclusions, it seems necessary to provide the 
highlights from the literature, including the difference 
between erythroid and non-erythroid cells for iron 
regulation, the effect of 5-ALA on the Heme generation 
and the expression of iron metabolism-related genes. 
Erythroid cells are mainly responsible for Heme 
formation to synthesis the hemoglobin. Addition to 
erythroid cells, all aerobic cells are also able to produce 
Heme through iron uptake. However, there is a 
characteristic difference between erythroid and non-
erythroid cells regarding their cellular iron regulation 
for Heme formation. The amount of iron uptake is 
regulated by Heme level in erythroid cells and by 
IRE/IRP system activation resulting from iron 
deficiency in non-erythroid cells. Despite this 
difference, the addition of exogenous 5-ALA to the cells 
leads to stimulate further Heme biosynthesis, in 
circumstances where the iron ion is accessible in 
erythroid and non-erythroid cells. Moreover, it has been 
shown that the TfR expression as a cellular iron uptake 
mediator and the ferritin expression as a cellular iron 
storage protein could be increased after 5-ALA 
application in erythroid cells and cancerous non-
erythroid cells. 

Considering the mentioned points, it can be probably 

concluded that there are three essential factors, 
determining whether 5-ALA would affect the iron 
metabolism as well as iron uptake in each cell types. 
The first one is the variable affinity of 5-ALA toward 
different cell lines. Many cell lines, including 
hepatocytes, macrophages and especially tumor cells 
like HGG have a high affinity towards 5-ALA. It is 
known that 5-ALA can absorb by cancer cells and 
convert into fluorescent PpIX, leading to the application 
of 5-ALA as a fluorescent CA for intrasurgical 
malignant glioma detection. The second one is the 
inherent involvement of the cells in metabolism and 
homeostasis of iron through absorption and storage. 
Mainly, erythroid cells, liver and tumor cells possess 
high iron metabolism by regulating the TfR and ferritin 
expression. Further explanations about iron metabolism 
in glioma cells, it is essential to note that U-87 cells are 
originated from astrocytes, which play an important role 
in the uptake, storage and release of iron in the brain. 
The third factor is dedicated to the necessity of IRP/IRE 
activation to enhance TfR expression in non-erythroid 
cells, in the situation of iron starvation, which is mainly 
occurred in tumor cells with lower iron level in 
mitochondria compared with those in normal cells, 
because of the high iron consumption for cell 
proliferation. 

Therefore, cancer cells like glioma possessing high 
affinity toward 5-ALA, having inherent involvement in 
iron metabolism and iron starvation, leading to IRP/IRE 
system activation, may be considered as the main target 
for the accurate diagnosis using MRI with 5-ALA via 
susceptibility effect of accumulated iron. Generally, the 
specific impact of 5-ALA on iron metabolism of cancer 
cells, leading to the higher accumulation of iron in these 
cells compared with normal cells, make it possible to 
produce a discriminative diagnosis of tumor region and 
enhances the detection specificity. Moreover, the higher 
sensitivity of 5-ALA to be entered into the malignant 
area of tumor with negligible damage in BBB compared 
with the Gd-based CAs in MRI, confirmed in 5-ALA-
based fluorescence imaging, suggest 5-ALA as a 
valuable candidate in cancer diagnosis. Also, the 
therapeutic application of 5-ALA in PDT together with 
diagnostic properties of 5-ALA as a dual CA in 
fluorescence and MRI, make this valuable amino acid as 
a promising agent in cancer theranostic and emerge the 
need for further investigations on this subject. 
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