تعداد نشریات | 208 |

تعداد شمارهها | 5,273 |

تعداد مقالات | 58,215 |

تعداد مشاهده مقاله | 95,544,210 |

تعداد دریافت فایل اصل مقاله | 76,714,662 |

## On the buckling analysis of functionally graded sandwich beams using a unified beam theory | ||

Journal of Computational Applied Mechanics | ||

دوره 51، شماره 2، اسفند 2020، صفحه 443-453 اصل مقاله (1017.13 K) | ||

نوع مقاله: Research Paper | ||

شناسه دیجیتال (DOI): 10.22059/jcamech.2020.310180.557 | ||

نویسندگان | ||

Atteshamuddin S. Sayyad ^{} ^{} ^{1}؛ Yuwaraj M. Ghugal^{2}
| ||

^{1}Department of Civil Engineering, Sanjivani College of Engineering, Savitribai Phule Pune University Pune, Kopargaon-423601, M.S., India | ||

^{2}Department of Applied Mechanics, Government College of Engineering, Karad-415124, Maharashtra, India | ||

چکیده | ||

In this paper, a unified beam theory is developed and applied to study the buckling response of two types of functionally graded sandwich beams. In the first type (Type A), the sandwich beam has a hardcore whereas in the second type (Type B), the sandwich beam has a softcore. In both the type of beams, face sheets are made up of functionally graded material. The material properties of face sheets are varied through the thickness according to the power-law distribution. A unified beam theory developed in the present study uses polynomial and non-polynomial type shape functions in-terms of thickness coordinate to account for the effect of shear deformation. The present theory is built upon classical beam theory and shows a realistic variation of transverse shear stresses through the thickness of the beam. The governing equations are deduced based on the principle of virtual work. Analytical solutions for simply supported sandwich beams subjected to axial force are presented. The critical buckling load factors of two types of FG sandwich beams are investigated. The numerical results are obtained for various power law coefficients and face-core-face thickness ratios. The validity of the present theory is proved by comparing the present results with various available solutions in the literature. | ||

کلیدواژهها | ||

A unified beam theory؛ Shear deformation؛ FG sandwich beam؛ Softcore and hardcore؛ Critical buckling load factors | ||

مراجع | ||

[1] A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020. [2] A. Barati, A. Hadi, M. Z. Nejad, R. Noroozi, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines, 2020. [3] K. Dehshahri, M. Z. Nejad, S. Ziaee, A. Niknejad, A. Hadi, Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates, Advances in nano research, Vol. 8, No. 2, pp. 115-134, 2020. [4] Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650054, 2016. [5] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018/12/01/, 2018. [6] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016/08/01/, 2016. [7] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016/09/01/, 2016. [8] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016. [9] M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014/12/01/, 2014. [10] R. Noroozi, A. Barati, A. Kazemi, S. Norouzi, A. Hadi, Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity, Advances in nano research, Vol. 8, No. 1, pp. 13-24, 2020. [11] J. Bernoulli, Curvatura laminae elasticae Acta Eruditorum Lipsiae, pp. 262–276, 1694. [12] S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibration of prismatic bars, The Philosophical Magazine Vol. 6, No. 46, pp. 744–746, 1921. [13] A. S. Sayyad, Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Composite Structures, Vol. 171, pp. 486-504, 2017. [14] A. S. Sayyad, Y. M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Composite Structures, Vol. 129, pp. 177-201, 2015. [15] D. K. Jha, T. Kant, R. K. Singh, A critical review of recent research on functionally graded plates, Composite Structures, Vol. 96, pp. 833-849, 2013/02/01/, 2013. [16] K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, E. Carrera, Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review, Composite Structures, Vol. 120, pp. 10-31, 2015/02/01/, 2015. [17] A. S. Sayyad, Y. M. Ghugal, Modeling and analysis of functionally graded sandwich beams: a review, Mechanics of Advanced Materials and Structures, Vol. 26, No. 21, pp. 1776-1795, 2019/11/02, 2019. [18] A. Atmane Hassen, A. Tounsi, N. Ziane, I. Mechab, Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section, Steel and Composite Structures, Vol. 11, No. 6, pp. 489-504, 2011/25, 2011. En [19] M. Bourada, A. Kaci, M. S. A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams, Steel and Composite Structures Vol. 18, No. 2, pp. 409-423, 2015. [20] S. M. Ghumare, A. S. Sayyad, A New Fifth-Order Shear and Normal Deformation Theory for Static Bending and Elastic Buckling of P-FGM Beams, Latin American Journal of Solids and Structures, Vol. 14, pp. 1893-1911, 2017. [21] L. C. Trinh, T. P. Vo, H.-T. Thai, T.-K. Nguyen, An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads, Composites Part B: Engineering, Vol. 100, pp. 152-163, 2016/09/01/, 2016. [22] V. Kahya, M. Turan, Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory, Composites Part B: Engineering, Vol. 109, pp. 108-115, 2017/01/15/, 2017. [23] M. Zidi, M. S. A. Houari, A. Tounsi, A. Bessaim, S. R. Mahmoud, A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams, Structural Engineering and Mechanics Vol. 64, No. 2, pp. 145-153, 2017. [24] A. Karamanli, Analytical Solutions for Buckling Behavior of Two Directional Functionally Graded Beams Using a Third Order Shear Deformable Beam Theory, Academic Platform Journal of Engineering and Science,, Vol. 6, No. 2, pp. 164-178, 2018. [25] A. S. Sayyad, Y. M. Ghugal, Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams, Asian Journal of Civil Engineering, Vol. 19, No. 5, pp. 607-623, 2018/07/01, 2018. [26] A. S. Sayyad, Y. M. Ghugal, Bending, buckling and free vibration responses of hyperbolic shear deformable FGM beams, Mechanics of Advanced Composite Structures, Vol. 5, No. 1, pp. 13-24, 2018. [27] A. S. Sayyad, Y. M. Ghugal, An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation, Advances of Aircraft and Spacecraft Sciences Vol. 5, No. 6, pp. 671-689, 2018. [28] A. Kaci, M. S. A. Houari, A. A. Bousahla, A. Tounsi, S. R. Mahmoud, Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory, Structural Engineering and Mechanics Vol. 65, No. 5, pp. 621-631, 2018. [29] B. Fahsi, R. B. Bouiadjra, A. Mahmoudi, S. Benyoucef, A. Tounsi, Assessing the Effects of Porosity on the Bending, Buckling, and Vibrations of Functionally Graded Beams Resting on an Elastic Foundation by Using a New Refined Quasi-3D Theory, Mechanics of Composite Materials, Vol. 55, No. 2, pp. 219-230, 2019/05/01, 2019. [30] R. K. Bhangale, N. Ganesan, Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core, Journal of Sound and Vibration, Vol. 295, No. 1, pp. 294-316, 2006/08/08/, 2006. [31] A. M. Zenkour, M. N. M. Allam, M. Sobhy, Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations, Acta Mechanica, Vol. 212, No. 3, pp. 233-252, 2010/07/01, 2010. [32] T. P. Vo, H.-T. Thai, T.-K. Nguyen, A. Maheri, J. Lee, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Engineering Structures, Vol. 64, pp. 12-22, 2014/04/01/, 2014. [33] T. P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, J. Lee, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Composite Structures, Vol. 119, pp. 1-12, 2015/01/01/, 2015. [34] T.-K. Nguyen, T. Truong-Phong Nguyen, T. P. Vo, H.-T. Thai, Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory, Composites Part B: Engineering, Vol. 76, pp. 273-285, 2015/07/01/, 2015. [35] T.-K. Nguyen, T. P. Vo, B.-D. Nguyen, J. Lee, An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory, Composite Structures, Vol. 156, pp. 238-252, 2016/11/15/, 2016. [36] D. Lanc, T. P. Vo, G. Turkalj, J. Lee, Buckling analysis of thin-walled functionally graded sandwich box beams, Thin-Walled Structures, Vol. 86, pp. 148-156, 2015/01/01/, 2015. [37] R. Bennai, H. A. Atmane, A. Tounsi, A new higher-order shear and normal deformation theory for functionally graded sandwich beams, Steel and Composite Structures Vol. 19, No. 3, pp. 521-546, 2015. [38] P. Tossapanon, N. Wattanasakulpong, Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation, Composite Structures, Vol. 142, pp. 215-225, 2016/05/10/, 2016. [39] A. I. Osofero, T. P. Vo, T.-K. Nguyen, J. Lee, Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories, Journal of Sandwich Structures & Materials, Vol. 18, No. 1, pp. 3-29, 2016/01/01, 2015. [40] V. Kahya, M. Turan, Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element, Composites Part B: Engineering, Vol. 146, pp. 198-212, 2018/08/01/, 2018. [41] A. Karamanlı, Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3D shear deformation theory, Composite Structures, Vol. 174, pp. 70-86, 2017/08/15/, 2017. [42] W. Li, H. Ma, W. Gao, A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams, Composite Structures, Vol. 221, pp. 110830, 2019/08/01/, 2019. [43] A. S. Sayyad, Y. M. Ghugal, A nth-order shear deformation theory for composite laminates in cylindrical bending, Curved and Layered Structures, Vol. 2, pp. 290-300, 2015/05/14, 2015. English [44] B. M. Shinde, A. S. Sayyad, A. B. Kawade, Thermal analysis of isotropic plates using hyperbolic shear deformation theory, Applied and Computational Mechanics Vol. 7, No. 2, pp. 193-204, 2013. [45] A. S. Sayyad, P. V. Avhad, On Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams, Journal of Solid Mechanics, Vol. 11, No. 1, pp. 166-180, 2019. [46] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering (Journal of Solid Mechanics in Engineering), Vol. 3, No. 2, pp. 47-56, 2011. [47] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014. [48] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013/02/01/, 2013. [49] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016/08/01, 2016. [50] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013/08/01/, 2013. [51] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013. [52] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Shehni nezhad pour, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014/02/01/, 2014. [53] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019/09/01/, 2019. [54] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014/01/01/, 2014. [55] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012. [56] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013. [57] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014. [58] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, Vol. 69, No. 2, pp. 131-143, 2019. [59] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020/10/15, 2020. [60] S. R. Asemi, A. Farajpour, H. R. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014/09/01/, 2014. [61] H. R. Asemi, S. R. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015/04/01/, 2015. [62] S. R. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014/09/01/, 2014. [63] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1515-1540, 2014. [64] A. Farajpour, M. Mohammadi, A. R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011/08/01/, 2011. [65] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011/12/01/, 2011. [66] A. Farajpour, A. R. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012/04/01/, 2012. [67] A. Farajpour, M. R. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016/07/01, 2016. [68] A. Farajpour, M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016/04/15/, 2016. [69] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014/04/01/, 2014. [70] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016. [71] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017/03/15/, 2017. [72] B. M, M. M, Farajpour A, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics Vol. 8, No. 4, pp. 1650048, 2016. [73] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012/01/01/, 2012. [74] N. GHAYOUR, A. SEDAGHAT, M. MOHAMMADI, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, Journal of Aerospace Science and Technology (JAST), Vol. 8, No. 1, pp. 57-67, 2011. [75] H. Moosavi, M. Mohammadi, A. Farajpour, S. H. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011/10/01/, 2011. [76] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of Surface Energy on the Vibration Analysis of Rotating Nanobeam, Journal of Solid Mechanics, Vol. 7, pp. 299-311, 2015. [77] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation., Journal of Solid Mechanics, Vol. 6, No. 1, pp. 98-121, 2014. [78] J. N. Reddy, A Simple Higher-Order Theory for Laminated Composite Plates, Journal of Applied Mechanics, Vol. 51, No. 4, pp. 745-752, 1984. [79] M. Levy, Memoire sur la theorie des plaques elastique planes, Journal de Mathematiques Pures et Appliquees, Vol. 30, pp. 219-306, 1877. [80] K. P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica, Vol. 94, No. 3, pp. 195-220, 1992/09/01, 1992. [81] M. Karama, K. S. Afaq, S. Mistou, A new theory for laminated composite plates, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 223, No. 2, pp. 53-62, 2009.
| ||

آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 202 |