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ABSTRACT 

Safety is of primary principles of living in human communities. Preparation and provision of necessary 

considerations for encountering hazards are main targets of the crisis management. Nuclear risks are one 

of hazards threatening in the human life. Since radioactive contaminants sustain for years after the incident, 

investigation into nuclear hazards and its damage on living environment and urban features is so vital. 

This study essentially aims at evaluating the risk of radioactive contaminants to urban land uses. Due to 

high resolution satellite images, remote sensing technology has been considered as an advanced 

technology to generate information covering urban areas. Information on land cover is one of the most 

important tools of management during crisis. Land cover maps can be prepared through techniques for 

high resolution satellite image processing and extracting urban features. In this study, the fuzzy object-

oriented method is applied to classify such phenomena. In the proposed method, a fuzzy rule-based 

strategy and hierarchical model are employed to overcome noise between classes. Fuzzy rule-based 

classification method is used as well as optimization and improving features of multi-scale analysis. 

Considering blocks of WorldView2 sensor, 91% of object detection is implemented with an average 

accuracy. When classification image of urban features is produced, the risk of radioactive contaminants to 

each recognized object is determined based on EDEM model. 
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1. Introduction 

Detection and classification of urban features is concerned 

by remote sensing researchers in order to establish, 

implement and update spatial databases. Using satellite 

image processing techniques, remote sensing science as an 

advanced technology plays a key role in recognizing objects. 

According to quick progresses in various scopes such as 

improvement in resolution and satellite image processing 

techniques, it is necessary to assess different methods for 

detection of features in order to research into particular 

purposes. Risk assessment of each urban phenomenon 

targets of nationalof principalthrough disasters is one

security and sustainable development. Sensitive national 

infrastructures and features include nuclear power plants and 

utilities. Nuclear power plants cause hazards despite their 

advantages in national industry. So in addition to take 

advantage of this advanced technology and science, security 

and control of the hazards must be explored. As an accurate 

practical science, remote sensing can be so beneficial to 

recognize sensitive risky points and provide geospatial 

information for modeling a phenomenon. Therefore, it is 

possible to monitor, analyze and assess previous nuclear 

disasters comprehensively and precisely using capabilities 

such as accessibility, repeatability and integrated remote 

sensing datasets. Objects and properties of complicated, 

concentrated urban landscapes should be classified 

separately. Remote sensing technology has presented new 

capabilities by high resolution satellite images. High 

resolution images make it possible to extract more data on 

land features. But such images make problems in detection 
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of objects with similar spectral and textural properties. 

Object-oriented systems are able to create different levels of 

segmentation by various parameters. Many researchers have 

applied object-oriented analyses to classify urban land covers 

using high resolution satellite images. In those researches, 

texture information and reflectance properties of objects was 

used. These approaches were usually suitable for semi-

residential areas and a limited number of classes were 

detected (Gamanya et al., 2009; Liu et al., 2006; Steinnocher 

et al., 2005). In another study, building classification was 

done using support vector machines through object-based 

and pixel-based analysis and the data was applied due to 

dense vegetation of the area and laser pulse penetration into 

tree branches (Jordi, 2007). Zhou et al (2009) proposed an 

object-based approach to analyze and detect layout of urban 

landscapes on parcel level using high resolution aerial 

images and laser data. In their study, an additional geospatial 

database including border properties of segments and 

building footprints were used to facilitate the segmentation 

and provide more precise classification. The advantage of the 

study was benefiting from laser data capabilities to 

distinguish class of trees from shrubs and using a secondary 

database to distinguish between roads and sidewalks. Object-

based classification of VHR images represents a viable 

alternative to the traditional pixel-based approach 

minimizing the intra-class spectral variation using objects 

(Jinmei & Guoyu, 2011; Liu and Xi, 2010). Numerous 

studies have addressed comparative analysis between the 

pixel-based and the object-based classification. Besides 

many advantages, the main drawback of object-based 

classification is the dependency of the final accuracy on the 

quality of the segmentation results (Whiteside et al., 2011; 

Ouyang et al., 2011; Cheng and Han, 2016). Therefore, 

achieving a desirable degree of accuracy for segmentation 

and/or classification using objects require a large amount of 

time and parameterization of algorithms (Achanta et al., 

2012). In the last decades, the object-based image analysis 

(OBIA) has emerged as a sub-discipline of GIScience 

devoted to analysis and processing of very high resolution 

(VHR) satellite imagery (Sowmya & Sheela, 2011). Image 

segmentation aims to partition relatively homogeneous 

image objects, non-overlapped and spatially adjacent. There 

are many approaches and methods for classification and the 

most commonly used approaches involve statistical 

modelling like maximum likelihood classification, neural 

networks based approaches and support vector machines. 

Image classification is one of the most commonly used 

methods to extract land cover information from remote 

sensing images and has been widely studied over the past 

three decades (Wilkinson, 2005). In many applications of 

spatial imagery, there is often a discrepancy between 

automated analysis methods and direct interpretation by a 

specialist. In this context, an important challenge is to 

integrate expertise in Satellite Image Time Series (SITS) 

analysis to improve the reliability and precision of the 

results. An expert knowledge-based SITS analysis method 

for land use monitoring is presented by (Rejichi et al., 2015). 

In this method, as a first step, a multi-temporal knowledge 

base is created to describe the scene, utilizing expert 

conceptual information. Then, the temporal evolution of each 

region in SITS is modeled using graph theory. Finally, 

according to a user scenario, the most similar temporal 

evolution of the region is identified using the marginalized 

graph kernel (MGK) similarity criterion. 

     Traditionally, image classification is performed by a 

maximum likelihood, or Bayesian classifier, which assigns 

the most likely class to the observed data, and is known to be 

optimal if the assumptions about the probability density 

functions are correct. In classical cluster analysis each pixel 

must be assigned to exactly one cluster. Fuzzy cluster 

analysis relaxes this requirement by allowing gradual 

memberships, thus offering the opportunity to deal with data 

that belong to more than one cluster at the same time. Various 

image classification techniques, supervised approaches in 

particular, have been developed with many successful case 

studies. Recently developed classification techniques include 

support vector machines (SVMs), random forests, and sparse 

representation-based methods (Ham et al., 2005). Although 

these supervised classifiers exhibit a very promising 

performance in terms of classification accuracy, they mainly 

focus on multiclass classification. Multiclass classifiers 

require all classes that occur in a study area to be 

exhaustively labelled (Sanchez, 2011). Moreover, the goal in 

many cases is to optimize the classification accuracy for all 

land cover classes rather than for a specific class or few 

classes of interest (Sanchez et al., 2007). Fuzzy analysis is 

applied in different areas such as data analysis, pattern 

recognition and image segmentation. Introducing partial 

membership of pixels, mixed pixels could be identified and 

more accurate classification results could be achieved. 

Classification of images is a significant step in pattern 

recognition and digital image processing. It is applied in 

various domains for authentication, identification, defense, 

medical diagnosis and so on. The feature extraction is an 

important step in image processing which decides the quality 

of the model to be built for image classification. With the 

abundant increase in data now-a-days, the traditional feature 

extraction algorithms are finding difficulty in coping up with 

extracting quality features in finite time. Also the learning 

models developed from the extracted features are not so 

easily interpretable by the humans. So, considering the above 

mentioned arguments, a novel image classification 

framework has been proposed (Ravi C., 2020). The 

framework employs a pre-trained convolution neural 

network for feature extraction. Brain Storm Optimization 

algorithm is designed to learn the classification rules from 
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the extracted features. Fuzzy rule-based classifier is used for 

classification. The results demonstrate that the proposed 

framework outperforms the traditional feature extraction 

based classification techniques by achieving better accuracy 

of classification.  

Fuzzy segmentation for object-based image 

classification was adopted in (Lizarazo & Elsner, 2009). 

They used a fuzzy classification method on a segmented 

image to classify large scale areas such as mining fields and 

transit sites. In (Benz et al., 2004), Object-Oriented fuzzy 

analysis of remote sensing data for GIS-ready information 

was used. In (Saberi & He, 2013) and (Shackelford and 

Davis, 2003), methods for hierarchical image classification 

using fuzzy logic were also presented. As can be seen, fuzzy 

logic is quite popular in satellite image analysis. Considering 

the uncertainties in image pixels/segments, a fuzzy inference 

system can be of great help in image classification. However, 

existing literature still suffers from the lack of the literature 

with a step-by-step image classification method based on 

fuzzy logic. A fuzzy logic approach allows objects to be 

member in more than one class, reflecting the inherent 

uncertainty of semantically derived class categories. Fuzzy 

logic membership functions can be used to simulate the 

distributions of class values for spectral, spatial, textural and 

contextual object parameters. Using this property of fuzzy 

logic membership functions, this study proposes a method 

for identifying descriptive spectral, spatial, textural or 

contextual attributes of roof and other non-roof impervious 

surface objects from the distribution of parameter values in 

these two classes (Bardossy & Samaniego, 2002). 

In this study, a fuzzy inference system is used for image 

classification in order to detect urban features such as 

buildings, roads, and etc. The focus is on establishing fuzzy 

membership functions for object extraction. Typically, the 

main concern in high resolution satellite image classification 

is to differentiate objects like vegetation, roads, buildings, 

etc., especially in urban environments (Salehi et al., 2012). 

Vegetation extraction methods are probably among the most 

straightforward object recognition techniques in remote 

sensing. The Near Infrared (NIR) band plays a crucial role in 

this field (Jabari & Zhang, 2013; Shani, 2006). Different 

fuzzy supervised and unsupervised methodologies are 

available for the classification (Gabriela, 2007; James & 

Ehrlich, 1984). Application of fuzzy in supervised 

classification and unsupervised classification and analyzing 

their performance was the main objective of this paper. 

  According to ambiguity of urban features, laser-driven 

data are recommended as a suitable method for more 

accurate classification but they are not properly practical 

because of the difficult accessibility in most areas and the 

high cost. Considering a segmentation level, image objects 

were produced in most of previous studies and classification 

was followed on that level. There was not an optimal scale 

for all features in such procedure. In this study, three 

segmentation levels are considered in regard to the features. 

Satellite data are the best and most efficient information 

resource to monitor territorial changes. Remote sensing plays 

a leading role in evaluation of changes and geospatial 

analyses after disasters. Nuclear disasters have been already 

one of the most important incidents with irreversible 

consequences. Aimed at investigating impacts of an assumed 

disaster in atomic utilities of Metsamor Nuclear Power Plant 

in Armenia, researchers at Istanbul Technical University 

simulated and calculated propagation velocity of radioactive 

materials in case of incident (Kindap, 2008). This power 

plant is one of the most dangerous nuclear power plants 

around the world located on seismic belt. Dangerous nuclear 

consequences of this power plant can be roughly estimated 

in comparison to impacts of reactor explosion in Chernobyl 

accident (Figure 1). Given climatic conditions of the area 

such as wind velocity and direction and rainfalls, the power 

plant poses a serious threat to its adjacent countries. 
 

 
Figure 1. Satellite image of Landsat 5 showing the Chernobyl area.  

Right: 1985 (Before), Left: 1987 (After)  
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Risk analysis can be analyzed by assessing three major 

components related to a specific event at a specific location 

(Pearce, 2000; Ramcap, 2009) – the probability of an event 

with a certain magnitude (hazard); the amount of potential 

risk source that arecertainadue todamage measured

exposed to the event with a certain magnitude 

(vulnerability); and, the costs relating to these elements 

(risk). In engineering fields, risk is the expected loss as a 

result of potentially damaging phenomena within a given 

time period and within a given area (Socolow et al., 1994). 

Hazard is defined as a potentially damaging physical event, 

phenomenon or human activity that may cause the loss of life 

or injury, property damage, social and economic disruption 

or environmental degradation (Douglas, 2007). This event 

has a probability of occurrence within a specified period of 

time and within a given area, and has a given intensity (Van 

Westen et al., 2002). To evaluate areas vulnerable to hazards, 

methodologies that involve the use of satellite imagery have 

been proposed in the recent decade usually analyze land 

cover maps developed through the classification of satellite 

auxiliary information suimages with topography,asch

geology and geomorphology data. A mathematical 

expression for risk in terms of hazards and vulnerabilities can 

be represented according to Eq. (1): 

 

Risk = Vulnerability × Hazard (1) 

  The aim of a hazard assessment is to make a zonation of 

a part of the Earth’s surface with respect to different types, 

severities, and frequencies of hazardous processes. 

 

2. Materials and Data 

      The data used in this study is provided by WV2 satellite 

image in the north of Tehran with a concentrated urban 

context. According to the metadata, this image was captured 

on September 10th, 2014 covering 51°24´06" to 51°25´18" 

easting and 35°46´44" to 35°47´43" northing geographical 

coordinates. Image of the area is illustrated in Figure 2. As 

demonstrated, the area has a complex urban layout with dens 

features. Most of buildings have flat roofs and some sloping 

roofs are also observed and many buildings are hidden under 

trees and vegetation. The roads have asphalt surface with a 

spectral behaviour like building roofs. Class of buildings is 

more heterogeneous than roads. The images are overlaid to 

employ geospatial capability of grey-scale band image and 

spectral capability of multispectral images simultaneously on 

the same picture. In the current research, Gram-Schmidt 

transformation has been successfully applied in order to 

improve resolution of multi-spectral imagery. This transform 

has three major advantages comparing to other techniques: 

1- ofnumbertheonlimitationnoisThere

simultaneously processed bands  

2- This transformation can maintain low-resolution 

multi-spectral image characteristics in the result of 

fusion of the image with high-resolution 

panchromatic data.  

      This method is more robust to spatial misalignment of the 

bands and slight variations of input data than most other pan-

sharpening methods because all transform coefficients are 

computed in the low MS resolution (Maurer, 2013). 

 

Figure 2. Satellite image WV2 showing the complexity and 

density of the study area in North of Tehran 

 

3. Methodology  

      isresearchthisinemployedThe proposed process

illustrated in Figure 3. 

Image classification is a robust useful approach to get 

thematic information from remotely sensed images. One of 

primary objectives of remote sensing is to detect and 

recognize land features. Satellite image classification can be 

the most important part of interpretation of satellite data. The 

visual procedure is accomplished in accordance with human 

eye ability without application of mathematical and 

statistical relationships based on interpretation factors such 

as colour, shape, texture, and image size. But numerical 

classification of satellite images done by computers is based 

on assessment of spectral value of visual components, 

relations between territorial features and spectral bands used 

in remote sensing and mathematical and statistical 

relationships. Numerical classification of satellite data refers 

to detection of similar spectral sets and rating images as 

classes with statistically inseparable spectrums of the same 
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spectral value. An information classification results in 

spectral rating and each class on new image represents 

features of the same value and specific domain. In fact, data 

classification is based on a comparison between spectral 

value of image pixels and introduced samples as interpreters 

or clusters of an unsupervised classification. The study aims 

to introduce and implement a method to extract land cover 

information using an object-based approach.  

Figure 3. The proposed process for detection and 

classification of image object categories  

 

3.1. Image Segmentation 

     Segmentation of an image is one of the most important 

steps of object-based analyses. Multi-resolution 

segmentation is applied in this study. In object-based 

methods, a set of homogeneous pixels known as image 

objects are produced through segmentation step. Following 

parameters are defined to carry out segmentation procedure: 

 Scale (S) 

 Weight of spectral heterogeneity (Wcolor) 

 Weight of shape heterogeneity (Wshape) 

 Weight of smoothness (Wsmooth) 

 Density (Wcompt) 

    Amount of scale parameter does not depend on pixel 

dimensions and has an unlimited domain. Shape parameter 

ranges between 0 and 1; as its value gets closer to 0, object 

detection becomes less dependent on shape and spectral 

distinction increases. As scale parameter changes, adjacent 

pixels continue to merge until relative standard deviation of 

final merged objects becomes less than the scale. Density 

parameter determines structural regularity so that as it gets 

closer to 1, objects become more regular structurally; of 

course, it causes ambiguity in distinction between linear and 

non-linear objects. 

withparameters varyaboveCorrect amounts of the

objective of the problem so that proper value of each 

parameter may be obtained by trial and error. Smoothness 

parameter refers to similarity of the image object to its 

natural form. Spectral and geometrical layers of features and 

conceptual information located in incorrect classes are 

recognized to improve the results. At this step, it is important 

to choose the weight of parameters. Relations of 

segmentation parameters are explained in the Eqs. (2) to (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

                                                                                                                                                                                                             

  In the relations above, Δhcolor and Δhshape refer to spectral 

respectively.in image objects,heterogeneityand shape

Δhcompt as density-derived heterogeneity and Δhsmooth as 

smoothness-derived heterogeneity must be determined to 

estimate shape heterogeneity. Wcompt, Wcolor, Wshape and 

Wsmooth refer to weight and impact of each parameter. They 

range from 0 to 1. Estimation of the parameters thus leads to 

heterogeneity parameter of f defined for each image object at    

each level. Given that diversity of spectral heterogeneity 

within some detectable classes of the image can cause 

disturbance in classification of other objects, scale parameter 

should be determined for each of them at separated levels. 

Some samples are chosen from each class and the resolution 

is analyzed on an appropriate scale to assess spread of classes 

of features in accordance with scale changes. According to 

graphs of the Figure 4, the scale of 40 for class of water 

bodies, the scale of 30 for class of roads and buildings, the 

scale of 20 for class of vegetation and shadow and the scale 

𝑓 = 𝑤𝑐𝑜𝑙𝑜𝑟. ∆ℎ𝑐𝑜𝑙𝑜𝑟 + 𝑤𝑠ℎ𝑎𝑝𝑒 . ∆ℎ𝑠ℎ𝑎𝑝𝑒                                                                       (2) 

∆ℎ𝑠ℎ𝑎𝑝𝑒 = 𝑤𝑐𝑜𝑚𝑝𝑡. ∆ℎ𝑐𝑜𝑚𝑝𝑡 + 𝑤𝑠𝑚𝑜𝑜𝑡ℎ. ∆ℎ𝑠𝑚𝑜𝑡ℎ                                                     (3) 

∆ℎ𝑐𝑜𝑙𝑜𝑟 = ∑ 𝑤𝑐(𝑛𝑚𝑒𝑟𝑔𝑒𝜎𝑐,𝑚𝑒𝑟𝑔𝑒 − (𝑛𝑜𝑏𝑗−1𝜎𝑐,𝑜𝑏𝑗−1 + 𝑛𝑜𝑏𝑗−2𝜎𝑜𝑏𝑗−2))𝑐              (4) 

∆ℎ𝑐𝑜𝑚𝑝𝑎𝑐𝑡 =  𝑛𝑚𝑒𝑟𝑔𝑒 .
𝑙𝑚𝑒𝑟𝑔𝑒

√𝑛𝑚𝑒𝑟𝑔𝑒
− (𝑛𝑜𝑏𝑗.

𝑙𝑜𝑏𝑗−1

√𝑛𝑜𝑏𝑗−1
+ 𝑛𝑜𝑏𝑗−2 .

𝑙𝑜𝑏𝑗−2

√𝑛𝑜𝑏𝑗−2
)                           (5) 

𝑤𝑐𝑜𝑙𝑜𝑟 + 𝑤𝑠ℎ𝑎𝑝𝑒 = 1        𝑤𝑐𝑜𝑚𝑝𝑡 + 𝑤𝑠𝑚𝑜𝑜𝑡ℎ = 1                                                 (6) 
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of 10 for classes of paths and other objects are defined. The 

most appropriate scale of each class of objects is the highest 

value better adapted to the real object with the least number 

of segmented objects. Therefore, each object has the best 

conditions to be extracted and segmented only on a 

segmentation scale regarding its real dimensions. As the 

number of references decreases for recognition and 

classification, computing power can be applied to increase 

feature space in classification step. Given the noise in 

satellite images of complex urban areas, a decrease in impact 

of noise on the results of land cover classification in such 

areas is another advantage of choosing the biggest scale. It is 

difficult to choose a scale for classes with a high diversity in 

spectral properties and intensive spectral and shape 

heterogeneities. According to graphs of the figure, scale 

change includes horizontal areas as well as ascending parts. 

At this step, there is no significant change in area of image 

object while increasing segmentation scale that indicates 

sustainability of resulted objects within the range of scales. 

So the optimal scale is located on a horizontal part. 

Segmentation parameters are defined based on local 

conditions. Area of given classes including roads and 

buildings are analyzed to determine behavior of the scale. 

Selection of classes is in accordance with diversity and 

heterogeneity in spectral behavior of urban areas and their 

impacts on classification of other features. Five samples of 

different spectral heterogeneity and dimensions are chosen 

from each class and their areas are described at segmentation 

levels. Each class approximately occupies 75% of land cover 

of the area on selected scale. 

 

Figure 4. Comparison of scale rate for objects classes 
  

3.2. Proposing a Hierarchical Model  

    At this step, a hierarchical model is proposed based on 

multi-resolution segmentation. The model improves 

classification of features and reduces noises between classes 

in the urban area. The model is aimed at regulating 

classification of the features. 

3.2.1. Fuzzy Rule-Based Classification 

    Fuzzy rule-based conceptual method is essentially planned 

to decline spectral noises of pictorial objects. Proposing a 

hierarchical model based on given characteristics reduces 

noises between classes. In conceptual rule-based 

classification, distinctive characteristics of classes are 

chosen and their value is determined for various classes. The 

features are thus recognized through proposed hierarchical 

model and specifying thresholds. In complex urban areas, 

radiometric spectral features lower the efficiency of common 

classification methods; so it is necessary to utilize whole 

characteristics of image objects. Features making classes 

distinguishable should be identified. When a proper feature 

is selected, its variation range is specified and different 

classes are recognized based on the hierarchical model. 

Geometrical, spectral and conceptual features are explained 

in detail as in the following. It must be noted that the proper 

feature must make classes distinguishable from each other 

and does not merely define characteristics of each class. At 

this step, distinctive attributes of each class of features are 

initially selected. The feature environment includes three 

types of geometrical, spectral and conceptual features.  
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3.2.1.1. Classification of Water Body 

      Threshold-based detection of water bodies depends on 

pixels. The most important feature of water is its energy 

absorption in near-infrared wavelengths. Various indices 

have been introduced for automatic detection of water types 

among which normalized difference water index (NDWI) is 

of great importance (Eq. 6). According to the researches 

mentioned in the introduction section, infrared spectral range 

is suitable for detection of free waters but near-infrared range 

cannot be lonely appropriate for water detection due to 

turbidity of water or existing plants. So indices are generated 

by combination of near-infrared band with the other. In fact, 

a small proportion of radiated energy on water surface is 

reflected or transmitted. If water body is too deep, energy is 

absorbed before striking the floor and muddy water has more 

ability to transmit and reflect it. A considerable proportion of 

solar radiation striking the water body is absorbed in depth 

up to 2 m. Water has a low reflectance within near-infrared 

band but it is not merely efficient to detect water surfaces and 

the feature cannot be employed to recognize other bodies. In 

this study, another index known as EWI1 is applied to detect 

water bodies [Eq. (8)]. Reflectance of water is maximized in 

green band and minimized in near-infrared range. Moreover, 

high reflectance in near-infrared range is associated with soil 

and vegetation. The index can thus detect all water bodies 

properly in closed regions. So at this step, water body is 

detected in a more certain way by another index introduced. 

 

 𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅1
                                      (7) 

 

 
𝐸𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅1

(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅1)×(𝑁𝐷𝑉𝐼+𝑁𝐼𝑅1)
                   (8) 

3.2.1.2. Detection of Roads 

      smooth surface andwith aare objectsRoads  low 

diversity on grey-scale. Road areas have lower density 

because of their linear shapes. Features of linear objects are 

employed to classify them; for example, the ratio of length 

to width has a great value in linear objects. Road areas have 

a smooth surface with a low diversity on grey-scale, so that 

its length measurement can be appropriate. Classification of 

roads is one of challenges in the classification of features. 

Considering shape features of the class, spectral features are 

initially described.  

      Here, spectral features include spectral similarity to 

adjacent image objects. Main characteristics of roads and 

descriptions used for detection those characteristics are listed 

in the Tables 1 and 2. 

                                                           
1 Enhanced Water Index 

Table 1. Features defined for roads 

Features of roads Item 

smooth surfaces with low variation on grayscale 1 

linear objects with low geometrical density 2 

long linear features 3 

 

Table 2. Description for features of class of roads 

Item Feature Formulation Explanation 

1 
standard 

deviation 

 

√
1

𝑛 − 1
∑(𝐶𝐿𝑖 − 𝐶𝐿

̅̅ ̅)2

𝑛

𝑖=1

 

linear image 

objects with 

a low 

standard 

deviation 

2 

ratio of 

length to 

width 

𝐿𝑒𝑛𝑔𝑡ℎ

𝑊𝑖𝑑𝑡ℎ
 

image 

objects 

which have 

higher ratio 

of length to 

width 

3 Density 
𝐿𝑒𝑛𝑔𝑡ℎ × 𝑊𝑖𝑑𝑡ℎ

𝑁
 

image 

objects 

which have 

lower 

density 

4 

ratio of 

twice 

root of 

area to 

perimeter 

(𝑓1) 

2√𝜋. 𝐴𝑟𝑒𝑎(𝑥)

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑥)
 

 

image 

objects 

which 

possess 

lower values 

5 

ratio of 

area to 

square of 

length 

(𝑓2) 

𝐴𝑟𝑒𝑎(𝑥)

[𝐿𝑒𝑛𝑔𝑡ℎ(𝑥)]2
 

 

image 

objects 

which 

possess 

lower values 

 

 Density: This feature indicates geometrical density of 

the object and is calculated via multiplying length by 

width and then dividing the total by number of pixels of 

the object. The result ranges from 0 to 1. So road areas 

have lower density due to their linear shape. 

 Standard deviation: This feature indicates variation in 

digital number of pixels of the image object [Eq. (8)]. 

Road objects have smooth surfaces with low diversity 

on grey-scale and this feature can be utilized to detect 

them. As standard deviation increases, the image object 

is more probable to be a road. Eq. (9) presents the 

associated fuzzy set for Standard deviation. 
 

 𝜇1(𝑥) = {
1 −

𝑥

𝑇
 ,          𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑇

0,                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (9)                
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3.2.1.3. Detection of Buildings 

      To detect building objects, it is necessary to produce a 

feature space capable to distinguish buildings from other 

features. Descriptors must be created in accordance with 

geometrical and structural features. One of the main features 

of buildings in large scale satellite images is their rectangular 

shapes. This feature can be considered as a characteristic of 

this class of features. So, fitting into rectangles and ellipses 

and area of objects are described as main characteristics to 

detect buildings. 

      Parameter of fitting into rectangle refers to how an image 

object suits a rectangle and its similar features and parameter 

of fitting into ellipse indicates how an image object suits an 

ellipse (Figure 5). Both parameters range from 0 to 1; 1 

means that the object completely fits in the given shape. 

Geometrically, a building has a compacted form like a 

polygon. So, approximation of the given feature is based on 

a polygon or ellipse. Consequently, the fuzzy set best fitted 

into rectangles and ellipses are obtained via Eqs. (10) and 

(11). 

 

𝜇𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑒 𝐹𝑖𝑡(𝑥) =

{
1 −

1−𝑥

1−𝑇
,     𝑓𝑜𝑟 0 < 𝑥 − 𝑇 < 1 − 𝑇

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
         (10)                  

 

 

𝜇𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑖𝑡(𝑥) =

{
1 −

1−𝑥

1−𝑇2
,     𝑓𝑜𝑟 0 < 𝑥 − 𝑇 < 1 − 𝑇

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
        (11)            

 

      
              A                    B 

Figure 5. Fuzzy membership functions:  

A) Rectangular fit, B)     Elliptic fit 
 

 

      Building roofs are generally made of materials such as 

concrete, asphalt, brick, etc. and rarely contain vegetation or 

water. Road surfaces are somewhat the same as roof covers 

regarding spectral characteristics. Many buildings and open 

spaces such as parking lots and paths have a linear form like 

roads from a geometric point of view. The main class of 

existing features within an image includes roads, vegetation 

like trees and grasslands, buildings and open spaces like 

paths, naked soil, shadows, etc. Spectral features are 

employed as well as structural characteristics. 

 Area: a distinctive feature of features with regular 

geometry like buildings is their area. A specific range 

is defined for buildings to prevent from classification of 

all rectangular things like cars. The smallest dimensions 

defined for a building is 3×4 m and the biggest sizes are 

considered as 20×25 m. According to resolution of the 

given image, borders of a building are illustrated within 

50 to 2000 pixels, where areas falling in range from 100 

to 1500 are more probable (membership degree 1). 

 Average area: since buildings have particular 

geometrical properties, features describing geometry of 

the object are used for as a useful tool for detection 

according to what is listed in the Table 3.  
 

Table 3. Description for features of class of buildings 

Item Feature Formulation Explanation 

1 Borders Indicator 
𝑃𝑟𝑖𝑚𝑒𝑡𝑒𝑟

2 × (𝐿𝑒𝑛𝑔𝑡ℎ + 𝑤𝑖𝑑𝑡ℎ)
 indicating approximation to a polygon 

2 Asymmetry 1 −
𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠

𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠
 comparing an object with a regular polygon 

3 Concentration 

√∑ 𝑃𝑣

1 + √𝜎𝑥
2 + 𝜎𝑦

2

 
describing spatial distribution of pixels of an image object 

4 Density 
𝐿𝑒𝑛𝑔𝑡ℎ × 𝑊𝑖𝑑𝑡ℎ

𝑁
 selecting image objects which have lower geometrical density 

 

      The corresponding Fuzzy membership function used for 

this category is according to Eq. (12) and Figure 6. 

 
𝜇(𝑥) = 𝑚𝑖𝑛 {2 − 2 (

| 𝑎−𝑥|

𝑐
) , 1}    𝑓𝑜𝑟 𝑎 − 𝜆 ≤

|𝑎 − 𝜆| ≤ 𝑎 + 𝜆;  𝜇(𝑥) = 0       (12) 
 

Figure 6. Fuzzy membership functions for area 
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 Concentration: it describes distribution of pixels 

of the image object by an equation where the 

numerator is diameter of the rectangular object with 

∑ 𝑃𝑣 pixels and √𝜎𝑥
2 + 𝜎𝑦

2 is diameter of the ellipse 

fitted into the object. Most of rectangular objects are 

highly concentrated. Long shapes like shadows 

have a low concentration. In this study, shadows are 

employed to detect buildings. Therefore, maximum 

1.thanlessshadows isconcentration of

onis basedof concentrationApproximation

diindicatespolygons. The feature stribution of 

pixels of image objects with the greatest value 

occurred in square forms. The feature declines as 

the object become more linear. 

 Adjacent shadows: square parcels or classes cause 

reduction of classification accuracy while detecting 

buildings. Stuff placed on roofs and imperfect 

segments may also happen during segmentation. 

According to location of the sun, a building cast a 

shadow in the opposite direction of the azimuth. 

Shadows must be observed in a specific length and 

direction beside buildings. So parameter of shadow 

can be utilized for better detection. To apply this 

feature, building height and the azimuth of sun 

radiation must be considered. Direction of shadows 

depends on the azimuth of solar direction during 

imagery process. As illustrated in Figure 7, a 

shadow can fall in part 1 or 2 according to direction 

of the building. Direction of shadows can be 

specified in accordance with geographical location 

of the object and imagery time. 

 
Figure 7. Shadow analysis for building extraction 

3.2.1.4. Detection of Shadow Areas 

      Shadow falls in an image when the light does not directly 

illuminate whole or some part of an object. The phenomenon 

accounts for a considerable percentage of VHR images. 

Logical modelling of shadow is explained as the following:  

                                                           
2 Hue-Saturation-Value 

      Shadows are very distinguishable from their 

surroundings and occupy a small area. By the way, shadows 

have a high threshold regarding brightness. Shadows are one 

of the features which may cause incorrect classifications in 

satellite images. In some cases, shadows are considered as 

obtrusive objects causing mistakes in classification. So, it is 

so important to detect and label such features. In addition, 

shadows represent extruded objects like buildings so that 

they can be noticed as a feature to detect extruded features. 

Since shadows are cooler than other areas, NIR1 band which 

exists in satellite images derived from WV2 can properly 

extract such areas. 

NIR1 and NIR2 spectral bands and also blue band are very 

efficient to detect shadows. HSV2 colour model is of great 

importance among colour spaces already introduced because 

of more adaptation to human eye. HSV colour space has three 

main components which are not completely independent 

from each other and form a conical coordinate system. At this 

step, the image is initially converted from RGB space to HSV 

colour model according to the Eqs. (13) to (15).  

 𝑉 =  
1

3
(𝑅 + 𝐺 + 𝐵)                               (13) 

 𝑆 = 1 −
3

𝑅+𝐺+𝐵
                                       (14) 

 𝐻 = {
𝜃                  𝑖𝑓 𝐵 ≤ 𝐺

360 − 𝜃       𝑖𝑓   𝐵 > 𝐺
                  (15) 

 

      According to particular features of shadow areas in HSV 

space, the image resulted from different indices for shadow 

detection and normalization of picture in HSV colour model 

in saturation space is considered as a primary render to 

recognize shadows. 

      In this study, module of band math is used in ENVI 

software in order to develop shadow detection index (SDI) 

from various bands if the satellite image. Two types of this 

index were used in the current research [Eqs. (16) and (17)]. 

Confusion matrix is also applied to evaluate accuracy of SDI. 

The index has been assessed in different research areas and 

acceptable results have been achieved. 

 
𝑆𝐷𝐼(1) =

𝐻𝑢𝑒

𝑁𝐼𝑅1
                            (16) 

 𝑆𝐷𝐼(2) =  
𝐵𝑙𝑢𝑒−𝑁𝐼𝑅1

𝑁𝐼𝑅1+𝑁𝐼𝑅2+𝐵𝑙𝑢𝑒
          (17) 
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3.2.1.5. Classification of Vegetation  

      Detection of vegetation by satellite images is generally 

carried out by vegetation indices. The indices are resulted 

from mathematical combination of various digital satellite 

images which use significant differences in reflectance of 

vegetation within visible and near-infrared wavelengths and 

are expressed in terms of simple algebraic equations or linear 

combinations that convert value of each pixel of various 

bands into a numerical index and have the highest sensitivity 

to spectral response of plants. Given high reflectance of 

vegetation within spectral range of NIR band of 

electromagnetic spectrum, NIR ratio is determined for areas 

with dense vegetation via Eq. (18). 

 𝑁𝐼𝑅 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝐼𝑅1

𝑁𝐼𝑅1+𝑅+𝐺+𝐵
                          (18) 

 

    Red and near-infrared bands play a key role in 

construction of vegetation indices. Red radiation is absorbed 

by chlorophyll in plants and infrared radiation is intensively 

reflected by cellular structures (Eq. 19).  

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅1−𝑅

𝑁𝐼𝑅1+𝑅
                             (19) 

     Reflectance differences of these two classes in visible 

bands and also their differences in absorption and reflection 

of red and near-infrared bands can be used. In urban regions, 

grass areas are better irrigated than trees so that they seem 

fresher. Since class of trees has a high threshold in red and 

near-infrared bands and class of grass has a low threshold in 

these three bands, NDVI solely is not an appropriate index 

for detection of these two classes. 

3.3. Discussion 

  To analyze the efficiency of the proposed approach, three 

blocks of the study region and original image are studied 

through implementation of fuzzy/non-fuzzy classification 

methods. The rules applied for detection of classes are listed 

in Table 4. 

 
Table 4. Rules used to detect classes 

Rule Condition Class 

rule 1 if value of EWI and NDWI is high, then water body 

rule 2 if value of feature f1, f2, standard deviation and density is low, then roads 

rule 3 if approximation to rectangle, ellipse and circle is high and area is moderate and 
shadow falls in north west direction, then 

buildings 

rule 4 if value of SDI (1) and SDI (2) is high, then shadows 

rule 5 if value of NDVI and NIR ratio is high, then vegetation 

 

 

Figure 8. Classification of featured with and without Fuzzy method, (a,d,g) Blocks of the original images,  

(b,e,h) Blocks of classified images without Fuzzy method, (c,f,i) Block of classified images with Fuzzy method. 
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    of ruleresultstheAs - classification indicate inbased

Figure 8, the detection of classes is accomplished 

appropriately. At this step, training samples are chosen in a 

proper distribution. Number of training samples is based on 

class of objects in the Table 5. Google Earth imagery of the 

region was used to produce ground truth data. Parameters 

that were used in determination of accuracy of feature 

classification for each block model are listed in Tables 6 to 

7. 

 

 

 

Table 5. Training samples 

Number of 

Training Samples 

Feature 

Category 

5 Water 

20  Building 

10  Road 

10  Vegetation 

20  Shadow 

 
  

Table 6. Feature classification accuracy parameters {Block (I, II, III), Method 1} 

 

Accuracy Parameters 

 Category Block 

Overall 

Accuracy 

Kappa 

Coefficient 

User 

Accuracy 

Producer 

Accuracy 

83 % 0.86 

89 87.9 Road 

(I) 
94 79 Building 

1 81 Shadow 

98 83 Vegetation 

83% 0.81 

89 81 Road 

(II) 
94 80 Building 

1 86 Shadow 

98 84 Vegetation 

81.2 % 0.79 

89.2 87.3 Road 

(III) 
94 83 Building 

1 79 Shadow 

98 84 Vegetation 

  

Table 7. Feature classification accuracy parameters {Block (I, II, III), Method 2} 

 

Accuracy Parameters 

 Category Block 

Overall 

Accuracy 

Kappa 

Coefficient 

Producer 

Accuracy 

User 

Accuracy 

89.7 % 0.9 

91 89 Road 

(I) 
87.7 94.5 Building 

92 1 Shadow 

93 98 Vegetation 

91 % 0.89 

89.9 89 Road 

(II) 
84 94 Building 

89 1 Shadow 

91 98 Vegetation 

89.1 % 0.88 

91.9 89 Road 

(III) 
87 94 Building 

89 1 Shadow 

90 98 Vegetation 
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Table 8. Overall accuracy and Kappa coefficient of the 

presented method and the check project 

 
Fuzzy 

 Rule-based 

Method  

Regardless of 

Fuzzy 

Classification  

Overal 

Accuracy 
0.89 0.78 

Kappa 

Coefficient 
0.87 0.76 

  

 

T aspects andoperationalis focused onhis research

simplicity of implementation. So, fuzzy rule-based 

classification was used. The results of this technique were 

compared to Support-Vector Machine and Random Forest 

methods (Table 8).  

 

4. Permeability of Objects to Radioactive Radiation  

      Radioactive materials are environmental contaminants 

resulted from nuclear explosions. Damages from radiation 

remain for a long time and transmit to later generations and 

are not limited to specific time and place of the incident. The 

material contains electromagnetic radiations such as x and γ 

and nuclear radiations such as x-ray, electrons, protons and 

neutrons. Radioactive materials are imbalanced isotopes of 

an element that get balanced by absorbing or losing nucleons 

and extra radiation. Radioactive elements may get more 

sustainable while breaking down. Radioactive materials 

radiate β, x and γ and they exist in natural and synthetic 

forms. Some radiations such as x and γ are electromagnetic 

radiations while the other such as α, β, neutrons and protons 

are particles moving at very high speeds. Gamma radiation 

has a great permeability and it can transmit through the air 

and body layers and cause injuries. It is possible to model 

emission of radioactive materials and identify its effective 

factors through study on nuclear disasters which have 

already happened. Nuclear experts have suggested analytical 

models to assess pollution rate and permeability of 

radioactive contaminants.  

      A wide range of active radionuclides were produced as a 

result of a nuclear fission. As demonstrated in Table 4, the 

radionuclides have a greater atomic number than uranium. 

Cesium 137 nucleoside causes the highest contamination 

among them. According to the research by experts in 

International Atomic Energy Agency, EDEM3 is a developed 

model to calculate vulnerability of materials based on 

received dose. The model was suggested after Chernobyl 

disaster (Anderson, 2003). As illustrated in Figure 9, 

contamination rate is determined at different levels from 

1986 (after disaster) to 2006. Most of damage is associated 

with features such as soil and vegetation. 
 

 
Figure 9. The rate of contamination on the features after the Chernobyl disaster 

                                                           

3 Effective Dose Estimation Module 
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      Each diagram in Figure 9 shows pollution rate after 

hazard based on measured radioactive contaminations in four 

the event position.different points near Radioactive 

thetoAccordingradionuclides.ofmadeareradiations

reports by nuclear experts, there were different rates of 

permeability and pollution after disaster. So, as demonstrated 

in the diagram (1), amount of pollution and rate of 

permeability depend on material of features. 

 

 

Diagram 1. The different levels of contamination after the nuclear disaster after the Chernobyl nuclear disaster 

   

     According to pollution rate of various materials illustrated 

in the graph below, trees have the most permeability to 

radiation in first days after Chernobyl disaster. Based on 

EDEM model and density of radioactive materials after the 

disaster, features such as vegetation and soils are highly 

exposed to radiation; such phenomena today occupy limited 

areas in urban environments. The model is suggested to 

calculate contamination rate. 
 

5. Risk Analysis of Features  

     more data and otherbyexperimentstoIn addition

methodologies in this study, the results provided by 

modeling Chernobyl disaster are matched to other regions 

and a risk zoning maps are produced using moderate and 

high resolution images. The proposed model is overlaid on a 

Landsat image of Tehran. The image is provided by WV2 

sensor that is 5 Km far from Atomic Energy Organization in 

Tehran.  

     In the current study, medium-resolution Landsat image 

was applied for macro-zonation that leads to a general 

description of region zones. Afterwards, high-resolution 

WorldView image was used for micro-zonation based on the 

resulted model of Landsat data. This procedure leads to a 

detailed description of region zones.  

Data on distance from residential areas and climatic and 

topographic parameters collected from websites of NOAA 

weather service, USGS geological survey, mineral 

areMapCruzinof Iran andexploration organization

processed. According to explanations presented in the 

previous section about Chernobyl model, hazard zonation 

map is produced for the region. Given spectral behavior of 

ingredients of urban features, each material shows a different 

behavior regarding permeability to radiation. If material used 

in features is determined by its spectral behavior, its 

permeability to radiation can be found. So permeability of 

each object can be determined by specifying its material. At 

this step, hazard zones are determined through 

implementation of Chernobyl model and proposed model on 

a Landsat image of Tehran. Permeability of various features 

to radioactive contaminants varies with their material. Given 

the research, pollution of each phenomenon can be identified 

in the region in case of probable nuclear disaster. As 

mentioned before, vulnerability of each phenomenon can be 

modeled in accordance with its material and permeability. It 

is possible to make decisions based on reports and research 

by experts in International Atomic Energy Agency regarding 

environmental and climatic conditions of Chernobyl 

accident. The risk analysis can be implemented based on the 

studies in case of assumed disaster. The risk of phenomena 

is demonstrated in the Figure 9 based on reports and research 

in the region. 

 

5.1. Vulnerability Modelling 

     In order for risk assessment to be valid, certain elements 

must be considered as critical factors. In performing hazard 

risk assessment of the region of interest, what are likely to be 

affected by the hazard is of prominent importance to the 

study. According to the results of measurements performed 

for each urban feature class and expert opinions, weighting 

was carried out for determination of features vulnerability 

level (Table 9).  
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Table 9. Weighting feature vulnerability level 

Vulnerability 

Weight 

Feature 

Class 
0.70 Soil 

0.80 Vegetation 

0.75 Road 

0.60 tnevevaP 

0.50 gnidliaB 
 

 

     

 

 

     

 

  The  vulnerability  layer  was  modelled  by  weighting  and 
combining  the  elements  using  the  Single  Output  Map 
Algebra  function  of  ArcMap  software  (Figure 10).  The 
elements were weighted and used to model the vulnerability

as follows:

VL = (S × 0.7)+(V × 0.8)+(R× 0.4)+(B × 0.5)+(P × 0.6) (20) 

In which 

VL: Vulnerability Layer 

S: Soil 

V: Vegetation 

R: Road 

B: Building 

P: Pavement 
 

 
Figure 10. Vulnerability layer of the study area 

 

5.2. Hazard Modelling 

     Since topographic status of the region affects the amount 

of risk, slope and wind direction layers can also be 

considered as risk elements. In order to apply wind direction 

layer in the determination of high-risk zones, it is necessary 

to establish an information layer in which wind direction is 

known at each point. Because of the lack of such layer and 

as it would be illogical to use interpolation for producing 

wind direction layer, another method is required. Direction 

of prominent wind is an appropriate parameter to be used 

(Table 10).  

Table 10. Prominent wind angles   

Prominent  

Wind Angle 

Geographic 

Direction 
45.48 NE 
117.5 NW 

110-119 SE 
 

     Recorded data at the nearest synoptic station to the event 

location were acquired from NOAA site. Table 11 shows 

fuzzy values for prominent wind direction.  

Table 11. Fuzzy values for prominent wind angles with 

respect to geographic directions  
 

Fuzzy Value Geographic Direction 

0.2 North 

0.2 North-East 

1.0 East 

0.2 South-East 

0.2 South 

0.6 South-West 

0.4 West 

0.4 North-West  
  

     In the absence of data for these hazards, slope and rainfall 

parameters were used as proxies to model them (Fig. 11). 

The elements were weighted and used to model the hazard as 

follows: 

Hazard Layer = (Slope × 0.6)+(Wind Direction × 0.5)   (21) 

 

Figure 11. Hazard zones of the study area 
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5.3. Risk Layer 

     The final risk layer of the study area (Figure 12) was 

gotten based on level of contamination of radioactive 

pollution of the region using single Output Map Algebra 

function of ArcMap software according to Eq. (19). Figure 

12 shows pixel values that can be used to represent the 

several risk areas. These pixel values can be grouped to show 

a general pattern in the degree of contamination intensity of 

regions. Thus, with a clearly defined domain of high, 

moderate to high, medium, moderate to low, risk zones, the 

technique of density slicing made it possible to reclassify the 

contamination risk map. This helped to differentiate between 

areas that experience different intensity of contamination. 

 

                                        

 

 

 

     The vulnerability, hazard and risk maps were all classified 

into Moderate to Low, Medium, Moderate to High and High 

risk zones. The multi-risk classification of the zones is 

displayed on Table 12 to show the areal extent of each zone 

in the study area. 

Table 12. Risk level of each class 

Risk Class Blocks  Area % 

High Risk 

I 35 

II 18 

III 41 

Moderate to High Risk 

I 7 

II 8 

III 6 

Medium Risk 

I 14 

II 11 

III 10 

Moderate to Low Risk 

I 22 

II 0 

III 10 
 

 

6. Conclusions 

     Rule-based methods alone are not efficient and sufficient 

enough in order to classify complex and developing urban 

areas. In this study, object-oriented analyses are presented 

based on multi-scale and hierarchical structures that lead to 

improved results. Object-oriented classification method is 

areas on largeassessed to classify complex urban -scale 

images regarding complicated and concentrated urban 

regions. In this study, fuzzy thresholding of measures is 

employed to manage uncertainty of segmentation. It is so 

important to detect land cover of urban areas using large-

scale satellite images. Object-oriented methods have 

eliminated many disadvantages of pixel-oriented methods in 

image processing. Despite traditional approaches, object-

oriented methods benefit from spectral capabilities of images 

as well as their hidden geospatial aspects. Risk classification 

of urban features is implemented based on EDEM through 

the maps generated for each block of the image with the 

accuracy of 91%. Since vegetation and soil areas have the 

highest permeability to radioactive pollutants and they 

reduce density of contaminants in case of disasters, such 

features are of great importance in urban areas. Based on the 

analyses performed and zonation maps produced, it is then 

possible to make all necessary precautions and preparations 

with emphasis on detected high risk regions, in case of an 

atomic disaster, to prevent people, national infra-structures 

and environment from potential threats. It is suggested that 

for further study, intelligent algorithms, convolution neural 

network (CNN) or deep learning be applied for enhanced 

classification. 

 

Figure 12. Determination of the amount of risk in the model 

blocks based on EDEM results. (a,c,e) Original image of 

blocks, (b,d,f) Determined risk level for identified features 

of blocks 
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