
تعداد نشریات | 162 |
تعداد شمارهها | 6,622 |
تعداد مقالات | 71,533 |
تعداد مشاهده مقاله | 126,862,023 |
تعداد دریافت فایل اصل مقاله | 99,904,869 |
استهلاک انرژی جریان در سازه ریزشی گردابی با ورودی مماسی | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 11، بهمن 1399، صفحه 2877-2888 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.297334.668498 | ||
نویسندگان | ||
امین حاجی احمدی1؛ مهناز قائینی حصاروئیه* 2؛ محمد جواد خانجانی1 | ||
1بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهیدباهنر کرمان | ||
چکیده | ||
سازهی ریزشی گردابی بهمنظور انتقال جریان از رقوم بالاتر به رقوم پایینتر بهکار میرود. استهلاک انرژی جریان از وظایف عمدهی این سازهها میباشد. در تحقیق حاضر مدل فیزیکی سازه ریزشی گردابی فاضلاب شرق تهران (ایران) مورد بررسی قرار گرفت و میزان تاثیر پارامترهای عدد فرود جریان ورودی، شیب کف سازه ورودی و نسبت عمق چاهک به قطر شفت قائم در میزان استهلاک انرژی جریان بررسی گردید. این مطالعه با عدد فرود جریان ورودی برابر 79/1، 01/2، 18/2 و 31/2 و شیب کف سازه ورودی 251/0، 4/0 و 571/0 و نسبت عمق چاهک به قطر شفت قائم برابر 0، 1 و 2 انجام شد. بههمین منظور 36 حالت آزمایش طراحی گردید. برای افزایش دقت و آنالیز نتایج، هر آزمایش 3 بار تکرار شد. در نتیجه تعداد کل آزمایشها، 108 آزمایش میباشد. نتایج نشان داد با تغییر پارامترها، انرژی جریان بین 7/93 تا 5/98 درصد مستهلک میگردد. با افزایش عدد فرود جریان ورودی و نسبت عمق چاهک به قطر شفت قائم میزان استهلاک انرژی بهترتیب 2/2 و 3 درصد کاهش مییابد. همچنین با افزایش شیب کف سازه ورودی میزان استهلاک انرژی جریان 4/2 درصد افزایش مییابد. با بررسی اثر متقابل استهلاک انرژی جریان و عدد فرود جریان خروجی، نسبت عمق چاهک به قطر شفت قائم مناسب بین 3/0 تا 2/1 پیشنهاد گردید. علاوهبراین با استفاده از تحلیل واریانس رابطهای غیر خطی برای تخمین میزان استهلاک انرژی جریان ارائه گردید. | ||
کلیدواژهها | ||
سازه ریزشی؛ جریان گردابی؛ استهلاک انرژی جریان؛ آنالیز واریانس | ||
مراجع | ||
Crispino, G., Pfister, M. & Gisonni, C., (2019). Hydraulic design aspects for supercritical flow in vortex drop shafts, Urban Water Journal, 16(3): 225-234. https://doi.org/10.1080/1573062X.2019.1648531 Drioli, C. (1947). Su un particolare tipo di imbocco per pozzi di scarico (scaricatore idraulico a vortice). L’Energia Elettrica 24 (10): 447–452. (In Italian) Fernandes, J., Jónatas, R., (2019). Experimental flow characterization in a spiral vortex drop shaft. Water Science and Technology, 80 (2): 274-281. https://doi.org/10.2166/wst.2019.274 Granata, F. (2016). Dropshaft cascades in urban drainage systems. . Water Science and Technology, 73 (9): 2052–2059. https://doi.org/10.2166/wst.2016.051 Hager, W. H. (1985). Head-discharge relation for vortex shaft. Journal of Hydraulic Engineering, 111 (6), 1015–1020. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(1015) Hager, W.H., Kellenberger, M.H. (1987). Die Dimensionierung des Wirbelfallschachtes (The design of the vortex drop). gwf - Wasser/Abwasser 128(11): 585–590. (in German) Hager, W. H. (1990). Vortex drop inlet for supercritical approach flow. Journal of Hydraulic Engineering. 116 (8): 1048-1054. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(1048) Hager, W. H. (2010). Wastewater hydraulics: Theory and practice. New York: Springer. https://www.springer.com/gp/book/9783642113826 Jain, S. C. (1984). Tangential vortex-inlet. Journal of Hydraulic Engineering, 110 (12): 1693-1699. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1693). Jain, S. C., and J. F. Kennedy. (1983). Vortex-flow dropstructures for the Milwaukee Metropolitan Sewerage District inline storage system. IIHR Rep. No. 264. Iowa City, IA: Univ. of Iowa. Liu, Z.-P., X.-L. Guo, Q.-F. Xia, H. Fu, T. Wang, and X.-L. Dong. (2018). Experimental and numerical investigation of flow in a newly developed vortex drop shaft spillway. Journal of Hydraulic Engineering, 144 (5): 04018014. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001444 Mahmoudi-Rad, M., Khanjani, M. J., (2019). Energy Dissipation of Flow in the Vortex Structure: Experimental Investigation. Journal of Pipeline Systems Engineering and Practice, 10(4): 040190271- 0401902716. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000398 Ministry of energy, (2016). Principles and Criteria for designing Wastewater Networks and storm-sewer, Standard Department of National Water & Wastewater Engineering Company(NWW), Journal 116, Iran. (in Farsi) https://seso.moe.gov.ir Montgomery, D. C. (2013). Design and Analysis of Experiments. Hoboken, New Jersey: John Wiley & Sons, Inc. https://doi.org/10.1002/ep.11743 Mulligan, S., Casserly, J., & Sherlock, R. (2016). Effects of geometry on strong free-surface vortices in subcritical approach flows. Journal of Hydraulic Engineering, 142(11), 04016051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001194 Pfister, M., Crispino, G., Fuchsmann, T., Ribi, J., M., and Gisonni, C., (2018). Multiple Inflow Branches at Supercritical-Type Vortex Drop Shaft, Journal of Hydraulic Engineering, 144(11): 050180081- 050180089. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001530 Rajaratnam, N., Mainali, A., Hsung, C.Y. (1997). Observations on flow in vertical dropshafts in urban drainage systems. J. Envir. Eng. 123(5), 486–491. Rhee, D. S., Park, Y. S., & Park, I. (2018). Effects of the bottom slope and guiding wall length on the performance of a vortex drop inlet. Water Science and Technology, 78(6): 1287–1295. https://doi.org/10.2166/wst.2018.397 Vischer, D. L., and W. H. Hager. (1995). Vortex drops. Chap. 9 in Energy dissipators: Hydraulic structures design manual, 167–181. Rotterdam, Netherlands: A.A. Balkema. Yu, D., and J. H. W. Lee. (2009). Hydraulics of tangential vortex intake for urban drainage. Journal of Hydraulic Engineering. 135 (3): 164–174. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(164) Zhao, C. H., S. K. Sun, and Z. P. Liu. (2001). Optimal study on the depth of stilling well for rotation-flow shaft flood-releasing tunnel. Water Power, 2001(5): 30–33. (In Chinese) Zhao, C.-H., D. Z. Zhu, S.-K. Sun, and Z.-P. Liu. (2006). Experimental study of flow in a vortex drop shaft.” Journal of Hydraulic Engineering, 132 (1): 61–68. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(61) | ||
آمار تعداد مشاهده مقاله: 551 تعداد دریافت فایل اصل مقاله: 401 |