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A B S T R A C T 

  

   

 Thermal processing of the key lime juice leads to the inactivation of pectin methylesterase (PME) and the 

degradation of ascorbic acid (AA). These changes affect directly the cloud stability and color of the juice. In this 

study, an artificial neural network (ANN) model was applied for designing and developing an intelligent system 

for prediction of the thermal processing effects on the physicochemical properties of key lime juice during 

conventional and infrared (IR) heating. The inputs of this network were time and temperature and the outputs were 

changes in PME activity, AA content, browning index (BI) and also cloud stability of the juice. The feed-forward 

neural network with a logarithmic transfer function, Levenberg–Marquardt training algorithm and eight neurons in 

the hidden layer (topology 2-8-4) was chosen as the best ANN model (R2> 0.95, RMSE=0.47 and SE=0.28). The 

predicted values using the optimal ANN model vs. experimental values represented a correlation coefficient higher 

than 0.95 and 0.90 during IR and conventional thermal processing, respectively. This model can therefore be 

applied in prediction of the effects of thermal processing on the physicochemical properties of the lime juice in 

pilot plants, processing factories and online monitoring.  
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1. Introduction 

Key lime is a fruit of citrus species; its juice is used as a food 

flavoring and also an acidifying agent (Ziena, 2000). Thermal 

treatment below 100  is adequate to increase the safety and shelf 

life of key lime juice (pH < 2.2) by controlling the microbial and 

enzymatic activity (Chen et al., 1993). In high acid food products 

(pH < 4.6), pectin methylesterase (PME) has been introduced as the 

heat treatment index because of its higher thermal resistance than 

target microorganisms (Chen & Wu, 1998; Polydera, Galanou et 

al., 2004; Snir et al., 1996; Versteeg et al., 1980). PME also 

influences the cloud stability, appearance and total acceptance of 

the juice by de-esterifying the methoxylated pectin (Kimball, 

1999). Thermal processing of the juice by hot water, a conventional 

thermal treatment method, needs long heating times that leads to 

loss of nutrients such as ascorbic acid (AA). Non-enzymatic 

browning occurs as a result of AA degradation which causes off-

taste and off-color of the juice (Burdurlu et al., 2006). Therefore, 

emerging food processing technologies such as infrared irradiation 

(IR) are introduced to reduce and/or eliminate the unwanted effects 

of conventional thermal treatments. IR treatment, as a radiation 

method, has advantages over the conventional thermal treatments 

such as direct heat penetration, high energy efficiency, faster and 

uniform heating, equipment compactness, lower degradation of 

nutritional components and physical properties (Aghajanzadeh et 

al., 2016; Rastogi, 2012).  

Artificial neural networks (ANNs) as optimization algorithms, 

can mathematically model the learning processes. It doesn’t require 

previous information about the relationships between process 

parameters (Sablani et al., 2002; Sablani & Rahman, 2003). The 

model, a simple approximation of complex process, is used in 

estimation, prediction and control of different food processing. 

ANN has been used in the study of thermal degradation of ascorbic 

acid in green asparagus (Zheng et al., 2011), prediction of juice 

Journal of Food and Bioprocess Engineering 

 
Journal homepage: https://jfabe.ut.ac.ir 

 

JFBE 3(2): 95-100, 2020 

  

http://www.sciencedirect.com/science/article/pii/S0960308515001200
https://jfabe.ut.ac.ir/
https://jfabe.ut.ac.ir/article_77582.html


Aghajanzadeh et al.                                                                                                                                                                                   JFBE 3(2): 95-100, 2020 

 

96 
 

viscosity as a function of concentration and temperature (Rai et al., 

2005), the thermal conductivity of different foods (Sablani et al., 

2002; Sablani & Rahman, 2003), lycopene extraction from tomato 

pulps (Dolatabadi et al., 2016), prediction of the quantity of 

lycopene and  -carotene content in food samples (Camara et al., 

2009), dough rheological properties (Ruan et al., 1995), freeze 

drying behavior of strawberries (Menlik et al., 2009) and 

temperature variation of potato during solar drying (Tripathy & 

Kumar, 2009). Unlike the physicochemical experiments, ANN 

models are simple, fast with high accuracy. They have no 

destructive effects on the food products and also require less 

manpower and cost during online monitoring of process in labs and 

factories. 

The objective of this study was to develop artificial neural 

network models for the prediction of PME activity, AA content, BI 

changes and cloud stability of key lime juice as a function of time 

and temperature during thermal processing using IR and 

conventional heating by hot water. 

2. Material and Methods 

2.1. Sample preparation 

Fresh key lime (Citrus aurantiifolia) was obtained from a local 

market in Gorgan, Iran. It was stored at 4  until used. The washed 

lime was then squeezed using a domestic juice extractor. The 

obtained juice was filtered (mesh size: 170) to remove large size 

particles and immediately heated. 

2.2. Thermal processing of lime 

2.2.1. Conventional thermal processing 

Prepared lime juice (30 ml) was transferred into a clean 100 ml 

beaker and heated in a water bath (WNB-22, Memmert, Germany, 

1800 W) at 60, 70, 80 and 90  for 15, 10, 5, 2.5 min, respectively. 

Initial time was set as the juice reached to the desired temperature 

(end of come up time). Temperature variation of the juice was 

recorded using a data logger (TC-08, Pichotechnology Co, UK) 

equipped with a 1 mm diameter copper–constant thermocouple (T-

type). The heated juice was finally cooled to 25  using an ice-

water bath (Aghajanzadeh et al., 2016). 

2.2.2. Infrared heating system 

A developed infrared heating system consisted of a radiant wall 

heating chamber with infrared modules (1500 W) was used. The 

outer diameter of infrared modules was 10 mm. The distance 

between the surface of the juice and infrared source was 8.5 cm 

(Aghajanzadeh et al., 2016). The temperature of the juice (±1 ) 

was controlled by connecting the temperature controller to the IR 

lamp. The juice was mixed every 15 s to ensure uniform heating. 

Other thermal processing conditions (sample volume, container, 

temperature and time) were similar to the conventional heating 

process. 

2.3. Physicochemical analyses 

2.3.1. Measurement of PME activity 

Based on the Kimball method (1999), 5 ml of lime juice was 

mixed with 20 ml of 1% pectin-salt solution (10 g pectin and 15.3 g 

NaCl diluted in 1 L distilled water) at 30 . Two different 

normalities of NaOH (0.05 and 2 N) were used to adjust the pH of 

the solution equal to 7.7. Finally, 0.1 ml of NaOH (0.05 N) was 

added and the time taken to regain pH to 7.7 was recorded to 

calculate the enzyme activity unit (PEU) using Eq. 1 (Kimball, 

1999): 

    (       )  
   

    
                                                               ( ) 

where N, V, V΄ and t are normality of the NaOH (0.05 N), the 

last added volume of the NaOH (0.1 ml), juice volume (5 ml) and 

the recorded time (min), respectively. 

2.3.2. Ascorbic acid measurement 

20 ml of the juice was diluted in distilled water (150 ml). The 

solution was titrated using idiom solution (5 g potassium iodide 

(KI), 0.268 g potassium iodate (KIO3) and 30 mL of 3 M sulfuric 

acid (H2SO4)) and was diluted with distilled water until 500 mL in 

presence of 1% starch solution as an indicator. The consumed 

volume of idiom solution, until observing a fixed dark - blue color, 

was recorded to calculate the AA content using Eq. 2 (Kashyap & 

Gautam, 2012): 

                              
                                            ( )  

2.3.3. Browning index 

The image processing method was used to study the BI 

changes. 15 ml of processed juice was filled in a plate (with 1 cm 

height and 6 cm diameter) and its surface image was taken by a 

scanner (Scanjet G2710, HP, USA) which was completely shielded 

by a black cover. The taken images were saved as JPEG format 

with 600 dpi resolution (RGB color). According to Eqs. 3 and 4, 

the browning index (BI) was calculated based on the analyzed L*, 

a* and b* parameters using Image J software (version 1.42e, 

Wayne Rasband, National Institutes of Health, USA) (Lee & 

Coates, 1999): 

  
            

                                                                           ( ) 

 

   
     (      )

    
                                                                      ( ) 

2.3.4. Cloud value measurement 

Based on Versteeg et al. (1980) method, 5 ml of lime juice was 

centrifuged (3000 rpm, 10 min, 25 ). The cloud stability of the 

juice was determined by reading the absorbance of the supernatant 

at 660 nm (T-80, UV/VIS Double Beam Spectrophotometer, PG 

Instrument, USA). The absorbance of distilled water was 

considered as a blank. 
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Table1. List of the used networks, transfer functions and back propagation training algorithms in ANN training. 

No. Network Transfer function Training algorithms 

1 Feed-forward back propagation network 

(newff) 

Hyperbolic tangent sigmoid transfer 

function (tansig) 

Levenberg-Marquardt back 

propagation (lm) 

2 Cascade-forward back propagation 

network (newcf) 

Log-sigmoid transfer function (logsig) Scaled conjugate gradient back 

propagation (scg) 

3 - Linear transfer function (purelin) Gradient descent back propagation 

(gd) 

4 - - Resilient back propagation; Rprop 

(Rp) 

 

2.4. Designing and selecting the optimal artificial neural 

network model 

The optimal ANN was determined using the Neural Network 

tool of MATLAB software (R2013 a). Based on the dependent and 

independent factors of the process, the used ANN contains two 

inputs and four outputs. The inputs of the network were 

temperature and time of heating treatment while the outputs were 

included PME activity, AA content, BI and cloud stability of the 

juice. To achieve an optimal ANN, feed-forward and backward 

networks were considered with different numbers of neurons in the 

hidden layers, transfer functions and the training algorithms (Table 

1). The selection of the optimal neural network was done based on 

the correlation coefficient (R2), Standard Error (SE) and Root Mean 

Square Error (RMSE) (Bahmani et al., 2015). 

The raw data inputs reduce the processing speed and also the 

accuracy of the network. Data normalization is known as a 

fundamental data preprocessing step for learning from data before 

starting the ANN model (Nayak et al., 2014). Without performing 

this step, minimizing bias within the neural network to guarantee 

the quality of the data could not be achieved. In this study, the Eq. 

5 was used for normalizing the data; so, the inputs and outputs 

would be standardized and ranged between 0 and 1. 

    
         

           
                                                                    ( ) 

where VN and VR represent the normalized and raw data, 

respectively. Vmax and Vmin are the maximum and minimum of raw 

data. 

Finding the optimal network architecture is a big deal in the 

best ANN model developing. So, lots of trial, error and replications 

were used to reduce the errors in prediction the PME activity, AA 

content, BI changes and cloud stability of key lime juice during 

conventional and IR heating. Several network configurations with a 

combination of various model parameters (number of neurons in 

the hidden layer, transfer functions and feed-back training 

algorithm) were examined to achieve this goal (Table 1). 

In this study, different networks including feed-forward 

backpropagation network (newff) and cascade-forward back 

propagation network (newcf) were used. Applied transfer functions 

were hyperbolic tangent sigmoid transfer function (tansig), log-

sigmoid transfer function (logsig) and linear transfer function 

(purelin). Levenberg-Marquardt backpropagation (lm), scaled 

conjugate gradient backpropagation (scg), gradient descent 

backpropagation (gd) and resilient backpropagation; Rprop (Rp) 

was served as the training algorithm. 

3. Results and Discussion 

3.1. Changes in physicochemical properties of key lime 

juice 

Key lime juice is a good source of antioxidants and vitamins 

that are thermal sensitive chemical compounds. The changes in 

chemicals will influence the physical properties of the juice. In this 

study, it was found that thermal treatment caused changes in the 

nutritional value, stability and color properties of the juice. During 

IR heating, come up time decreased due to quick rising in initial 

temperature of the juice to the target temperature in comparison to 

the conventional heating process. This resulted in less AA 

degradation, less development in browning reactions and lower 

color variation in the IR processed juice. The more PME 

inactivation was observed during thermal processing at higher 

temperature causing as increase in the juice cloud stability during 

using both thermal treatment. 

 
Table 2. Results of error measurements in ANN model considering 

hyperbolic tangent sigmoid transfer function, resilient back propagation and 
four neurons for different network types. 

Treatment Network type RMSE SE R2 

IR heating 
newff 0.03 0.30 0.90 

newcf 0.16 0.51 0.77 

Conventional heating 
newff 0.33 0.33 0.92 
newcf 0.74 0.51 0.87 

3.2. ANN modelling 

3.2.1. Type of the ANN network 

At first, selecting the type of network was based on the design 

of models with two common feed-forward and cascade-forward 

back networks with a resilient training algorithm, four neurons in 

the hidden layer and tangent sigmoid transfer function. The 

performance of this network was then evaluated based on the 

statistical calculated values (Table 2). Based on these obtained 

indices, the feed-forward network had the lowest errors and the 

highest correlation coefficients. It was selected as a preferable and 

optimized network in comparison to the cascade-forward back 

network. 

 



Aghajanzadeh et al.                                                                                                                                                                                   JFBE 3(2): 95-100, 2020 

 

98 
 

3.2.2. The best transfer function in the ANN model 

In the next step, the selected feed-forward network with four 

hidden layers, resilient learning algorithm and different transfer 

functions was tested to determine the optimal transfer function 

(Table 3). By considering the various statistical indices which are 

presented in Table 3, the ANN with log-sigmoid transfer function 

exhibited the highest satisfaction in the prediction of the 

experimental values. 

 
Table 3. Results of error measurements in feed-forward back propagation 
ANN model considering four neurons and resilient back propagation for 

different transfer functions. 

Treatment Transfer functions RMSE SE R2 

IR heating 

tansig 0.52 0.31 0.96 

logsig 0.38 0.23 0.97 

purelin 2.15 0.58 0.91 

Conventional heating 

tansig 0.67 0.18 0.93 

logsig 0.54 0.12 0.96 
purelin 0.98 0.49 0.90 

 

 
Table 4. Results of measures of error in feed-forward back propagation 

ANN model considering log-sigmoid transfer function and resilient back 
propagation for different number of neurons. 

Treatment Number of neurons RMSE SE R2 

IR heating 

2 0.61 0.45 0.84 

4 0.38 0.32 0.89 
6 0.44 0.21 0.95 

8 0.04 0.13 0.98 

10 1.38 0.56 0.93 

Conventional 

heating 

2 0.32 0.65 0.87 

4 0.25 0.52 0.89 

6 0.48 0.35 0.91 
8 0.12 0.38 0.98 

10 0.68 0.81 0.89 

 

 
Table 5. Results of error measurements in feed-forward back propagation 
ANN model considering eight neurons and log-sigmoid transfer function for 

different training algorithms. 

Treatment Training algorithms RMSE SE R2 

IR heating 

 
 

 

trainlm 0.43 0.24 0.96 

trainscg 0.82 0.32 0.93 
traingd 0.94 0.71 0.88 

traingd 1.26 0.79 0.91 

Conventional 

heating 

 

 

Trainlm 0.47 0.28 0.95 

Trainscg 0.93 0.82 0.91 

traingd 0.68 0.58 0.92 

traingd 0.52 0.41 0.93 

 

3.2.3. The number of neurons in the hidden layer of the 

ANN model 

To optimize the network and select the optimal number of 

neurons in the hidden layer of an optimum network, the feed-

forward network with a hyperbolic tangent sigmoid transfer 

function, resilient training algorithm with different neurons in the 

hidden layer was created and degree of the defined performance 

indices was calculated for each topology. As shown in Table 4, the 

ANN with eight neurons in the hidden layer was recommended as 

the optimal network. So as shown in Fig. 1, based on the inputs 

(time and temperature of hot water and IR heating process) and 

outputs (PME activity, AA, BI and cloud stability of the juice), the 

chosen topology of the optimal ANN was 2-8-4 (two neurons in the 

input layer-eight neurons in the hidden layer- four neurons in the 

output layer). 

 

 
Fig 1. Topology of the optimal artificial neural networks. 

3.2.4. The training algorithm 

According to the aim of this study, the ANN with the highest 

accuracy and the most optimal results was ascertainable by 

selecting the best algorithm with an investigation of the different 

training ones. Thus, all of the selected optimal parameters (feed-

forward network, logarithmic transfer function and six neurons in 

the hidden layer), different training algorithms, statistical analysis 

by comparing the RMSE, SE and R2 were performed; based on the 

obtained results, the Levenberg-Marquardt training algorithm was 

finally selected as the algorithm to create a network with the lowest 

errors (Table 5). 

3.2.5. Optimum ANN structure and accuracy 

A feed-forward neural network with a logarithmic transfer 

function, Levenberg–Marquardt training algorithm and eight 

neurons in the hidden layer with the correlation coefficients 0.96 

and 0.95 was therefore selected for IR heating and hot water 

thermal processing of the juice, respectively. Also, RMSE and SE 

of these networks were 0.43 and 0.24 using IR thermal processing 

and 0.47 and 0.28 during conventional heating in hot water. These 

statistical indices showed the best-predicted results and the lowest 

obtained errors. The high accuracy of this model was also approved 

by the high correlation coefficients (Table 6) which represented the 

predicted values using the optimal ANN vs. experimental values in 

terms of four output changes. For the overall evaluation of the 

model, the data were divided into 70% for training and 30% for 

validation. Without considering the inputs, the values of training (> 

0.96), validation (> 0.91) and RMSE (< 0.52) were estimated as 

shown in Table 6. 

Weight and bias matrices were determined for both thermal 

processing methods in the selected optimal ANN. Table 7 presents 

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/nnet/help.jar%21/tribas.html
jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/nnet/help.jar%21/tribas.html
jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/nnet/help.jar%21/tribas.html
jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/nnet/help.jar%21/tribas.html
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the weight values for connecting the input layer to the hidden layer 

and also linking the hidden layer to the output one. In addition, the 

bias values of the hidden and output layers for IR and hot water 

thermal treatment are shown in Table 8. 

4. Conclusion 

PME activity is considered as the index of thermal processing 

of high acid juices. During thermal processing, the loss in vitamins 

such as ascorbic acid and undesirable changes in physicochemical 

properties are undeniable. Experimental studies are sometimes 

time-consuming, high cost, complicated and have destructive 

effects on the sample. In this study, a neural network-based model 

was developed for the prediction of changes in PME activity, AA 

content, BI and also cloud stability of the key lime juice during 

thermal processing by hot water and IR heating. The feed-forward 

neural network with a logarithmic transfer function, Levenberg–

Marquardt training algorithm and eight neurons in the hidden layer 

was chosen (R2> 0.95) as the best structure. The chosen topology of 

the optimal ANN was 2-8-4 that could predict the thermal effects of 

the heating on some physicochemical properties of the juice with 

RMSE and SE less than 0.47 and 0.28, respectively. 
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Table 6. Correlation coefficients of the predicted outputs changes in contrast to the experimental values and overall evaluation of the model for the optimal 
topology (2-8-4). 

 

 

 

 

 

Table 7. Weight values for connecting the input layer to the hidden layer and hidden layer to the output layer in optimum network. 

  INPUT TO HIDDEN  HIDDEN TO OUTPUT 

IR heating  Water bath  IR heating  Conventional heating 

INP 1 INP 2  INP 1 INP 2  OUT 1 OUT 2 OUT 3 OUT 4  OUT 1 OUT 2 OUT 3 OUT 4 

HID 1 -2.22 9.02  -2.55 4.95  -1.07 -1.31 -0.28 0.25  -1.07 -3.75 0.90 -0.30 

HID 2 6.56 2.81  -7.52 -2.82  -2.02 -1.45 -0.14 2.18  -2.02 -0.92 1.69 2.75 

HID 3 4.56 6.53  -6.30 -7.28  2.83 -0.01 2.58 2.31  2.83 2.11 -3.31 -4.14 

HID 4 2.04 4.66  -6.07 -4.05  1.01 -0.69 2.05 1.58  1.01 1.61 1.41 -0.19 

HID 5 -0.02 -8.32  -2.73 6.93  -0.63 -0.17 1.20 0.54  -0.63 -2.00 0.49 0.45 

HID 6 -3.04 -0.24  -6.64 5.34  -0.62 4.05 -1.18 -3.00  -0.62 0.57 0.42 0.42 

HID 7 -0.08 -7.32  5.35 1.54  -1.70 -0.50 -2.44 1.86  -1.70 -1.63 1.19 1.61 

HID 8 4.69 -7.27  -7.89 -0.23  1.86 0.25 2.60 -0.41  1.86 1.61 -1.58 -1.52 

 

Table 8. Bias values for hidden and output layer in optimum network. 

  HID 1 HID 2 HID 3 HID 4 HID 5 HID 6 HID 7 HID 8 OUT 1 OUT 2 OUT 3 OUT 4 

IR heating 5.78 -5.65 -3.07 0.69 0.98 -3.32 6.30 7.31 1.35 0.18 -1.77 -2.50 

Water bath 9.86 6.05 3.94 5.44 1.09 -2.30 1.74 -7.80 0.58 1.55 -1.82 0.37 

 

 Parameters IR heating Conventional heating 

Output correlation evaluation 

Pectin methylesterase 0.97 0.95 

Ascorbic acid 0.98 0.92 

Browning index 0.97 0.90 

Cloud value 0.95 0.90 

Model overall evaluation 

Training 0.97 0.96 

Validation 0.93 0.91 

RMSE 0.52 0.25 
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