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1. Introduction 

Natural convection problem in an enclosure has been a very 

important subject in the active research. This is due to its relevance 

to several technological applications, including industrial furnaces 

and boilers, cooling of electronic equipments, thermal energy 

storage, heat exchangers, processes involving high temperature 

and many others. The radiation phenomenon in participating 
media can strongly interfere with such problem in many cases of 

the aforementioned applications. Therefore, several researchers 

showed interest in studying the interaction of natural convection 

and volumetric radiation in an enclosure containing a participating 

medium. In order to solve the latter problem, various numerical 

methods have been commonly employed in the recent years, such 
as the conventional computation fluid dynamics methods (finite 

difference (FD), finite volume (FV) and finite elements (FE) 
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methods), the lattice Boltzmann method (LBM) and the 

combination of both.  

 Among these numerical methods, the LBM has recently 

attracted a great attention from numerous investigators in the 

recent years and has been considered as one of the best alternative 
to CFD techniques. It has also achieved an appreciable success in 

the hybrid schemes (meaning, coupled of CFD and LB methods). 

Contrary to the conventional CFD methods, which are based on 

the discretization of macroscopic continuum equations, the LBM 

uses the microscopic model and mesoscopic kinetic equations. 

The LBM presents many advantages, including the easy 
implementation of the boundary conditions, a fully parallel 

algorithm, the ease of the discretization process and the gain in 

computation time [1, 2] . 
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This paper is focused on the application of hybrid Single relaxation time 

lattice Boltzmann and finite volume methods in conjunction with discrete 

ordinates method to simulate coupled natural convection and volumetric 

radiation in differentially heated enclosure, filled with an absorbing, 
emitting and non-scattering gray medium. In this work, the velocity and 

temperature fields are calculated using lattice Boltzmann and finite volume 

methods respectively, whereas the radiative term is computed by the discrete 

ordinates method. This study is carried out for Pr = 0.71, a Rayleigh number 

range of 103 ≤ Ra ≤ 106, an optical thickness with values 0 ≤ τ ≤ 100, a 

Planck number ranging in 0.001≤ Pl ≤ 100 and an aspect ratio varying 

between 0.5 ≤ Ar ≤ 2. Results are presented in terms of streamlines, 

isotherms, velocity profiles and average Nusselt number. Based on the 

obtained results, it can be concluded that the presence of volumetric 

radiation is noteworthy. Its effect, as a function of Rayleigh number and the 

radiative properties, yields significant changes on the behavior of 
streamlines and isotherms. In the taller enclosure, the increase of average 

total Nusselt number with increasing Rayleigh number is less significant 

than that in the case of the shallow enclosure.  
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Very recently, the application of LBM has been encouraged by 

many authors and has proved its suitability to simulate a large 

class of problems involving conductive, convective and radiative 
heat transfer. Mohamed and kuzmin [3] examined the natural 

convection phenomenon in square cavity using LBM. They 

evaluated the force term in the lattice Boltzmann equation. Double 

population thermal LBM with non-uniform mesh was applied by 

Dixit et al. [4] and Kuznik et al. [5]  for the simulation of natural 

convection in square cavity. The authors found that it’s required 
to implement the interpolation supplemented lattice  Boltzmann  

method  (ISLBM) [4]  and  the  Taylor  series  expansion  –  and  

least  square  –  based  Lattice Boltzmann method (TLLBM) [5] 

in order to avoid the unreasonable use of high uniform lattice. 

Three-dimensional study of natural convection using lattice 

Boltzmann method was conducted by researchers in [6].  Li et al. 
[7] employed a Multirelaxation time model to simulate natural 

convection in a cubic cavity. Asinari and co-workers [8] applied 

the LBM to analyze the radiative equilibrium problem in 2D 

rectangular enclosure. Their work proved LBM’s ability to solve 

the radiative heat transfer and was considered as the first step in 

this direction.  

Very few researchers used hybrid schemes combining LBM 

and one of the CFD methods such as FVM and FDM to simulate 

natural convection problem. Zhengli et al. [9] coupled LBM and 

FVM to solve natural convection with different Rayleigh 

numbers, in which the velocity and the temperature fields were 

obtained using LBM and FVM respectively. They found an 
excellent agreement with the literature. Jami et al. [10] also 

applied a combined LBM and FDM to simulate laminar natural 

convection flows in a differentially heated square enclosure 

containing a heat-conducting cylinder. The limitation of FDM in 

solving problems with complex geometries led to a restriction on 

the development of FDM-LBM (although the biggest advantage 
of LBM is its applicability to solve the problems in a complex 

computational domain). The use of FVM in the other hand has 

been encouraged by many researchers, due to its completely 

conservative character and ability to overcome the FDM 

limitations. 

In the literature, many researchers investigated the problem of 
coupled natural convection and volumetric radiation using 

traditional (CFD) methods to solve the momentum, energy and 

radiative transfer equations. Two-dimensional analysis of 

combined volumetric radiation and natural convection with 

participating medium, using S4 and S8 quadrature of discrete 

ordinates method (DOM), in square cavity was presented in [11] , 
while in Lauriat’s work [12] , the problem was treated for a 

vertical cavity using P-1 approximation. It was commonly pointed 

out, in all the works mentioned above, that the flow and thermal 

fields were affected by the presence of radiation. Colomer et al.   

carried [13] out a natural convection and radiation phenomenon 

investigation in both transparent and participation medium in 3D 
differentially heated square cavity using DOM. They found that 

the heat flux increases with increasing Rayleigh number, while it 

decreases with increasing optical thickness, for the case of 

participating medium. Lui et al. [14] developed discrete ordinate-

based method to study combined natural convection and radiation 

heat transfer in a square cavity containing an absorbing, emitting 
and scattering medium. They evaluated the effect of Rayleigh 

number, aspect ratio, optical thickness and scattering phase 

function on the behaviors of heat transfer. A numerical 

investigation of combined double diffusive and volumetric non-

gray gas radiation in differentially heated square enclosure was 

conducted by Laouar-Meftah et al. [15] and it’s 3D extension can 
be found in Cherifi’s et al. study [16]  . The influence of surface 

radiation and natural convection in differentially heated 

enclosures was also examined using different CFD methods [17] . 

The application of DOM has been very successful in solving the 
radiative transfer equation, and its accuracy and capability have 

been demonstrated in the study of Ramankutty and Crosbie [18]  .   

Different CFD/LBM combinations have also been employed to 

treat combined conduction or convection modes and radiation heat 

transfer. Transient conduction and radiation mode were tackled 

using the LBM for energy equation, along with a different CFD 
method for radiative equation such as FVM [19] and DOM [20].  

Derfoufi et al. [21] numerically studied the mixed convection and 

volumetric radiation through a vertical channel using a 

combination of MRT-LBM, FDM and SRT-LBM to solve 

momentum, energy and radiative heat transfer equations 

respectively. They showed the efficiency of such combinations to 
simulate similar problems.  

Only a few authors have used the LBM to compute all the 

macroscopic variables mainly velocity, the temperature and the 

radiative terms. Tighchi and Esfahani [22] demonstrated the 

suitability of LBM to examine the combined natural convection 

and volumetric radiation in square cavity containing a 
participating medium. Their study indicated that the results 

obtained purely with LBM needed shorter computational time 

than those obtained with LBM-FVM. A similar problem has been 

realized in square cavity with horizontal fin by Tighchi et al. [23]. 

The LBM has also proved its ability to investigate Rayleigh 

Benard convection with volumetric radiation problem in 
participating two-dimensional medium [24].  

More recently, rarely research has been conducted on the study 

of coupled natural convection and volumetric radiation using 

certain LBM/CFD hybrid methods. Mondal and Mishra [25]  

incorporated uniform lattice with LBM and FVM to solve the 

combined natural convection and volumetric radiation in square 
cavity filled with an absorbing, emitting and scattering medium. 

They concluded that as long as the medium is more participating, 

the isothermal line would be condensed near the cold boundary. 

They later proceeded to do the same problem for the non-uniform 

lattice case, hence proving its efficiency, accuracy and 

computational time [26] . An interaction of Rayleigh Bénard 
convection and volumetric radiation using a hybrid method of the 

LBM with FVM was reported by Mishra et al.[27] .  Chaabane et 

al. [28]  also developed a new hybrid model to simulate combined 

natural convection and radiation phenomenon in 2-D square cavity 

filled with an absorbing, emitting and scattering medium. The 

temperature and the velocity fields were obtained using the two 
double population LBM, whereas the radiative term, in the energy 

equation, was computed using control volume FEM.  

LBM-FDM combination along with DOM, although effective 

when incorporated together to treat coupled natural convection 

and volumetric radiation problems, are rarely encountered in the 

literature. Moufekkir et al. [29] made use of the hybrid thermal 
LBM to simulate natural convection and volumetric radiation in 

an isotropic scattering medium within a heated square cavity. The 

velocity and the temperature fields were computed using MRT-

LBM and FDM respectively, while the radiative term was 

determined by DOM. They remarked that the centro-symmetrics 

of streamlines and isotherms was vanished in the presence of 
radiation.  

To the best of our knowledge of the literature, the employment 

of the numerical combination of LBM-FVM with discrete 

ordinate method for the investigation of the combined natural 

convection and volumetric radiation in differentially heated 
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enclosure with different aspect ratio has not been considered yet. 

In this work, the velocity and the temperature fields were 

calculated by single relaxation lattice Boltzmann and finite 

volume methods respectively, while the radiative term in the 

energy equation was computed via the discrete ordinate method. 

The effect of Rayleigh number, optical thickness, aspect ratio and 
Planck number on the flow field, the temperature distribution, the 

velocity profiles and heat transfer was examined. 

2. Problem Statement 

The  physical  domain  considered  in  the  present  work  is  

sketched  in  figure 1. The vertical left and right walls are 

maintained at a uniform temperature Th and Tc, respectively 

whereTh > Tc, while the horizontal walls are supposed adiabatic. 

The enclosure is filled with an absorbing, emitting and non-

scattering gray medium. The two vertical walls are blacks (ε1, 2=1), 
whereas the two horizontal walls are reflective (ε3, 4=0). The fluid 

is incompressible and Newtonian. The flow is laminar, two 

dimensional and steady. All physical properties are constants 

except for the density, where the Boussinesq approximation is 

adopted. The effect of volumetric radiation is also considered to 

be present.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the studied configuration 

3. Numerical Simulation 

The numerical implementation of LBM, FVM and DOM is 

presented in this section. As shown in figure 2, the fluid domain 

is discretized into uniform staggered lattices/control volumes. The 
SRT-LBM is used to simulate the velocity field at the lattices 

center, while the energy equation and the radiation source term, 

appearing in this equation, are solved at the same control volume 

nodes using FVM and DOM respectively. For both LBM and 

FVM/DOM approaches, we chose the same numbers of 

lattices/control volumes. The temperatures are computed at the 
center of FVM control volume. It is therefore necessary to 

calculate the temperatures’ values at the center of lattices in order 

to introduce them in the buoyancy force term.  Therefore, an 

average of temperature values at the control volume nodes 

surrounding the corresponding lattices’ center is computed. For 

this reason, an interpolation between the LBM and the FVM was 
adopted.  The average temperature at the lattice center is given as 

follows: 
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T i j T i j T i j T i j T i j                (1) 

 
                   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Arrangements of lattices in the LBM and control volumes in the 

FVM/DOM of the domain 

In order to implement the velocity, found using the LBM, in 

the dimensionless energy equation, which is solved by the FVM, 

we have to convert the velocity in LB unit to a dimensionless 

velocity; therefore, the relationship between the LB and 

dimensionless velocities is given as: 

      𝑈𝐹𝑉 = 𝑈𝐿𝐵  
𝐻

  𝛼
                                                                   (2) 

 

3.1. SRT lattice Boltzmann method for dynamics problem 

The LBM is employed to solve the governing equations, which 

can be recovered from the lattice Boltzmann equation by using the 

Chapman Enskog analysis. In this work, The LBM simulates the 

movement of fluid particle by implementing the distribution 

function in order to compute the velocity field. The D2Q9 model 

has been adopted. 

The LBM consists of two steps: streaming and collision. The 

collision step is regarded as a relaxation towards the equilibrium 

states. While the streaming process moves the fluid particle to the 

adjacent nodes according to their velocity and direction. The 

collision operator is linearized by the approximation of Bhatnagar-

Gross-Krook (BGK) based on the single relaxation time (SRT). 

To compute the flow field, the lattice Boltzmann equation, with 

external force after inserting the BGK approximation, can be 

written as: 

                                      

 

( , , ) ( , , ) ( , , ) 1
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k k k

kx ky

eq

k k k

f x y t f x y t f x y t
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f x y t f x y t F



  
   

  

 

            (3) 

 

So the general form of the discretized LBM Eq. (3) can be 

expressed as:    
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   

    

, , , ,

, , , ,
eq

k kx ky k

k k k

t
f x c t y c t t t f x y t

f x y t f x y t tF




       

  

             (4) 

where ( , , )kf x y t   and ( , , )eq

kf x y t  are the distribution function and 

equilibrium density distribution function, respectively. t  denotes 

the lattice time step, kc  is the discrete lattice velocity vector at 

the position (x,y) and the instant t . kF  and   are an external body 

force in direction k and the lattice relaxation time, respectively.  

The kinematic viscosity    is related to the relaxation time  :                                            

          2 1 2sc                                                               (5) 

sc  is the lattice speed of sound . Note that the viscosity is required 

to be positive in order to avoid the numerical instability; therefore, 

the relaxation time should be superior to 0.5. 

The discrete velocity is defined as follows: 

        

 

      

     

0 0,0 0

cos 1 2 ,sin 1 2 1,2,3,4

cos 5 2 4 ,sin 5 2 4 5,6,7,8

k k

k

c k

c c c i i k

c c i i k

 

   

 



    


     

  

(6) 

For which /kxc x t    follows the x direction and /kyc y t  

follows y direction, where x and y are the lattices spaces. In 

LBM units, x , y  and t  are equal to unity. 

The Relationship between cs and ck for the arrangement D2Q9 
is expressed as:      

                  ( , )

3

k x y

s

c
c                                             (7) 

 

The local equilibrium distribution function ( , , )eq

kf x y t  is 

calculated by Eq. (8): 

 
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keq k
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s s s
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f x y t w
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
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  

              (8) 

where U and   are the macroscopic velocity vector (u,v) and 

density, respectively.  kw  is the weighting factor which is given 
by:  

                     

4
0
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1
5,6,7,8

36

k
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k

w k

w k

w k
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                                     (9) 

The last term in Eq. (4) needs to be included as follows:                                                                                                          

                   03k ky k kyF F w g T T c                                      (10) 

     
where β, g, ρ and T0 are thermal expansion coefficient, 

gravitational acceleration, density and reference temperature 
respectively 

The macroscopic quantities ρ , u and v were obtained from the 
expressions:

                                                                                 

                  
9

( , ) ( , , )k

k

x y f x y t                         (11)                                                         

                          

91
( , ) ( , , )
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                    (12)                                                                 

                  
91

( , ) ( , , )
( , )

ky k

k

v x y c f x y t
x y

                       (13) 

where kxc and kyc   are the discrete velocity in x and y direction 

respectively.      

3.1.1.   Dynamics boundary conditions treatment 

The hydrodynamic boundary conditions are modeled by the 

no-slip of fluid particles on all the solid walls, which translates to 

null at the boundaries. The boundary conditions used here are the 

same as those employed in [21] and are defined by the density 

distribution function. The Bounce back scheme was applied to 

determine the unknown velocity distribution function as shown in 
figure 3. In this scheme, the distribution functions of the particles 

are reflected to the fluid node in the opposite direction when the 

particles reach the solid walls. In general, the bounce back 

condition is given by the following rule: 

            ( , ) ( , )w k wk
f x t f x t                                               (14) 

where xw is a fluid node on the wall, and k and k  represent two 

opposite lattice directions on boundary site. 

For example, for the west and east walls, the unknown 

distribution functions can be written as follows: 

             5 7f f             1 3f f               8 6f f                                   (15) 

    

          7 5f f          3 1f f            6 8f f                             (16) 

 

 

 

            

 

 

 

 

 

 

 

 

 

Figure 3. Boundary condition for D2Q9 model 
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3.2. Finite volume method for thermal problem 

For the computation of temperature fields, the dimensionless 

energy equation with radiative source term can be expressed as 
follows [29]: 

        

2 2

2 2 R

T T T T
u v Q

x y Plx y

     
     

    
                          (17) 

where u and v, T and RQ  are dimensionless,  horizontal  and 

vertical velocities, temperature and the divergence of radiative 

heat flux respectively. 

 The non-dimensional form of the above-mentioned equation 

can be obtained by using these dimensionless variables:      

  x
x

H



      y
y

H



      
/

u
u

H



      
/

v
V

H



    c

h c

T T
T

T T

 



     

3

04

R

R

q
Q
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0
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T

T T
 


                                                 (18) 

where, the superscript * indicates the dimensional variables. 

The thermal field is treated using the finite volume method. 

The energy equation is discretized using a power law and a central 
difference scheme for the convective and diffusive term 

respectively. 

3.2.1.   Thermal boundary conditions treatment 

The nondimensional boundary conditions can be obtained as 

follows:    

 At the vertical walls:  

        On the left wall       T=Th= 0.5      at        x = 0       and   

                0 ≤ y ≤ H                                                                    (19) 

        On the right wall     T=Tc = -0.5    at        x = L       and    

                0 ≤ y ≤ H                                                                      (20) 

 At the adiabatic horizontal walls: the condition of adiabacity 

is obtained by Moufekkir et al.[29]: 

On the bottom wall     
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 where ωm is the quadrature weight for each direction.   is the 

reference temperature ratio ( 1.5 ) 

In this work, the horizontal walls are perfectly reflective, that 

is means that ε3 = ε4 = 0. Thus, the condition of adiabacity on the 

bottom and the top walls respectively becomes, again as follows: 

         

0

0
y
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y



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           at         0 ≤ x ≤ L                            (23) 

             0
y H

T

y

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3.3.  Discrete ordinates method for radiative model 

To obtain the divergence of radiative heat flux in Eq. (17), it 

is required to solve the radiative transfer equation (RTE). The non-

dimensional form of RTE for a gray absorbing, emitting and no 

scattering medium, can be written as [29]:  

   
 

4
, , , ,

, , 1
4

I x y I x y T
I x y

x y
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    (25) 

where  and   are the direction cosines in y and x directions 

respectively. τ is the optical thickness that is equal to κL (τ = κL). 

κ is the extinction coefficient (κ = a +σs). а and σs are the 

absorption and scattering coefficients, respectively ( in this study, 

σs = 0).  I(x, y, Ω) is the dimensionless radiation intensity in the 

direction Ω with i j 
 

    

 

3.3.1.   Radiative boundary conditions treatment 

The dimensionless boundary condition for gray, diffuse and 

reflecting surfaces are given as: 

 Left wall (x = 0):    

            

4
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(0, ) 1
4

T
I y
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 Right wall (x = L):  
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 Bottom wall (y = 0): 
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 Top wall (y = H):                                                                                   

                  
0

1
( , ) ,

m
m m mI x H I x H


 


                       (29)    

         

The Discrete ordinate method has been used to solve the RTE 

associated with the above radiative boundary conditions, and the 

S8 quadrature has been adopted to discretize the angular space. 

Once the computation of RTE was performed, the radiation 

intensity for each direction in every position has been found. So 
the incident radiation and the divergence heat transfer are obtained 

as follows [29]:                                                      
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3.4.  Heat transfer 

The heat transfer is characterized, by the average convective, 

radiative and total Nusselt number along the active walls, which 

are defined respectively as follows: 

                                                                 

               
0 0,

H

cv

x L

T
Nu dy

x


 
  

 
                                    (32) 
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                       T cv RNu Nu Nu                                                 (34) 

 
where the emissivity of vertical walls is equal to the unity (ε1 = ε2 

= 1). Qinc is the incident radiation heat transfer, in which her 

expression is evaluated as follows:                                                                   

         
0

(0, ) 0,
m

inc
m m mQ y I y


                        (35)                                                       

          
0

( , ) ,
m

inc
m m mQ L y I L y


                             (36)   

4. Grid Independent Test and Code Validation 

4.1.  Grid Independent Test 

The grid independency is tested by computing the total and 
radiative average Nusselt number on the heated wall for various 

lattice grids at Pr = 0.71, Pl = 0.02   , Ra = 106, Pr = 0.71, Θ = 1.5 

and τ = 1. A converged solution is achieved when the maximum 

variation in horizontal and vertical velocities and temperature at 

any point reaches values under 10-5. It seems from Table 1 that 

there is no significant change in NuT and Nur passing from 
250×250 to 280×280. Therefore, a uniform grid size of 250×250 

is chosen for the following work.  

Table 1. The total and radiative average Nusselt number 
for different mesh sizes 

Lattice size NuT Nur 

𝟖𝟎 × 𝟖𝟎 34.82 30.58 

𝟏𝟎𝟎 × 𝟏𝟎𝟎 34.80 30.43 

𝟏𝟓𝟎 × 𝟏𝟓𝟎 34.74 30.22 

𝟐𝟎𝟎 × 𝟐𝟎𝟎 34.70 30.11 

𝟐𝟓𝟎 × 𝟐𝟓𝟎 34.67 30.03 

𝟐𝟖𝟎 × 𝟐𝟖𝟎 34.67 30.01 

4.2. Code Validation 

In order to verify the reliability of SRTLBM-FVM 
combination to solve natural convection in conjunction with the 

DOM for volumetric radiation information, a comparison of our 

code’s results with the numerical results of Yucel et al. [11], 

Moufekkir et al. [29] and Meftah et al. [15]was conducted. These 

results were compared for the average radiative Nusselt number at 

the hot wall for Ra =5 × 106, Pl = 0.02 and three optical thickness 

(0.2, 1 and 5) for Pr=0.71. It can be seen from Table 2, that a good 
agreement has been observed between the present results and 

those in [11, 15, 29] with a maximum discrepancy of 1.54 %. 

5. Results and discussion 

The numerical results obtained are presented in this section for 

the following variety of key parameters: the aspect ratio (Ar = 0.5-

1- 2), the Rayleigh number (Ra= 103 to 106), the optical thickness 

(τ = 0 - 0.2 - 0.5 - 5- 10- 30 -100) and the Planck number                  

(Pl = 0.001-0.02-0.1-1-10-100) with Pr=0.71 and temperature 

ratio Θ = 1.5.  

5.1. Streamlines, isotherms and velocity profiles 

 In this heading, we illustrate the corresponding streamlines and 
isotherms of the parametres detailed above. In order to understand 

the trend of streamlines, we proceed to plot the velocity profiles 

and present them in the figures below. 

5.1.1 Effect of volumetric radiation and Rayleigh Number 

(Ra) 

In what follows, we analyze the effect of different values of 

Ra on streamlines and isotherms in the absence and presence of 

radiation exchange. The simulations are performed for 103 ≤ Ra ≤ 

106, Pl =0.02, Ar =1 and τ =1. As shown in figure 4, in the absence 

of radiation, for low Ra (Ra= 103 and 104), the flow field is 
symmetrical and is characterized by a single cell structure. The 

corresponding isotherms are formed nearly parallel to the cavity 

wall, which implies that most of the heat is transferred by 

conduction. With increasing Ra to 105 then 106, the flow loses its 

symmetrical shape and a multicellular structure takes place. The 

isothermal lines are horizontal in the center of the cavity and are 
vertical near the hot and cold walls due to the thinning of boundary 

layers. The boundary layer becomes thinner and thinner for 

Ra=106 as a by-product of the important effect of buoyancy force 

in the enclosure. The stream function’s values reached a maximum 

(|Ψmax|) for the above-mentioned Ra, of 1, 4.5, 9.4 and 15.5 

respectively. 

In the presence of volumetric radiation (τ =1), a circular 

cellular structure appears inside the enclosure for all Ra, but the 

shape and the intensity of the flow significantly changes and 

increases, respectively, with the Ra 

For Ra=103 and 104, the streamlines have practically the same 

unicellular patterns as those in pure natural convection. However, 
the enclosure’s core is shifted from the center to the lower right 

corner near the cold wall, and the values of stream functions in the 

other hand either increases (for Ra=104) or decreases (for Ra=103) 

significantly, especially in the core of the enclosure. The 

maximum values of stream function for both of the mentioned Ra 

are, respectively,   |Ψmax| = 1 and |Ψmax| = 6. As for the 
isotherms, the radiation destroyed their inclination and made them 

purely parallel to the vertical active walls, which indicates that the 

heat is transferred mainly by conduction for Ra=103. In the case 

of Ra=104, where the buoyancy forces increases, the isotherms are 

slightly tilted with respect to the case of Ra = 103 due to the 

simultaneous effects of convection and radiation phenomenon. 
We can also observe a concentration of isothermal lines near the 

cold wall owing to the diffusion of the radiation into the cold wall, 

which causes a local increase of the temperature gradient for the 

two Ra mentioned. 
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Table 2. Comparison of radiative and total Nusselt number at the hot wall  

Optical 
Thickness 

Nusselt number 
and deviation 

Current work Yucel et al.[11] Meftah et al.[15] Moufekkir et al.[29] 

τ =0.2 

𝐍𝐮𝑹 37.340 37.4 37.40 36.718 

% ---- 0.16% 0.16% 0.67% 

𝐍𝐮𝑻 45.895 46.11 46.05 45.509 

% ---- 0.47% 0.34% 0.85% 

τ =1 

𝐍𝐮𝑹 31.221 31.28 31.25 31.108 

% ---- 0.19% 0.093% 0.36% 

𝐍𝐮𝑻 38.625 38.93 38.81 38.725 

% ---- 0.78% 0.48% 0.26% 

τ =5 

𝐍𝐮𝑹 23.932 23.64 23.57 23.801 

% ---- 1.24% 1.54% 0.55% 

𝐍𝐮𝑻 31.576 31.76 31.59 31.778 

% ---- 0.58% 0.04% 0.64% 

 
 

As Ra increases to 105 and 106, the flow becomes considerably 
affected by the radiation, and the multicellular structure changes 

to a monocellular shape. The corresponding stream function 

maximums increase highly (|Ψmax| = 29 and |Ψmax| = 53) 

compared to those where the radiation is absent, which indicates 

an augmentation of the velocity in the   presence of volumetric 

radiation. The temperature distributions are more influenced by the 
radiative exchange, which is shown by the disappearance of the 

stratification that existed in the enclosure’s core (pure natural 

convection). The isothermal lines are more intensified near the 

cold wall, which causes an increase of local vertical temperature 

gradient mainly for Ra=106. This is due to the elevation in the 

fluid’s absorption of the radiation. We can also remark a 
homogenization of the temperature in the enclosure. The effect of 

radiation on isotherms is more pronounced as Ra increases. We 

can concluded that the volumetric radiation greatly activates the 

heat transfer in the enclosure for a higher Ra. Similar findings have 

been noted by the author’s work [29] , in which their analysis is 

only made for the cases of Ra=106 and Ra=103. 

The velocity component’s profiles, at the medians of the 

enclosure are presented in figure 5, and are compared, for the case 

of pure natural convection, with those obtained when radiation is 

present, at different Ra. For Ra = 104, it is observed that there is no 

influence of radiation on both U-velocity and V-velocity profiles. 

This is due to the insignificant of buoyancy force, hence the very 
low interaction of natural convection with radiation. However, for 

Ra = 105 and Ra = 106, the radiation exchange eliminated the 

symmetrical behaviour, that existed in the pure natural convection 

case, for both velocities’ profiles, due to medium’s absorption of 

heat, which caused the buoyancy force to rise. Therefore, 

velocities were amplified, engendered a higher circulation 
intensity in the enclosure (as confirmed in Figure 4). We can also 

remarked that, as Ra decreases, the gap between velocity profiles 

for both cases is lessened, due to the reduction of radiation effect. 

 

5.1.2   Effect of optical thickness (τ) 

To further highlight the effect of radiation on streamlines and 
isotherms, we consider various values of optical thickness ranging 

from 0 to 100 at Ra=106 and Pl = 0.02. As shown in figure 6, the 

streamlines and the isotherms are influenced by the rise in optical 
thickness, which indicates that the medium participates greatly. 

For τ = 0, the flow and thermal fields have the same patterns as 
that in the pure natural convection due to the medium’s 

transparency. As the τ increases from 0.2 to 10, the multicellular 
flow changes gradually its shape to monocellular structure. For       

τ =10, the flow patterns show a development of the vortex in the 
enclosure’s core, which tends to grow into pseudo multicellular 

structure again, with an increase of τ to 30 and 100.  Thus, the 
strength of the flow circulation through the enclosure is increased 

where: |Ψmax|=15.4 at τ = 0, 21.8 at τ = 0.2, 33 at τ = 0.5 and 72 
at τ = 5, and is decreased for the case of optical thickness of 10, 

30, and100 where |Ψmax| is equal to: 55, 31and 21.6 respectively. 
For thermal field, from τ = 0.2 to τ = 30, the patterns of isotherms 

are inclined in the center of the enclosure and more intensified near 
the cold wall, due to the medium’s higher radiation absorption. 

This leads to an increase of the fluid’s temperature in the 
enclosure. When τ exceeds 30, we can observe that the isotherms 

become stratified at the center of the enclosure and are therefore 
nearly similar to that of pure natural convection (τ = 0). The reason 

for this explain is that the fluid absorbs more heat, which leads the 
temperature difference to decrease between, the fluid and hot wall, 

and to increase between the fluid and the cold wall. As a result, the 
temperature difference between the vertical isothermal walls will 

increase, creating an intense natural convective motion. Due to the 
greater absorption of the medium with a very high optical 

thickness, the medium becomes more opaque, which implies an 
impossibility of any penetration of radiant energy into the 

enclosure’s core and a higher elevation in temperature gradient 

near the active walls. Thus, the effect of radiation gradually 
disappears until pure natural convection state is reached.
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                                                       With radiation (τ =1)                                                 without radiation (pure natural convection) 

Figure 4. Streamlines (right) and isotherms (left) with different Ra

                                                                                                                                           
(a)                                                                                                   (b) 

Figure 5. (a) U-velocity and (b) V-velocity profiles at X=0.5 and Y=0.5 respectively for different Ra

Figure 7 displays the effect of optical thickness on the U-

velocity and V-velocity profiles for Ra=106 and Pl = 0.02. It can 

be seen that the effect is more intense when the optical thickness 

increases τ = 0 to τ = 5. The maximum and minimum velocity 

values have been noted in the case of τ = 5. However, by increasing 

the optical thickness from τ = 10 to τ = 100, both components of 
the velocity decrease due to the effect of radiation becoming 

negligible (the medium becomes nearly opaque). These 

observations confirm those found in term of streamline in figure 6. 

 

 

5.1.3   Effect of Planck number (Pl) 

In the following, we discuss the effect of Planck number 

ranging from 0.001 to 100, on the streamlines and isothermal lines 

for the case of τ = 1and Ra = 106. Looking at figure 8, a unicellular 

structure can be observed at low Pl (0.001 and 0.02). The same 

structure is elongated for the case of Pl=0.1. As Pl increases 
exceeds 1, the streamlines’ patterns gradually take a shape similar 

to that of a natural convection problem. We can also notice that the 

stream function’s values at the center of enclosure decrease with 

an increase in the Pl, where |Ψmax| is equal to: 203, 53, 22, 16, 15  
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Figure 6. Streamlines (right) and isotherms (left) with different τ at Ra=106

                                                             (a)                                                                                       (b) 

Figure 7. (a) U-velocity and (b) V-velocity profiles at X=0.5 and Y=0.5 respectively for different τ

and 15 for Pl values of 0.001, 0.02, 0.1, 1, 10 and 100 respectively. 

This is due to the progressive attenuation of the radiation effect. 

As for the temperature distributions, it is visibly clear that the 

isotherms are no orthogonal to the adiabatic walls, and more 

condensed in the cold walls proximity, mostly for Pl=0.001, due 
to the higher temperature gradient resulting from the elevated  

radiation influence with respect to heat conduction regime.  The 

isotherms only showed an inclination in the center of cavity 

starting from Pl=0.02, until the stratification was achieved for the 

case of Pl = 100, where a pure natural convection similar shape 

has been observed. 

Figure 9 highlights the influence of Pl on the profiles of 

U-velocity and V-velocity, for Ra = 106 and τ = 1. It seems 

that the velocities’ magnitude increases as Pl decreases. At the 

medians planes (X=0.5 and Y=0.5), these profiles are 

practically identical in behaviour for Pl ≥ 1 and Pl = 0.1, 
respectively. Therefore, we can safely conclude, that as Pl 

increases, its effect on velocity variations is insignificant. 
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    Figure 8. Streamlines (right) and isotherms (left) with different Pl at Ra=106

                             
(a)                                                                             (b) 

Figure 9. (a) U-velocity and (b) V-velocity profiles at X=0.5 and Y=0.5 respectively for different 

5.1.4    Effect of aspect ratio (Ar) 

Figure 10 illustrates the influence of aspect ratio on the 

streamlines and the isotherms at Ra=106, in the presence and 

absence of volumetric radiation, where τ = 1 and Pl =0.02. The 
aspect ratio values considered are 0.5 (taller enclosure), 1 (square 

enclosure, their results is presented above in Figure 4) and 2 

(shallow enclosure). It is clear that the radiation exchange for all 

Ar affected significantly the streamlines and the isotherms at 

higher Ra. As for flow field, in the presence of radiation, a 

clockwise rotating one-vortex structure, for all aspect ratios, has 
been observed. The maximum of stream function values at the 

center of the enclosure increases significantly with the increase in 

the Ar, thus indicating that the strength of air circulation becomes 

stronger when the enclosure configuration changes from the taller 

(Ar < 1) to the shallow (Ar > 1). However, for the case of radiation 

absence, the flow takes an elongated cell shape, which means a 
formation of a multicellular structure for all Ar (including Ar =1), 

and the increase in Ar doesn’t affect the stream function’s 

maximum in any significant way. 

In the matter of the temperature distribution, the radiation 

exchange destroys the existing stratification (displayed in the case 

of the of lack radiation for all Ar) in the enclosure’s center. 

Therefore, in the presence of radiation, for Ar = 0.5, it can be 

noticed that the isothermal lines are inclined in the core of the 

enclosure due to the existence of a low local horizontal 
temperature gradient , which indicates that, in addition to radiative 

heat transfer, there is a small transport of energy by conduction. 

This leads to slowing down the intense convective motion. As 

aspect ratio increases to 2, the inclination of these isotherm lines 

increases progressively until a pseudo stratification is created, thus 

the convective motion becomes more dominating. This is owed to 
the decrease of horizontal temperature gradient, and the increase 

of vertical temperature gradient close to the active walls, 

especially the cold wall. We can also observe an intensification of 
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isothermal lines closer to the cold wall for all aspect ratios because 

of radiation effect. We can conclude that the increase in Ar leads 

to a rise of thermal stratification inside the center of enclosure in 

the presence of radiation 

The variations of U-velocity and V-velocity profiles for 

various Ar at Ra =106 and τ = 1 are illustrated in figure 11. The 

maximum and minimum values of both components of the velocity 

can be seen in the adiabatic and the isothermal walls, respectively, 

for the shallow enclosure (Ar =2).  The loss of the symmetrical 

behavior in the two profiles of velocity is remarked as the Ar 

increases. The velocities’ intensity for shallow enclosure is higher 

than that for the taller enclosure 

                        

                                                           

                                                          

                                                          
                                                                    With radiation                                                          without radiation  

Figure 10. Streamlines and isotherms (right and left for Ar = 0.5, top and bottom for Ar=2) with different Ar at Ra=106 

                             
(a)                                                                                  (b) 

             Figure 11. (a) U-velocity and (b) V-velocity profiles at X=0.5 and Y=0.5 respectively for different Ar

5.2. Heat transfer 

Figure 12 illustrates the variation of average total Nusselt  

number along the hot wall with respect to aspect ratio, for low and 
high Ra (103 and 106), with the presence of radiation. The NuT 

decreases significantly with the increase of Ar for both Ra. At a 

given aspect ratio, it can also be observed that the NuT value is 

enhanced as Ra increases. This is because the buoyancy force 

effect becomes more significant in the enclosure. 

In figure 13 and figure 14, the variation of total Nusselt 

number, along the heated wall, as a function of optical thickness 
and Planck number is displayed for Ra = 106. As shown in the 

figure 13, the NuT starts with a maximum value of 46.6 at τ = 0 
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(transparent medium), which corresponds to the maximum heat 
transfer, then decreases with the increase of the τ. Indeed, the 

higher of τ, the more heat is absorbed by the medium close to the 
heated wall and rises its temperature, which then makes optically 

thick. This is leads to a decrease in the radiative heat transfer on 
the heated wall. 

 

Figure 12. Variation of the average total Nusselt number as a function of Ar 

for Ra = 106 and Ra = 103 

                        

Figure 13. Variation of the average total Nusselt number as a function of τ 

for Ra = 106 

         

With regard to the figure 14, for τ = 1, the NuT decreases with 
the increase of the Pl from 0.001 to 0.1. While there is no 

considerable change in NuT values when Pl > 0.1.  It can be seen 
that the NuT maximum value, NuT = 524, corresponds with              

Pl = 0. 001. This is due to the dominance of radiative heat transfer 
in low Pl. 

6. Conclusion 

In the present work, the combination of single relation time 

lattice Boltzmann and finite volume methods with discrete 

ordinates method was applied to simulate the coupled natural 

convection and volumetric radiative heat transfer. Some 

conclusions are listed below: 

1. The aspect ratio has a pronounced effect on streamlines and 
isotherms in the presence of radiation. The strength of flow 

becomes higher when the shape of enclosure changes from 

slender (Ar < 1) to shallow (Ar > 1) and the isotherms 

become more inclined in the center of the enclosure. 

2. The optical thickness’ effect is only considered meaningful 

in a specific range of 0.2 ≤ τ ≤5.  

3. As Planck number increases, the radiation effect on the 

streamlines and the isotherms diminishes progressively, until 

the pure natural convection pattern is obtained, especially 

from 1 to 100. 

4. The velocity magnitude decreases with the reduction of the 

Plank number, but increases with the augmentation of 
Rayleigh number, optical thickness (0 ≤ τ ≤ 5) and aspect 

ratio. 

5. The average total Nusselt number along the hot wall 

decreases, in the case of Ra = 106 and Ra = 103, with the 

increase of aspect ratio.  

6. The maximum value of the average total Nusselt number is 
obtained at τ = 0 and Pl= 0.001. An increase of Planck 

number and optical thickness causes a decrease in heat flux 

rate due to the diminution of the radiation effect. 
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