تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,218 |
تعداد دریافت فایل اصل مقاله | 97,224,083 |
تاثیر انواع بیوچار غنی شده بر قابلیت استفاده و توزیع شکلهای معدنی فسفر در خاک شور اطراف دریاچه ارومیه | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 12، اسفند 1399، صفحه 3177-3193 اصل مقاله (1.34 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.294590.668438 | ||
نویسندگان | ||
رقیه موسوی1؛ میرحسن رسولی صدقیانی* 1؛ ابراهیم سپهر1؛ محسن برین1؛ مریم خضری2 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
بهمنظور کاهش مشکلات مصرف بیوچار در خاکهای آهکی، با تغییر خواص سطحی بیوچار سیب وانگور بهوسیله انواع اسیدها، در یک آزمایش انکوباسیون فاکتوریل در قالب طرح کامل تصادفی با 6 تیمار شامل (بیوچار غنی شده با اسیدفسفریک-خاک فسفات (BC-H3PO4-RP)، اسید هیدروکلریک-خاک فسفات (BC-HCl-RP) و خاک فسفات (BC-RP)، بیوچار معمولی (BC)، کود فسفاته (TSP) و شاهد (Cont)) و 2 نوع خاک آهکی با قابلیت هدایت الکتریکی مختلف (2=S1 و 15= S2 دسیزیمنس بر متر)، تاثیر انواع بیوچار غنی شده بر توزیع اشکال معدنی فسفر در خاکهای شور اطراف دریاچه ارومیه بررسی شد. فسفر اولسن، pH و اجزاء فسفر معدنی در زمانهای 7، 30 و 60 روز انکوباسیون اندازهگیری و از لحاظ آماری تحلیل گردید. بر اساس نتایج، تیمارهای BC-HCl-RP و BC-H3PO4-RP بهطور متوسط pH خاک S1 و S2 را بهترتیب 5/0 و 1 واحد کاهش دادند. تیمارهای BC-H3PO4-RP و BC-HCl-RP فسفر اولسن خاک S1 را از 7/6 میلیگرم در کیلوگرم خاک بهترتیب به 3/57 و 5/55 و در خاک S2 از 4/7 به 3/71 و 62 میلیگرم در کیلوگرم خاک افزایش دادند. بیوچارهای غنی شده توزیع و مقدار اشکال فسفر معدنی خاکها را بهطور معنیدار تغییر دادند. بهطوریکه تیمارهای BC-H3PO4-RP و BC-HCl-R مقدار دیکلسیم فسفات خاک S1 را بهترتیب 9/2 و 6/2 برابر و خاک S2 را بهترتیب 06/1 و 97/0 برابر افزایش دادند. در مقابل مقادیر اکتاکلسیمفسفات، فسفاتهایآلومینیوم و آپاتیت بهطور معنیدار کاهش یافت. فسفر اولسن با دی کلسیم فسفات، آپاتیت و فسفر پیوندشده با آهن همبستگی معنیدار داشت و احتمالا در عصارهگیری فسفر اولسن، فـسفر از این اجزاء معدنی آزاد میشود. بنابراین میتوان گفت استفاده از بیوچار غنیشده باعث میشود فسفر برای مدت طولانی در فاز لبایل و قابل جذب برای گیاه باقی بماند. از اینرو میتواند به بهبود تغذیه فسفرگیاه، کاهش تنش شوری و رفع مسائل مصرف بیوچار معمولی در این خاکها کمک کند. | ||
کلیدواژهها | ||
اجزاء فسفر معدنی؛ فراهمی فسفر؛ خاکهای شور؛ بیوچار؛ بیوچار غنی شده | ||
مراجع | ||
Abolfazli, F., Forghani, A., & Norouzi, M. (2012). Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. Journal of Soil Science and Plant Nutrition, 12(2), 349-362. Adhami, A. Chafteh, M. Ronaghi, A. & Karimian, N. (2005). Investigating different forms of phosphorus in several selected lime soils of the province. Proceedings of the 9th Iranian Soil Science Congress. Agblevor, F. A., Beis, S., Kim, S. S., Tarrant, R., & Mante, N. O. (2010). Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Management, 30(2), 298-307. Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201(5), 368-378. Bell, L. C., & Black, C. A. (1970). Transformation of Dibasic Calcium Phosphate Dihydrate and Octacalcium Phosphate in Slightly Acid and Alkaline Soils 1. Soil Science Society of America Journal, 34(4), 583-587. Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428. Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014. Chapman, H. D. (1965). Cation-exchange capacity 1. Methods of Soil Analysis. Part 2. Chemical and microbiological properties, (methodsofsoilanb), 891-901. Chia, C. H., Singh, B. P., Joseph, S., Graber, E. R., & Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108, 26-34. Chimdi, A., Esala, M., & Ylivainio, K. (2014). Sequential fractionation patterns of soil phosphorus collected from different land use systems of Dire Inchine District, West Shawa Zone, Ethiopia. American-Eurasian Journal of Scientific Research, 9(3), 51-57. Cui, H. J., Wang, M. K., Fu, M. L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments, 11(7), 1135. Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of The Total Environment, 625, 320-335. Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., & Condron, L. M. (2014). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50(1), 169-178. Gerdelidani, A. F., & and Mirseyed Hosseini, H. M. (2018). Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils. Soil Research, 56(2), 136-144. Guo, F., Yost, R. S., Hue, N. V., Evensen, C. I., & Silva, J. A. (2000). Changes in phosphorus fractions in soils under intensive plant growth. Soil Science Society of America Journal, 64(5), 1681-1689. Halford. I. C. R. (1979). Evaluation of Soil Phosphate Buffering Indices, Australian Journal Soil Research. 17. 495-504 . Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P. & Plassard, C. (2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?. Plant and Soil, 348(1-2), 29. Hong, C., & Lu, S. (2018). Does biochar affect the availability and chemical fractionation of phosphate in soils?. Environmental Science and Pollution Research, 25(9), 8725-8734. Iyamuremye, F., Dick, R. P., & Baham, J. (1996). Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Science, 161(7), 426-435. Jalali, M., & Tabar, S. S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. Jun, W. A. N. G., Wen-Zhao, L. I. U., Han-Feng, M. U., & Ting-Hui, D. A. N. G. (2010). Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere, 20(3), 304-310. Khorasgani, M. N., Shariatmadari, H., & Atarodi, B. (2009). Interrelation of Inorganic Phosphorus Fractions and Sorghum‐Available Phosphorus in Calcareous Soils of Southern Khorasan. Communications in Soil Science and Plant Analysis, 40(15-16), 2460-2473. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990-1000. Klute, A. (1986). Methods of soil analysis, part 1 physical and mineralogical methods, Arnold Klute ed. Agronomy. 9, (part 1). Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95-103. Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., ... & Pan, G. (2015). Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2‐year field experiment. Journal of the Science of Food and Agriculture, 95(6), 1321-1327. Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 33-46). Routledge. Mahmoud, E., Ibrahim, M., Abd El-Rahman, L., & Khader, A. (2019). Effects of Biochar and Phosphorus Fertilizers on Phosphorus Fractions, Wheat Yield and Microbial Biomass Carbon in Vertic Torrifluvents. Communications in Soil Science and Plant Analysis, 50(3), 362-372. Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36. Nelson, D. W., & Sommers, L. (1982). Total carbon, organic carbon, and organic matter 1. Methods of Soil analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), 539-579. Nelson, R.E. )1982(. Carbonate and gypsum. In : Page A.L., Miller R.H. , Keeney D.R. (eds), Methods of Soil Analysis. American Society of Agronomy, Madis, WI, USA. pp. 181–197 Nugues, M. M., & Roberts, C. M. (2003). Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs, 22(4), 507-516. Opala, P. A., Okalebo, J. R., & Othieno, C. O. (2012). Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. ISRN Agronomy, 2012. Pierzynski, G. M., Logan, T. J., & Traina, S. J. (1990). Phosphorus chemistry and mineralogy in excessively fertilized soils: Solubility equilibria. Soil Science Society of America Journal, 54(6), 1589-1595. Qadir, M., Schubert, S., Ghafoor, A., & Murtaza, G. (2001). Amelioration strategies for sodic soils: a review. Land Degradation & Development, 12(4), 357-386. Samadi, A., & Gilkes, R. J. (1998). Forms of phosphorus in virgin and fertilised calcareous soils of Western Australia. Soil Research, 36(4), 585-602. Scherer, H., & Sharma, S. (2002). Phosphorus fractions and phosphorus delivery potential of a luvisol derived from loess amended with organic materials. Biology and Fertility of Soils, 35(6), 414-419. Shariatmadari, H., Shirvani, M., & Dehghan, R. A. (2007). Availability of organic and inorganic phosphorus fractions to wheat in toposequences of calcareous soils. Communications in Soil Science and Plant Analysis, 38(19-20), 2601-2617. Sharpley, A. N., Smith, S. J., & Bain, W. R. (1993). Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils. Soil Science Society of America Journal, 57(4), 1131-1137. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., ... & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant physiology, 156(3), 997-1005. Sohi, S., Loez-Capel, E., Krull, E., & Bol, R. (2009). Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report, 5(09), 1-57. Song, K., Winters, C., Xenopoulos, M. A., Marsalek, J., & Frost, P. C. (2017). Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry, 132(1-2), 203-212. Sui, Y., Thompson, M. L., & Shang, C. (1999). Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Science Society of America Journal, 63(5), 1174-1180. Uygur, V., & Karabatak, I. (2009). The effect of organic amendments on mineral phosphate fractions in calcareous soils. Journal of Plant Nutrition and Soil Science, 172(3), 336-345. Valzano, F. P., Greene, R. S. B., Murphy, B. W., Rengasamy, P., & Jarwal, S. D. (2001). Effects of gypsum and stubble retention on the chemical and physical properties of a sodic grey Vertosol in western Victoria. Soil Research, 39(6), 1333-1347. Wang, T., Camps-Arbestain, M., Hedley, M., & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357(1-2), 173-187. Wong, V. N., Dalal, R. C., & Greene, R. S. (2010). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Applied Soil Ecology, 41(1), 29-40. Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 568, 910-915. Yang, X., & Post, W. M. (2011). Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 8(10), 2907-2916. Zhang, T. Q., & MacKenzie, A. F. (1997). Changes of phosphorous fractions under continuous corn production in a temperate clay soil. Plant and Soil, 192(1), 133-139. | ||
آمار تعداد مشاهده مقاله: 808 تعداد دریافت فایل اصل مقاله: 410 |