

journal homepage: http://jac.ut.ac.ir

4-total mean cordial labeling in subdivision graphs

R. Ponraj^{*1}, S.Subbulakshmi^{†2} and S.Somasundaram^{‡3}

¹Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.
²Research Scholar, Reg. No: 19124012092011, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
³Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \to \{0, 1, 2, \dots, k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, \dots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in$ $\{0, 1, 2, \dots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. Article history: Received 04, February 2020 Received in revised form 11, October 2020 Accepted 15 November 2020 Available online 30, December 2020 Research Paper

ARTICLE INFO

Keyword: corona, subdivision of star, subdivision of bistar, subdivision of comb, subdivision of crown, subdivision of double comb, subdivision of ladder.

AMS subject Classification: 05C78.

1 Introduction

Graphs in this paper are finite, simple and undirected. In [3] the concept of k-total mean cordial labeling have been introduced. Also 4-total mean cordial behaviour of several graphs like path, cycle, complete graph, star, bistar, comb, crown have been investigated

Journal of Algorithms and Computation 52 issue 2, December 2020, PP. 1 - 11

 $^{^{*}\}mbox{Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com$

[†]ssubbulakshmis@gmail.com

[‡]somutvl@gmail.com

[3]. In this paper, we investigate the 4-total mean cordial labeling of subdivision of star, bistar, comb, crown, double comb, jelly fish, ladder, triangular snake. Let x be any real number. Then $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[2] and Gallian[1].

2 k-total mean cordial graph

Definition 2.1. Let G be a graph. Let $f : V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, ..., k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 preliminary results

Definition 3.1. Let G_1 , G_2 respectively be $(p_1, q_1), (p_2, q_2)$ graphs. The corona of G_1 with G_2 , $G_1 \odot G_2$ is the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

Definition 3.2. If e = uv is an edge of G then e is said to be *subdivided* when it is replaced by the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the *subdivision graph* of G and is denoted by S(G).

4 Main results

Theorem 4.1. The subdivision of star $K_{1,n}$, $S(K_{1,n})$ is 4-total mean cordial for all n.

Proof. Let u be the vertex of degree n and u_1, u_2, \ldots, u_n be the pendent vertices. Let v_i be the vertex which subdivided the edge uu_i $(1 \le i \le n)$. Clearly $|V(S(K_{1,n}))| + |E(S(K_{1,n}))| = 4n + 1$.

Assign the label 3 to the vertex u.

Now we consider the pendent vertices u_1, u_2, \ldots, u_n . Assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . We now move to the vertices v_1, v_2, \ldots, v_n . Assign the label 2 to the *n* vertices v_1, v_2, \ldots, v_n .

Clearly $t_{mf}(0) = t_{mf}(1) = t_{mf}(2) = n, t_{mf}(3) = n + 1.$

Theorem 4.2. $S(B_{n,n})$ is 4-total mean cordial for all values of n.

Proof. Let u, v be the vertices of degree n + 1 and w be the vertex of degree 2 adjacent to both u and v. Let x_i be the vertex of degree 2 adjacent to u and y_i be the vertex of degree 2 adjacent to v. Let u_i and v_i $(1 \le i \le n)$ be the pendent vertex adjacent to x_i and y_i respectively.

Obviously $|V(S(B_{n,n}))| + |E(S(B_{n,n}))| = 8n + 5.$

Assign the labels 0, 3, 2 respectively to the vertices u, v, w.

Case 1. n is odd.

Assign the label 1 to the *n* vertices u_1, u_2, \ldots, u_n . We now assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . Next assign the label 2 to the $\frac{n+1}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{n+1}{2}}$ and assign the label 3 to the $\frac{n-1}{2}$ vertices $v_{\frac{n+3}{2}}, v_{\frac{n+5}{2}}, \ldots, v_n$. Assign the label 2 to the n-1vertices $y_1, y_2, \ldots, y_{n-1}$ and finally assign the label 3 to the vertex y_n .

Case 1. n is even.

Assign the label 1 to the *n* vertices u_1, u_2, \ldots, u_n . We now assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . Next assign the label 2 to the $\frac{n}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{n}{2}}$ and assign the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}, \ldots, v_n$. Assign the label 2 to the *n* vertices y_1, y_2, \ldots, y_n .

Thus this vertex labeling f is 4-total mean cordial labeling follows from the Tabel 1

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
$n ext{ is odd}$	2n + 1	2n+1	2n + 1	2n+2
n is even	2n + 1	2n+1	2n + 1	2n+2

Table 1:

Theorem 4.3. $S(P_n \odot K_1)$ is 4-total mean cordial for all values of n.

Proof. Let P_n be the path $u_1u_2...u_n$ and v_i be the pendent vertices adjacent to u_i $(1 \le i \le n)$. Let x_i be the vertex which subdivided the edge u_iu_{i+1} $(1 \le i \le n-1)$ and y_i be the vertex which subdivide the edge u_iv_i $(1 \le i \le n)$. It is easy to show that $|V(S(P_n \odot K_1))| + |E(S(P_n \odot K_1))| = 8n - 3$.

Case 1. n is odd.

Assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . Next assign the label 2 to the n-1 vertices $x_1, x_2, \ldots, x_{n-1}$. We now assign the label 3 to the *n* vertices v_1, v_2, \ldots, v_n . Assign the label 0 to the $\frac{n-1}{2}$ vertices $y_1, y_2, \ldots, y_{\frac{n-1}{2}}$. Next assign the label 3 to the $\frac{n-1}{2}$ vertices $y_{\frac{n+1}{2}}, v_{\frac{n+3}{2}}, \ldots, y_{n-1}$ and finally assign the label 2 to the vertex y_n .

Case 2. *n* is even and $n \ge 4$. Assign the label 0 to the $\frac{n-2}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n-2}{2}}$ and assign the label 3 to the $\frac{n+2}{2}$ vertices $u_{\frac{n}{2}}, u_{\frac{n+2}{2}}, \ldots, u_n$. Next assign the label 3 to the $\frac{n-2}{2}$ vertices $x_1, x_2, \ldots, x_{\frac{n-2}{2}}$ and assign the label 2 to the $\frac{n-2}{2}$ vertices $x_{\frac{n}{2}}, x_{\frac{n+2}{2}}, \ldots, x_{n-2}$. Now assign the label 0 to the vertex x_{n-1} . We now assign the label 1 to the *n* vertices v_1, v_2, \ldots, v_n . Finally assign the label 0 to the *n* vertices y_1, y_2, \ldots, y_n .

From Tabel 2, this vertex labeling f is 4-total mean cordial labeling

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n is odd	2n - 1	2n - 1	2n - 1	2n
n is even	2n - 1	2n	2n - 1	2n - 1

10010 2.	Tal	ble	2:
----------	-----	-----	----

Case 3. n = 2.

A 4-total mean cordial labeling is given in table 3

Vertex	u_1	u_2	v_1	v_2	x_1	y_1	y_2
Label	0	1	3	3	0	2	2

Tabl	е	3:
ran	C	υ.

Theorem 4.4. The subdivision of crown $C_n \odot K_1$, $S(C_n \odot K_1)$ is 4-total mean cordial for all n.

Proof. Let C_n be the cycle $u_1u_2...u_nu_1$ and v_i be the pendent vertices adjacent to u_i $(1 \le i \le n)$. Let x_i be the vertex which subdivided the edge u_iu_{i+1} $(1 \le i \le n-1)$ and x_n be the vertex which subdivided the edge u_nu_1 . Let y_i be the vertex which subdivide the edge u_iv_i $(1 \le i \le n)$. Note that $|V(S(C_n \odot K_1))| + |E(S(C_n \odot K_1))| = 8n$.

Case 1. n is odd.

Assign the label 2 to the *n* vertices u_1, u_2, \ldots, u_n . Next we assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . We now assign the label 0 to the *n* vertices v_1, v_2, \ldots, v_n . Finally assign the label 3 to the *n* vertices y_1, y_2, \ldots, y_n .

Case 2. n is even.

Now assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . Then we assign the label 2 to the *n* vertices x_1, x_2, \ldots, x_n . Now we assign the label 3 to the *n* vertices v_1, v_2, \ldots, v_n . Assign the label 0 to the $\frac{n}{2}$ vertices $y_1, y_2, \ldots, y_{\frac{n}{2}}$ and finally assign the label 3 to the $\frac{n}{2}$ vertices $y_{\frac{n+2}{2}}, y_{\frac{n+4}{2}}, \ldots, y_n$.

From Tabel 4, this vertex labeling f is 4-total mean cordial labeling

4

Nature of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
$n ext{ is odd}$	2n	2n	2n	2n
n is even	2n	2n	2n	2n

Table 4:

Theorem 4.5. $S(P_n \odot 2K_1)$ is 4-total mean cordial for all values of n.

Proof. Let P_n be the path $v_1v_2...v_n$ and u_i,w_i be the pendent vertices adjacent to v_i $(1 \le i \le n)$. Let z_i be the vertex which subdivided the edge u_iu_{i+1} $(1 \le i \le n-1)$. Let x_i,y_i be the vertices which subdivided the edge u_iv_i,v_iw_i $(1 \le i \le n)$. It is easy to verify that $|V(S(P_n \odot 2K_1))| + |E(S(P_n \odot 2K_1))| = 12n - 3$.

Assign the label 2 to the *n* vertices u_1, u_2, \ldots, u_n . Next we assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . Then we assign the label 0 to the *n* vertices v_1, v_2, \ldots, v_n . We now assign the label 2 to the vertex y_1 and assign the label 3 to the n-2 vertices $y_2, y_3, \ldots, y_{n-1}$. Next assign the label 3 to the *n* vertices w_1, w_2, \ldots, w_n . Finally we assign the label 2 to the n-1 vertices $z_1, z_2, \ldots, z_{n-1}$. Obviously $t_{mf}(0) = 3n, t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 3n - 1$.

Theorem 4.6. The subdivision of Book with triangular pages $K_2 + mK_1$, $S(K_2 + mK_1)$ is 4-total mean cordial for all m.

Proof. Let u,v be the vertices of degree m + 1 and u_i be the vertex adjacent to both u and v. Let w be the vertex of degree 2 which subdivided the edge uv. Let x_i, y_i be the vertices which subdivided the edges uu_i, vu_i $(1 \le i \le m)$. Clearly $|V(S(K_2 + mK_1))| + |E(S(K_2 + mK_1))| = 7m + 5$.

Assign the labels 0, 3, 2 respectively to the vertices u, v, w.

Case 1. $m \equiv 0 \pmod{4}$. Let $m = 4r, r \in N$.

Consider the vertices u_1, u_2, \ldots, u_{4r} . Assign the label 0 to the 2r vertices u_1, u_2, \ldots, u_{2r} . Next we assign the label 2 to the r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$. We now assign the label 1 to the r vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$. Now we consider the vertices x_1, x_2, \ldots, x_{4r} . Assign the label 0 to the r vertices x_1, x_2, \ldots, x_r . Then we assign the label 2 to the 2r vertices $x_{r+1}, x_{r+2}, \ldots, x_{3r}$. We now assign the label 1 to the r vertices $x_{3r+1}, x_{3r+2}, \ldots, x_{4r}$. Next we consider the vertices y_1, y_2, \ldots, y_{4r} . Assign the label 3 to the r vertices y_1, y_2, \ldots, y_{4r} . Assign the label 3 to the r vertices $y_{1}, y_{2r}, \ldots, y_{4r}$. Finally we assign the label 3 to the 2r vertices $y_{2r+1}, y_{2r+2}, \ldots, y_{4r}$.

Case 2. $m \equiv 1 \pmod{4}$. Let m = 4r + 1, $r \geq 0$. As in Case 1, assign the label to the vertices u_i , x_i, y_i $(1 \leq i \leq 4r)$. Finally we assign the label 1, 0, 2 to the vertices u_{4r+1} , x_{4r+1} , y_{4r+1} .

Case 3. $m \equiv 2 \pmod{4}$. Let $m = 4r + 2, r \geq 0$. Label the vertices u_i, x_i, y_i $(1 \leq i \leq 4r + 1)$ as in Case 2. Next assign the label 0, 2, 3 to the vertices $u_{4r+2}, x_{4r+2}, y_{4r+2}$.

Case 4. $m \equiv 3 \pmod{4}$. Let $m = 4r + 3, r \ge 0$.

In this case, assign the label for the vertices u_i , x_i , y_i $(1 \le i \le 4r + 2)$ as in Case 3. We now assign the labels 1, 0, 2 to the vertices u_{4r+3} , x_{4r+3} , y_{4r+3} .

The table 5, given below establish that this vertex labeling f is 4-total mean cordial labeling

Nature of m	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
m = 4r	7r + 1	7r + 1	7r + 1	7r+2
m = 4r + 1	7r + 3	7r + 3	7r + 3	7r + 3
m = 4r + 2	7r + 4	7r + 5	7r + 5	7r + 5
m = 4r + 3	7r + 6	7r + 7	7r + 7	7r+6

Table 5:

Theorem 4.7. S(J(n,n)) is 4-total mean cordial for all values of n where J(n,n) is a jelly fish.

Proof. Let $V(J(n,n)) = \{u, v, x, y, u_i, v_i : 1 \le i \le n\}$ and $E(J(n,n)) = \{ux, uy, xy, vx, vy, uu_i, vv_i : 1 \le i \le n\}$. Let o, p, q, r, s be the vertices which subdivided the edges xy, ux, uy, vx, vy. Let x_i, y_i be the vertices which subdivided uu_i, vv_i $(1 \le i \le n)$. It is easy to verify that |V(S(J(n,n)))| + |E(S(J(n,n)))| = 8n + 19.

Assign the labels 0, 2, 0, 1, 1, 0, 1, 3, 3 respectively to the vertices u, v, x, y, o, p, q, r, s. Now we consider the pendent vertices u_1, u_2, \ldots, u_n . Assign the label 1 to the *n* vertices u_1, u_2, \ldots, u_n . Next assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . We now move to the pendent vertices v_1, v_2, \ldots, v_n . Assign the label 3 to the *n* vertices v_1, v_2, \ldots, v_n . We now assign the label 2 to the *n* vertices y_1, y_2, \ldots, y_n .

Note that $t_{mf}(0) = t_{mf}(1) = t_{mf}(2) = 2n + 5, t_{mf}(3) = 2n + 4.$

Theorem 4.8. The subdivision of ladder L_n , $S(L_n)$ is 4-total mean cordial for all n.

Proof. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}.$ Let x_i, z_i and y_i be the vertices which subdivide the edges $u_i u_{i+1}, v_i v_{i+1}$ $(1 \le i \le n-1)$ and $u_i v_i$ $(1 \le i \le n)$ respectively. It is easy to verify that, $|V(S(L_n))| + |E(S(L_n))| = 11n - 6.$

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \ge 2$.

Assign the label 0 to the r vertices $u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_r$ and y_1, y_2, \ldots, y_r . Next we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}, v_{r+1}, v_{r+2}, \ldots, v_{2r}$ and $y_{r+1}, y_{r+2}, \ldots, y_{2r}$. We now assign the label 2 to the r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}, v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$ and $y_{2r+1}, y_{2r+2}, \ldots, y_{3r}$ and assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}, v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$ and $y_{3r+1}, y_{3r+2}, \ldots, y_{4r}$. Consider the vertices z_1, z_2, \ldots, z_n . Assign the label 0 to the r + 1 vertices $z_1, z_2, \ldots, z_{r+1}$. Then we assign the label 1 to the r - 1 vertices $z_{r+2}, z_{r+3}, \ldots, z_{2r}$. We now assign the label 2 to the r - 1 vertices $z_{3r}, z_{3r+1}, \ldots, z_{4r-1}$.

Case 2. $n \equiv 1 \pmod{4}$. Let n = 4r + 1, r > 2.

As in Case 1, assign the label to the vertices u_i , v_i , y_i $(1 \le i \le 4r)$ and x_i , z_i $(1 \le i \le 4r - 1)$. Finally we assign the labels 2, 3, 0, 0, 3 respectively to the vertices u_{4r+1} , v_{4r+1} , x_{4r} , y_{4r+1} , z_{4r} .

Case 3. $n \equiv 2 \pmod{4}$. Let $n = 4r + 2, r \geq 2$. Label the vertices u_i, v_i, y_i $(1 \leq i \leq 4r + 1)$ and x_i, z_i $(1 \leq i \leq 4r)$ as in Case 2. Next we assign the labels 0, 1, 0, 2, 3 to the vertices $u_{4r+2}, v_{4r+2}, x_{4r+1}, y_{4r+2}, z_{4r+1}$.

Case 4. $n \equiv 3 \pmod{4}$. Let $n = 4r + 3, r \ge 2$.

In this case, assign the label for the vertices u_i , v_i , y_i $(1 \le i \le 4r + 2)$ and x_i , z_i $(1 \le i \le 4r + 1)$ as in Case 3. Finally we assign the labels 0, 3, 1, 0, 3 respectively to the vertices u_{4r+3} , v_{4r+3} , x_{4r+2} , y_{4r+3} , z_{4r+2} .

From the Table 6, this vertex labeling f is a 4-total mean cordial labeling of $S(L_n)$

Case 5. $2 \le n \le 7$. A 4-total mean cordial labeling of $S(L_n)$ is given in Table 7

Order of $S(L_n)$	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n = 4r	11r - 1	11r - 1	11r - 2	11r - 2
n = 4r + 1	11r + 1	11r + 1	11r + 1	11r + 2
n = 4r + 2	11r + 4	11r + 4	11r + 4	11r + 4
n = 4r + 3	11r + 7	11r + 7	11r + 6	11r + 7

Table 6:

Theorem 4.9. The subdivision of triangular snake T_n , $S(T_n)$ is 4-total mean cordial.

Proof. Let P_n be the path $u_1u_2...u_n$ and w_i be the vertex adjacent to u_i and u_{i+1} . Let v_i be the vertex which subdivide the edge u_iu_{i+1} $(1 \le i \le n-1)$. Let x_i, y_i be the vertices which subdivided $u_iw_i, u_{i+1}w_i$ $(1 \le i \le n-1)$ respectively. In this graph, $|V(S(T_n))| + |E(S(T_n))| = 11n - 10$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \ge 1$.

Consider the vertices u_1, u_2, \ldots, u_n . Assign the label 0 to the r vertices u_1, u_2, \ldots, u_r . Next we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. We now assign the label 2 to the r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$ and assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$. Consider the vertices w_1, w_2, \ldots, w_n . Assign the label 0 to the r vertices w_1, w_2, \ldots, w_r . Then we assign the label 1 to the r-1 vertices $w_{r+1}, w_{r+2}, \ldots, u_{2r-1}$. We now assign the label 2 to the r vertices $w_{2r}, w_{2r+1}, \ldots, w_{3r-1}$ and assign the label 3 to the rvertices $w_{3r}, w_{3r+1}, \ldots, w_{4r-1}$. Consider the vertices v_1, v_2, \ldots, v_n . Assign the label 0 to the r vertices v_1, v_2, \ldots, v_r . Next we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2r}$. Now we assign the label 2 to the r-1 vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r-1}$. Now we assign the label 3 to the r-1 vertices $v_{3r}, v_{3r+1}, \ldots, v_{4r-1}$. Assign the label 0 to the r vertices x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_r . Next we assign the label 1 to the r vertices $x_{2r+1}, x_{2r+2}, \ldots, x_{2r}$ and $y_{r+1}, y_{r+2}, \ldots, y_{2r}$. We now assign the label 2 to the r-1 vertices $x_{2r+1}, x_{2r+2}, \ldots, x_{3r}$ and $y_{2r+1}, y_{2r+2}, \ldots, y_{3r}$. Finally we assign the label 3 to the r-1 vertices $x_{3r+1}, x_{3r+2}, \ldots, x_{4r-1}$ and $y_{3r+1}, y_{3r+2}, \ldots, y_{4r-1}$.

Case 2. $n \equiv 1 \pmod{4}$. Let $n = 4r + 1, r \ge 1$.

Label the vertices u_i $(1 \le i \le 4r)$ and v_i , x_i , y_i , w_i $(1 \le i \le 4r - 1)$ as in Case 1. Finally assign the labels 2, 0, 3, 1, 0 respectively to the vertices u_{4r+1} , w_{4r} , v_{4r} , x_{4r} , y_{4r} .

Case 3. $n \equiv 2 \pmod{4}$. Let $n = 4r + 2, r \geq 1$. As in Case 2, assign the label to the vertices u_i $(1 \leq i \leq 4r + 1)$ and v_i , x_i , y_i , w_i $(1 \leq i \leq 4r)$. Next we assign the labels 3, 0, 0, 1, 3 respectively to the vertices u_{4r+2} , $w_{4r+1}, v_{4r+1}, x_{4r+1}, y_{4r+1}$. **Case 4.** $n \equiv 3 \pmod{4}$. Let $n \equiv 4r + 3$, $r \geq 1$. In this case, assign the label for the vertices u_i $(1 \leq i \leq 4r + 2)$ and v_i, x_i, y_i, w_i $(1 \leq i \leq 4r + 1)$ as in Case 3. Finally we assign the labels 2, 1, 3, 2, 0 respectively to the vertices u_{4r+3} , $w_{4r+2}, v_{4r+2}, x_{4r+2}, y_{4r+2}$.

Thus this vertex labeling f is a 4-total mean cordial labeling of $S(T_n)$ follows from the Tabel 8

Case 5. n = 2, 3. A 4-total mean cordial labeling of $S(T_n)$ is given in Tabel 9

References

- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) #Ds6.
- [2] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
- [3] R.Ponraj, S.Subbulakshmi, S.Somasundaram, k-total mean cordial graphs, J. Math. Comput. Sci. 10 (2020), No. 5, 1697-1711.

n	2	3	4	5	6	7
u_1	0	0	0	0	0	0
u_2	0	1	1	1	1	1
u_3		2	2	2	2	2
u_4			3	3	3	3
u_5				1	1	1
u_6					0	0
u_7						0
v_1	3	0	0	0	0	0
v_2	3	1	1	1	1	1
v_3		2	2	2	2	2
v_4			3	3	3	3
v_5				3	3	3
v_6					1	1
v_7						3
y_1	0	0	0	0	0	0
y_2	2	1	1	1	1	1
y_3		3	2	2	2	2
y_4			3	3	3	3
y_5				0	0	0
y_6					2	2
y_7						0
x_1	1	0	0	0	0	0
x_2		3	2	2	2	2
x_3			2	2	2	2
x_4				0	0	0
x_5					0	0
x_6						1
z_1	3	2	0	0	0	0
z_2		3	0	0	0	0
z_3			3	3	3	3
z_4				3	3	3
z_5					3	3
z_6						3

Table 7:

Order of $S(T_n)$	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n = 4r	11r - 2	11r - 3	11r - 2	11r - 3
n = 4r + 1	11r + 1	11r	11r	11r
n = 4r + 2	11r + 3	11r + 3	11r + 3	11r + 3
n = 4r + 3	11r + 6	11r + 5	11r + 6	11r + 6

Table 8:

Value of n	u_1	u_2	u_3	w_1	w_2	v_1	v_2	x_1	x_2	y_1	y_2
2	0	1		3		0		2		2	
3	0	0	0	3	3	0	2	2	2	2	2

Table 9: