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Abstract 
In this paper, an inverse framework based on Bayes’ theorem is suggested for integrating well logs and 
seismic data into the reservoir lithofacies modeling process. The proposed method is based on the 
combination of the Sequential Indicator Simulation (SIS), and a stochastic optimization method (i.e. the 
Probability Perturbation Method (PPM)). SIS is used to calculate the conditional probability of presence 
or absence of lithofacies indicators in each grid-block, and PPM is applied to update (perturb) the 
conditional probability used in SIS. A notable innovation presented in this study is using the Genetic 
algorithm’ crossover operator to increase the PPM exploitation capability. To demonstrate the efficiency 
of our proposed approach, the results of its application on a 3D test model is compared with outcomes 
of two commonly-used constraining approaches on SIS technique. Qualitative and quantitative analysis 
of the obtained results on 3D test model reveals a (23.8)% and (16.98)% (on average) improvement in 
consistency of the lithofacies models generated using the proposed approach with the reference 
lithofacies model over the employed Vertical Probability Trend and the Seismic Probability Trend 
constraining approaches on SIS, respectively. Besides, the obtained results show that implementing the 
crossover operator leads to a 4.56% improvement in matching of the constructed lithofacies models with 
the reference model.  
 
Keywords: Lithofacies modeling, Seismic data, Probability Perturbation Method, Sequential Indicator 
Simulation, Bayes’ theorem 
  
Introduction 
 
Understanding reservoir behavior in the past and present, and forecast its future performance is 
an essential part of hydrocarbon reservoir management. This can be achieved through static 
modeling and dynamic simulation of the reservoir (Koneshloo et al., 2017).  3D static modeling 
of hydrocarbon reservoirs includes a description of the spatial distribution of its geological and 
petrophysical properties, such as geological lithofacies, porosity, permeability, and fluids 
saturation (Grana et al., 2012; Zhang & Zhang, 2017; Tewari & Dwivedi, 2019). The 
simultaneous integration of available datasets (geological, seismic, and engineering data) for 
the estimation of reservoir properties often requires solving an inverse problem. This requires 
the unknown parameters (spatial distribution of reservoir properties) to be considered as 
random variables (Caers & Hoffman, 2006; Adelu et al., 2019). Considering the limitations of 
different datasets, it is difficult to determine the unknown parameters uniquely (Abdelmaksoud 
et al., 2019). Consequently, the uncertainty in the process of reservoir modeling is inevitable 
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(Hoffman, 2005; El khadragy et al., 2017; Tang et al., 2019). One of the conventional methods 
for handling this uncertainty is to build several equiprobable realizations using geostatistical 
simulation approaches (Strebelle, 2002; Doyen, 2007; Kim et al., 2018). Although these 
methods are often fast for generating several models, the results are only compatible with the 
pre-existing measured points. Also, these data points are often insufficient for generating 
realistic reservoir models (Emami Niri, Lumley, 2017; Elzain et al., 2020). For building close-
to-real reservoir models, different datasets must be combined optimally and logically in the 
modeling process (Ravalec-Dupin et al., 2011; Emami Niri, Lumley, 2015). Seismic data due 
to its extensive areal coverage can be useful not only in identifying the geometry and framework 
of geological structures but also in estimating reservoir properties at unsampled locations 
(Doyen, 2007; Mondol, 2010; Emami Niri, 2018). Many probabilistic and deterministic 
approaches have been employed to integrate seismic data in the process of estimating the 
reservoir lithofacies and petrophysical properties (Bosch et al., 2010; Emami Niri, Lumley, 
2016; Abdel-Fattah et al., 2020). These approaches can be divided into three major categories: 
i) establishing deterministic relationships between seismic attributes (e.g. P-wave velocity and 
acoustic impedance) and the reservoir properties (lithofacies or porosity) at well locations and 
employing these relationships in estimating reservoir properties at unsampled locations 
(Angeleri & Carpi, 2006); ii) using seismic data as a secondary or guiding data in a geostatistical 
estimation/simulation technique (Emami Niri & Lumley, 2013), and iii) the seismic matching 
loop approach which was initially introduced by Bornard et al. (2005).  
To date, several researches have been performed on integrating well and seismic data in the 
reservoir geological and petrophysical properties modeling process. For example, Grana et al. 
(2010) proposed an approach aimed at integrating seismic amplitude data in modeling 
lithofacies and petrophysical properties (e.g., porosity and net-to-grass). They used Probability 
Perturbation Method (PPM) as a stochastic optimization algorithm to perturb lithofacies models 
to reach a better consistency with available seismic data.  Ravalec-Dupin et al. (2011) used the 
Gradual Deformation Method (GDM) to update a set of reservoir lithofacies models to achieve 
a better match with P-wave acoustic impedance data. They implemented Particle Swarm 
Optimization (PSO) to find the optimal value of the GDM deformation parameter. Emami Niri 
and Lumley (2015) used an approach which can be classified as a seismic matching loop 
approach. They first generated a set of geomodels coherent with litho-log and P-wave 
impedance data. Then, they updated these geomodels to reach a better consistency with both P- 
and S-wave impedance data simultaneously. The optimization algorithm used to minimize the 
defined objective function was a multi-objective optimization algorithm (i.e. NSGA2). 

 In this research, an approach is proposed to integrate well-logs and seismic data into 
reservoir lithofacies modeling process. This approach is a combination of the Sequential 
Indicator Simulation (SIS) (Journel & Gomez-Hernandez, 1993) and PPM (Caers & Hoffman, 
2006) within the Bayes’ Theorem framework (Besag & Green, 1993). SIS determines a discrete 
probability distribution function by calculating the conditional probabilities of the lithofacies 
indicators’ presence. By sampling this distribution function, a lithofacies indicator is assigned 
to each grid block (Hoffman & Caers, 2003). The conditional probabilities are calculated 
relative to all available datasets. The calculation of this conditional probability relative to well-
log data depends on the distance between the unsampled locations and the well locations, the 
spatial correlation range (variogram range), and the prior distribution function (Grana et al., 
2011). Updating these conditional probabilities of lithofacies indicators’ presence in each grid 
block relative to seismic data is performed based on PPM. The combination of conditional 
probabilities relative to two datasets leads to the determination of a new probability distribution 
function. Sampling the new derived probability distribution function results in generating a 
reservoir lithofacies model consistent with well-logs and seismic data (Grana & Della Rosa, 
2010; Grana et al., 2012). The number of unsampled points in a reservoir model framework can 
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be very high. As a result, it is very time-consuming to calculate the conditional probabilities of 
the lithofacies indicators occurrence relative to the seismic data for each grid block. PPM can 
solve this issue by perturbing the conditional probabilities, and changing only one parameter 
(Ravalec-Dupin et al., 2011). As a result, it is deemed as very efficient and practical approach. 
In fact, PPM by updating the presence probability of lithofacies indicator in every grid block 
modifies the reservoir model to be more consistent with seismic data while maintaining its 
consistency with well data (Caers & Hoffman, 2006). A general workflow of the proposed 
approach is shown in Figure 1. 

The approach introduced in this research can be considered as an optimization algorithm that 
aims at finding the optimal reservoir lithofacies model consistent with well-logs and seismic 
data. A robust optimization algorithm must be able to explore the search space to find the global 
best solution. To achieve this goal, the algorithm must make good use of Exploration and 
Exploitation capabilities (Blum & Roli, 2003; Kar, 2016; Abdel-Basset et al., 2018). An 
algorithm’s Exploration (diversification) capability is its ability to detect new areas in the search 
space to get out of local optima. This capability is created by inserting random operators in the 
algorithm (Binitha & Sathya, 2012). For example, in the genetic optimization algorithm, the 
mutation operator is responsible for the implementation of this feature (Agarwal & Srivastava, 
2018). An algorithm’s Exploitation (intensification) capability is its ability to use best found 
solutions to create better ones. The purpose of using this feature is to pay more attention to 
better solutions and hope to improve them to achieve the best global answer (Khajehzadeh et 
al., 2011; Abdel-Basset et al., 2018). The crossover operator combines best obtained solutions 
with current solutions to enhance genetic algorithm’s Exploitation capability (Garg, 2016; 
Agarwal & Srivastava, 2018). One of the most important features of a robust optimization 
algorithm is to create the right balance between these two capabilities. Otherwise, the 
algorithm's ability to converge to the global best solution will be reduced (Crawford et al., 
2017). If the Exploration capability overcomes the Exploitation, the searching methodology 
will be a random search, which results in divergence. On the other hand, if the Exploitation 
capability overcomes the Exploration, the algorithm will be trapped in a limited area of the 
search space and will find the local optimum of that specific area (Khormouji et al., 2014).  

In this research, SIS technique is used to generate different lithofacies models by changing 
the random seed. Selection of random seeds is performed in an entirely random manner. As a 
result, SIS with generating various lithofacies models (solutions) aims at enhancing the 
proposed algorithm’s exploration capability.  

Figure 1. A schematic view for an application of the proposed approach on a synthetic case study. The 
yellow box illustrates the steps of generating a reference model and corresponding datasets, and 
the purple box shows the steps of a seismic matching loop based on PPM  
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Once a better lithofacies model is generated, it will be used as an initial starting model in the 
next iteration step. In other words, this substitution aims at intensifying the exploitation 
capability of the proposed algorithm. Investigations have shown that the exploitation ability of 
PPM in generating lithofacies models coherent with seismic data is not acceptable. One way to 
improve this ability is to use the crossover operator from the genetic algorithm. The key 
innovation of this research is to combine crossover operator with PPM to enhance the 
Exploitation capability of the algorithm.  

Theory 

Bayes’ theorem  

Integrating well and seismic data into the reservoir lithofacies modeling process could be 
addressed in a stochastic framework in which the desired properties are considered as random 
variables. The Bayes’ theorem provides a suitable framework for solving such problems by 
sampling from a posterior distribution function. By considering two different datasets (݀ଵ and 
݀ଶ), the posterior distribution (݂ሺ݉|݀ଵ, ݀ଶሻ) can be achieved from equation (1) (Besag & Green, 
1993): 

(1)  ݂ሺ݉|݀ଵ, ݀ଶሻ ൌ
݂ሺ݀ଵ, ݀ଶ|݉ሻ݂ሺ݉ሻ

݂ሺ݀ଵ, ݀ଶሻ
	~
݂ሺ݀ଵ|݉ሻ݂ሺ݀ଶ|݉ሻ

݂ሺ݀ଵ, ݀ଶሻ
݂ሺ݉ሻ 

 ݀ଵ (well-based data) could only be measured at limited number of points. The relationship 
between ݀ଵ and model parameter (݉) is linear or pseudo-linear. ݀ଶ (seismic data) has a 
nonlinear relationship with	݉. ݂ሺ݉ሻ (prior distribution) characterizes the dependency of 
parameters and hence constrains the obtained solutions. ݂ሺ݀|݉ሻ (likelihood density function) 
considers the relationship between the observed data and each generated model. This term takes 
into account the generated model and measurement error. In the absence of any error, the 
relationship between ݉ and  ݀ଶ can be expressed through the forward model (݃):  

(2)  ݀ଶ ൌ ݃ሺ݉ሻ 
    Determination of ݂ሺ݀ଵ, ݀ଶሻ depends on the prior distribution and the forward model. The 
Bayesian inverse methods aim at sampling from the posterior distribution function. Traditional 
sampling methods like Markov Chain Monte Carlo (MCMC) method in sampling from the 
posterior distribution are applicable but very time-consuming. To overcome this problem, the 
practical PPM approach can be used. This method is based on two principles: 
    Using fast non-iterative sequential simulation for sampling from the posterior distribution 
function. 
    Using the pre-posterior terms instead of the likelihoods. 

Sampling the prior 

Regardless of the parameters’ nature (continuous or discrete), the presence or absence of a 
specific event (a specific lithofacies indicator) in each grid block can be expressed through 
equation (3): 

ሻݖሺܫ  (3) ൌ ቄ1 ݖ	ݐܽ		ݏ݁ݎݑܿܿ݋		"ݐ݊݁ݒ݁"	݄݁ݐ	݂݅		
0	 ݁ݏ݅ݓݎ݄݁ݐ݋							

 

    The unknown model parameters are obtained by specifying the indicator (ܫ) in each grid 
block. Fast and non-iterative sequential simulation can be used for sampling from the prior 
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distribution after visiting all unsampled locations in an entirely random path. Sequential 
simulation is defined based on the following prior distribution decomposition (Caers & 
Hoffman, 2006): 

݂ሺ݉ሻ ൌ ଵሻݖሺܫሼܾ݋ݎ݌ ൌ 1ሽ ∗ ଶሻݖሺܫሼܾ݋ݎ݌ ൌ 1|݅ሺݖଵሻሽ ∗ …
∗ ேሻݖሺܫሼܾ݋ݎ݌ ൌ 1|݅ሺݖଵሻ, … , ݅ሺݖேିଵሻሽ 

(4)

   Several models can be generated by sampling from the prior distribution function by 
changing the random seed. The random seed produces a random path in which the grid blocks 
are visited. The prior distribution also can be expressed as statistical information (such as mean 
or covariance). 

Sampling the posterior 

As formulated in equation (1), conditioning the prior distribution to ݀ଵ and ݀ଶ determines the 
posterior distribution function. The posterior distribution function unlike the prior one matches 
with both datasets. The sequential simulation can sample from this posterior distribution 
function according to the following equations (Caers & Hoffman, 2006): 

(5)  

݂ሺ݉|݀ଵ, ݀ଶሻ ൌ ଵሻݖሺܫሼܾ݋ݎ݌ ൌ 1|ሼ݅ሺݖఈሻ, ߙ ൌ 1,… , ݊ሽ, ݀ଶሽ ∗ 
ଶሻݖሺܫሼܾ݋ݎ݌	 ൌ 1|݅ሺݖଵሻ, ሼ݅ሺݖఈሻ, ߙ ൌ 1,… , ݊ሽ, ݀ଶሽ 
	∗ … ∗ ఈሻݖሺܫሼܾ݋ݎ݌ ൌ 1|݅ሺݖଵሻ, … , ݅ሺݖேିଵሻ, 
	ሼ݅ሺݖఈሻ	, ߙ ൌ 1,… , ݊ሽ, ݀ଶሽ		

(6)݀ଵ ൌ ሼ݅ሺݖఈሻ	, ߙ ൌ 1,… , ݊ሽ 

(7)݀ଶ ൌ ݃ሺ݉ሻ ൌ ݃ሺܫሺݖଵሻ, ,ଶሻݖሺܫ … ,  ேሻሻݖሺܫ

    Sampling from ݂ሺ݉|݀ଵ, ݀ଶሻ is equivalent to the sampling from the following univariate 
conditional probability set (Hoffman & Caers, 2003): 

௜ሻݖሺܫሼܾ݋ݎ݌  (8) ൌ 1|݅ሺݖଵሻ, … , ݅ሺݖ௜ିଵሻ, ሼ݅ሺݖఈሻ	, ߙ ൌ 1,… , ݊ሽ, ݀ଶሽ
ൌ ,௝ܤ௝หܣሺܾ݋ݎ݌ 		൯ܥ

௝ܣ  (9) ൌ ሼܫሺݖ௜ሻ ൌ 1ሽ		
௝ܤ(10) ൌ ሼ݅ሺݖଵሻ, … , ݅ሺݖ௜ିଵሻ, ሼ݅ሺݖఈሻ	, ߙ ൌ 1,… , ݊ሽ, ݀ଶሽ 
ܥ(11) ൌ ݀ଶ 

    Since it is complicated process to determine ܾ݋ݎ݌ሺܣ௝หܤ௝,  ൯ explicitly, it is decomposed intoܥ
two pre-posterior terms of ܾ݋ݎ݌ሺܣ௝หܤ௝൯ and ܾ݋ݎ݌ሺܣ௝|ܥሻ, by using the “tau model” (Journel, 
2002): 

(12)  
,௝ܤ௝หܣ൫ܾ݋ݎ݌ ൯ܥ ൌ

1
1 ൅ ݔ

ݔ  (13)
ܽ
ൌ ൬

ܾ
ܽ
൰
ఛభ

∗ 	ቀ
ܿ
ܽ
ቁ
ఛమ

(14)  
ܾ ൌ

1 െ ௝൯ܤ௝หܣ൫ܾ݋ݎ݌

௝൯ܤ௝หܣ൫ܾ݋ݎ݌
(15)  

ܿ ൌ
1 െ ൯ܥ௝หܣ൫ܾ݋ݎ݌

൯ܥ௝หܣ൫ܾ݋ݎ݌
(16)  

ܽ ൌ
1 െ ௝ሻܣሺܾ݋ݎ݌
௝ሻܣሺܾ݋ݎ݌

	τଵ and τଶ	 are datasets weights. With a known ܾ݋ݎ݌ሺܣ௝ሻ, the problem of determining the 
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,௝ܤ௝หܣሺܾ݋ݎ݌  .ሻܥ|௝ܣሺܾ݋ݎ݌ ௝൯ andܤ௝หܣሺܾ݋ݎ݌ ൯ can be split into determining ofܥ

Probability Perturbation Method 

The pre-posterior distribution function ܾ݋ݎ݌ሺܣ௝หܤ௝൯ expresses the conditional probability of 
the occurrence of ܣ௝ relative to previously simulated grid blocks and ݀ଵ. The conditional 
probability of occurrence ܣ௝ event in ݅′th grid block is calculated from equation (17) (Grana et 
al., 2012): 

ܲ൫ܣ௝หܤ௝൯ ൌ ܲሺܣ௝ሻ ൅ ෍ ,௜ݖሺ݅൫	௜ߣ ௝൯ܣ െ ܲሺܣ௝ሻሻ

ேିଵ

௜ୀଵ

 (17) 

Where the prior probability of occurrence ܣ௝ , the I-value (0 or 1) at the location ݖ௜  and the 
kriging weights are denoted by ܲሺܣ௝ሻ, ݅൫ݖ௜,  ௝൯ valueܤ௝หܣሺܾ݋ݎ݌ ௝൯ and λ୧, respectively. Givenܣ
in each grid block and considering a random seed (ݏݎ), it is possible to generate an initial 

starting realization ܫ஻
ሺ௥௦ሻ ൌ ሼ݅஻

ሺ௥௦ሻሺݖଵሻ, ݅஻
ሺ௥௦ሻሺݖଶሻ, … , ݅஻

ሺ௥௦ሻሺݖேሻሽ using the sequential simulation.
The subscript ܤ shows that this realization is only consistent with ݀ଵ and has not yet been 
matched with ݀ଶ. To construct a model that is compatible with both data sources, each grid 
block needs to be sequentially sampled from the ܾ݋ݎ݌ሺܣ௝หܤ௝, ,௝ܤ௝หܣሺܾ݋ݎ݌ ൯. However, theܥ  ൯ܥ
is unknown, since ܾ݋ݎ݌ሺܣ௝|ܥሻ is not calculated yet. To match the initial realization with ݀ଶ, 
the PPM performs a stochastic search to find ܾ݋ݎ݌ሺܣ௝|ܥሻ. It is very time-consuming to calculate 
 ሻ for each grid block directly because the number of grid blocks can be too high. Forܥ|௝ܣሺܾ݋ݎ݌
tackling this issue, PPM can obtain ܾ݋ݎ݌ሺܣ௝|ܥሻ, only by modifying one parameter (ݎ௖) 
(Hoffman & Caers, 2003): 

൯ܥ௝หܣ൫ܾ݋ݎ݌ ൌ ௜ሻݖሺܫሺܾ݋ݎ݌ ൌ ሻܥ|1 ൌ ሺ1 െ ௖ሻݎ ∗ ஻ܫ
ሺ௥௦ሻሺݖ௜ሻ ൅ ௖ݎ ∗ ௝ሻ (18)ܣሺܾ݋ݎ݌

    The ݎ௖ is the PPM deformation parameter varying in the range of [0,1]. ܾ݋ݎ݌ሺܣ௝|ܥሻ can be 

determined for a specific value of ݎ௖ and a given initial model I୆
ሺ୰ୱሻ. Using equation (18) makes 

it possible to reduce an N-parameter problem into a problem with one parameter (ݎ௖). ݎ௖ is not 
associated with the spatial location of grid blocks. Finding the optimal value of the deformation 
parameter ݎ௖ leads to the development of the optimal pre-posterior probability distribution 
,௝ܤ௝หܣሺܾ݋ݎ݌ ሻ and, consequently, the optimalܥ|௝ܣሺܾ݋ݎ݌  ൯. Finally, a model with a properܥ
consistency with both data sources can be obtained via sampling from ܾ݋ݎ݌ሺܣ௝หܤ௝,  ൯. Forܥ
further information, refer to the Caers and Hoffman (2006). 

Petro-elastic model 

The petro-elastic model usually consists of a series of empirical or theoretical relations that 
links the geological and petrophysical parameters such as lithofacies, porosity, and fluid 
saturation to the seismic/elastic properties like P- and S-wave velocities and impedances 
(Churanova, 2018). For each grid block, the rock contains a solid matrix and pores filled by 
reservoir fluids. It is then replaced by a hypothetical continuous medium with average elastic 
properties (Mavko et al., 1998). The petro-elastic model applied in this research, estimates the 
dry rock bulk (ܭௗ௥௬) and shear (ܩௗ௥௬) moduli for each lithofacies indicator by the following 
equations introduced by Nur et al., (1998): 
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ௗ௥௬ܭ ൌ ௠ܭ ൬1 െ
߮
߮௖
൰ (19)

ௗ௥௬ܩ ൌ ௠ܩ ൬1 െ
߮
߮௖
൰ (20)

    Where the bulk and shear moduli of the rock minerals are denoted by ܭ௠ and ܩ௠, 
respectively. φୡ is the critical porosity. Many factors such as mineral composition, diagenesis, 
pore shape, and burial history can affect the elastic properties of a dry rock (Ravalec-Dupin et 
al., 2011). In this research, to calculate the saturated rock bulk (ܭ௦௔௧) and shear (ܩ௦௔௧) moduli, 
it is assumed that the Gassmann equations (Eq.21, 22) (Gassmann, 1951) is suitable for 
reservoir condition. 

௦௔௧ܭ (21) 		ൌ ௗ௥௬ܭ ൅
൬1 െ

ௗ௥௬ܭ
௠ܭ

൰
ଶ

߮
௙ܭ
	൅

1 െ ߮
௠ܭ

൅
ௗ௥௬ܭ
௠ଶܭ

 

௦௔௧ܩ (22) ൌ  ௗ௥௬ܩ
    The bulk modulus of fluid (ܭ௙) can be estimated from wood’s formula (wood, 1941):  

1
௙ܭ

ൌ 	෍ ௜ܵ

௜ܭ
ൌ
ܵ௢
௢ܭ

൅ ௚ܵ

௚ܭ
൅
ܵ௪
௪ܭ

ଷ

௜ୀଵ

 (23) 

 ௙ depends on the pore pressure and fluid’ saturations, so it needs to be defined at initialܭ				
reservoir condition. Subscripts ݋, ݃, and ݓ respectively represent oil, gas, and water. In the 
petro-elastic model designed in this research, it is assumed that a two-phase fluid (water and 
oil) fills the pore spaces. Gassmann's equations are reliable as long as the pore distribution is 
isotropic and the rock matrix is homogeneous (Ravalec-Dupin et al., 2011). The density of the 
saturated rock is defined as a linear combination of matrix and fluid density as follows: 

ߩ (24) ൌ ሺ1 െ ߮ሻߩ௠ ൅ ߮൫ݏ௢ߩ௢ ൅ ௪ߩ௪ݏ ൅  ௚൯ߩ௚ݏ
    Finally, the velocity and acoustic impedance of P- and S-waves propagating in the reservoir 
are obtained from the following well-known relationships: 

(25) 
௣ܸ ൌ

ඨ݇௦௔௧ ൅
4
௦௔௧ܩ3
ߩ

(26) 
௦ܸ ൌ ඨ

௦௔௧ܩ
ߩ

௣ܫ (27) ൌ 	ߩ	 ௣ܸ
௦ܫ (28) ൌ 	ߩ	 ௦ܸ 

    It should be noted that the petro-elastic model used in this research is a deterministic model 
formulated in terms of equations. However, this model can also be generalized to a probabilistic 
model expressed in terms of probability density functions (e.g., Mavko & Mukerji, 1998). 

Methodology  

In this research, an approach based on geostatistical techniques within the Bayes’ theorem 
framework is introduced. The prior distribution function is considered as lithofacies proportions 
reported at borehole locations. The conditional probability of the presence of ݆'th lithofacies 
indicator relative to well-log data (ܤ) and P-wave acoustic impedance data (ܥ) are denoted by 
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 ሻ, respectively. The detailed description of the proposed approachܥ|௝ܣሺܾ݋ݎ݌ ௝൯ andܤ௝หܣሺܾ݋ݎ݌
is shown in Figure 2.  
    The crossover operator combines the current lithofacies model with the lowest objective 
function value hopefully to generate a lithofacies model with a lower objective function value. 
The lowest objective function value is associated with the lithofacies model which has the best 
match to both well logs and seismic data. The crossover operator used in this research is the 
uniform crossover. 
    The objective function is defined in a least-square form (Eq.29). This function measures the 
sum of the differences between observed and simulated P-wave acoustic impedances in each 
grid block. 

ሻݔሺܬ(29) ൌ 	෍
൫݌ܫ௜

௦௜௠ሺݔሻ െ ௜݌ܫ
௢௕௦൯

ଶ

൫ߪூ௣
௢௕௦൯

ଶ

ே

௜

    Where ݔ is the unknown reservoir property (lithofacies indicator), ܰ is the total number of 
grid blocks. ݌ܫ௦௜௠ and ݌ܫ௢௕௦ are simulated and observed P-wave acoustic impedances. The 
observed P-wave acoustic impedance variance is denoted by σ୍୮

୭ୠୱ. 

Test model 

In this section, an application of the proposed approach to generate optimum reservoir 
lithofacies model is presented on a 3D test model. The generated reference lithofacies model 
consists of 55% (clean) sand and 45% shaly sand (Figure 3). This 3D model contains 17*17*10 
grid blocks (2890 total) with 15*15*6 m3 dimensions. The distributions of sand and shaly sand 
are obtained based on SIS technique using spherical variogram parameters with the range of 
130m horizontally and 6m vertically for both lithofacies types. The constructed reservoir 
lithofacies model (Figure 3) is considered as the true reservoir lithofacies model for this test 
example. Afterwards, five pseudo-wells are placed at random positions within the reservoir 
framework. Synthetic litho-logs are produced by extracting lithofacies types from grid blocks 
which are intersected by wells. 

Figure 2. A Flow chart illustrating the steps of the proposed approach in generating/perturbing the 
reservoir lithofacies models consistent with B (litho-logs) and C (P-wave impedance) datasets. The blue 
box shows the main steps of the matching process performed by PPM and using a crossover operator. 
The purple box shows how PPM perturbs the conditional probabilities used in SIS 
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Figure 3. The reference (true) reservoir lithofacies model and locations of the pseudo-wells 

    The porosity and fluid saturation modeling process are performed concerning each lithofacies 
type. For each lithofacies type, a specific interval of porosity and fluid saturation is considered. 
The porosity values for sand and shaly sand are obtained from a Gaussian distribution with a 
mean of 0.18 and 0.04 and a standard deviation of 0.03 and 0.01, respectively. These 
distribution functions assign a range of (0.09-0.27) porosity values to sand (reservoir section) 
and a range of (0.01-0.07) to the shaly sand (non-reservoir section). The presence of shale 
particles between the sand grains reduces the storage capacity. Accordingly, the porosity values 
assigned to shaly sand are obviously less than sand. The water saturation values for sand and 
shaly sand are obtained from a uniform distribution with a range of [0.2-0.3] and [0.5-0.6], 
respectively. In non-reservoir sections (shaly sand) where shale is present between sand grains, 
the throats’ radius reduces. As a result, capillary pressure increases and oil cannot enter these 
tiny pores. So, the assigned values of water saturation for shaly sand lithofacies are higher than 
the reservoir sandy parts. To take this into account, higher values of water saturation are 
assigned to shaly sands. The assigned porosity and water saturation values are assumed to be 
true measurements obtained from a perfect well-logging operation. The generated porosity and 
water saturation models for our synthetic case are shown in figures 4 and 5, respectively. 
    To produce P-wave impedance model (Figure 6), the petro-elastic model based on explained 
relationships in section 2.5 is applied on the reference reservoir lithofacies model. The 
generated P-wave acoustic impedance model (figure 6) is assumed to be the true impedance 
volumes which are resulted from a noise-free inversion of baseline seismic data.  

Figure 4. The reference porosity model which is generated by assigning an average porosity value to 
each lithofacies type 
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Figure5. The reference water saturation model built by assigning a known interval of water saturation 
values to each lithofacies type 

Figure 6. The reference (true) P-wave impedance model which is generated by applying a petro-elastic 
model on the  reference reservoir model 

    In this study, none of the upscaling methods have been used because the well and seismic 
data are on the same scale. In real cases, upscaling is necessary since the data are on different 
scales; however, the synthetic case has been built in a way that the well and seismic data are 
on the same scale.  The elastic properties of lithology types used in petro-elastic modeling are 
reported in Table 1.  

Discussion 

In this research, our proposed approach that aims at generating consistent reservoir lithofacies 
with well-log and P-wave impedance data is applied to a 3D test model. The purpose of using 
synthetic model is to verify and validate the proposed algorithm's capability in reference 
model’s regeneration. Since our test model is a synthetic case, the reference model is known, 
as it is first generated and the other dataset (such as P-impedance) are produced based on this 
reference model. Next, this reference model has been put aside and the produced dataset is used 
to construct lithofacies models according to our proposed methodology. The final produced 
lithofacies models are compared with reference model to prove the efficiency of approach. 
Clearly, this kind of validation can only be performed on synthetic cases. To do so, the 
lithofacies indicators are assumed to be unknown in all grid blocks except those where the wells 
are located. In addition to the available data sources, information such as the variogram model, 
the porosity and fluids saturation average values, the elastic properties of lithology types, is 
accessible. With the reference lithofacies model in hand, the mismatch parameter can be used 
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to evaluate the accuracy of the constructed lithofacies models. The mismatch parameter is the 
average number of grid blocks in the constructed lithofacies model whose facies indicator is 
different from the corresponding grid blocks in the reference model. The lower the constructed 
models’ mismatch values, the more similarity between the models and reference model, which 
means there is more consistency with the available datasets. After applying the proposed 
method to this specified problem, we found out that the mismatch values for 100 generated 
lithofacies models were in the range of (14.18)% to (17.09)%. One of the lithofacies models 
generated by the proposed approach is shown in Figure 7. 
    The most effective parameter on the final result is the weights considered for data sources in 
the equation (13). τଵ and τଶ	are the weights intended for litho-logs and P-wave acoustic 
impedance, respectively. When a reference lithofacies model is in hand, the mismatch 
parameter can be a powerful tool for quantifying the algorithm’s performance. Figure (8) shows 
τଵ and τଶ values’ impact on the mismatch values.  

Table1. Elastic properties of lithology types used in petro-elastic modeling 

Lithology types 

2.6 0.4 38 22 (Clean) sand 
2.7 0.5 30 15.5 Shaly sand 

Figure 7. One of the reservoir lithofacies models generated by the proposed approach 

Figure 8. Impact of ߬ ଵ	and ߬ ଶ values on mismatch of the generated lithofacies models for 15 independent 
algorithm runs. (a) 	߬ଵ ൌ 1 ,  ߬ଶ ൌ ሼ1, 2, 3, 4ሽ, (b)	߬ଵ ൌ 2, ߬ଶ ൌ ሼ1, 2, 3, 4ሽ (c)	߬ଵ ൌ 3, ߬ଶ ൌ ሼ1, 2, 3, 4ሽ, 
and (d)	߬ଵ ൌ 4,  ߬ଶ ൌ ሼ1, 2, 3, 4ሽ.  
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  Figure 8 shows the mismatch values of the generated lithofacies models versus different 
values of τଵ and τଶ. The obtained results illustrate that considering 

தభ
தమ
ൌ 2	 ratio results in

generating models associated with lower mismatch values in comparison with other ratios. 
    To show the effect of crossover operator on the obtained results, the problem is also solved 
by the proposed method without using the crossover operator. The results revealed that the 
mismatch values for generated lithofacies models is in the range of (18.58) % to (21.81) %. It 
means implementing of the crossover operator in the lithofacies modeling process results in a 
(4.565) % improvement (on average) in mismatch values of generated lithofacies models. 
    To highlight the capability of the proposed approach, two conventional geostatistical 
approaches were also applied to incorporate litho-logs and P-wave acoustic impedance in the 
lithofacies modeling process. These two approaches are constraining methods applied on SIS. In 
these methods, along with variogram parameters that are estimated from the litho-logs, extra 
constraints are defined based on the litho-logs and seismic data. These extra constraints improve 
the calculation accuracy of conditional probabilities used in SIS. The first constraining method, 
The Vertical Probability Trend, measures the lithofacies proportions (blue curve in Figure 9) from 
litho-log data in every layer of the reservoir. These lithofacies proportions are considered as a 
supplementary constraint to populate the lithofacies indicators in the whole reservoir framework. 
    The second constraining method, The Seismic Probability Trend method, simultaneously 
incorporate well-log and seismic data measured at borehole locations to determine a cross-plot 
of lithofacies indicators vs. seismic attribute values (P-wave impedance, in this study). Then 
the generated lithofacies realizations can be constrained by the produced P-wave impedance 
litho-probability curve (Figure 10). 

Figure 9. The probability distribution function generated by measuring the lithofacies proportions (blue 
curve) from litho-log data in each layer of the reservoir 

Figure 10. The probability distribution function generated by determining a cross-plot of lithofacies 
indicators vs. P-wave impedance of lithofacies indicators at borehole locations 
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    One hundreds lithofacies models were generated by applying each of the mentioned 
constraining methods on SIS technique. The mismatch values for models generated by applying 
the Vertical Probability Trend and the Seismic Probability Trend were in the range of (35.82 - 
43.05) % and (29.91 - 35.31) %, respectively. An example of these generated lithofacies models 
are shown in Figures 11 and 12.  
    The obtained results illustrate an adequate visual match between the reference lithofacies 
model and the generated lithofacies models via our proposed approach. Table 2 reports the 
quantitative information on the mismatch values for generated lithofacies models by the 
mentioned approaches.  

Figure 11. One of the reservoir lithofacies models generated by applying the constraining method of 
Vertical Probability Trend on SIS

Figure 12. One of the reservoir lithofacies models generated by applying the constraining method of 
Seismic Probability Trend  on SIS  

Table2. The mismatch values of the generated lithofacies models compared to the reference model 

Proposed 
approach 

Proposed 
approach without 

using the 
crossover 
operator  

Applying the 
Seismic 

Probability 
Trend on SIS 

Applying the 
Vertical 

Probability 
Trend on SIS 

[14.18-17.09] 
(15.63)

[18.58-21.81] 
(20.195) 

[29.91-35.31] 
(32.61) 

[35.82-43.05] 
(39.43) 

Mismatch values 
(%)  for generated 
models compared 
to reference model 

(average) 
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    Table 2 shows that using the proposed method was associated with an (23.8) % and (16.98) 
% improvement on mismatch values compared to the Vertical Probability Trend and Seismic 
Probability Trend constraining methods, respectively. This significant improvement indicates 
the superiority of the proposed method compared to the traditional geostatistical methods. 

Conclusion 

We introduced a new approach to integrate well and seismic data into the reservoir lithofacies 
modeling process. This approach is a combination of the sequential indicator simulation and 
the probability perturbation method within the Bayes’ theorem framework. Implementation of 
the crossover operator enhanced the exploitation capability of the proposed approach. A 3D 
reservoir lithofacies model estimation problem is presented to validate the capability of the 
proposed approach. Qualitative and quantitative analysis of the obtained results demonstrate 
considerable improvement in matching the reservoir lithofacies models generated via our 
proposed approach with the reference lithofacies model, compared to the conventional 
geostatistical simulation techniques. In addition, the results revealed that including a crossover 
operator in the proposed algorithm gives a better matching of the generated reservoir lithofacies 
models with the reference model. 
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