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Abstract 

Nowadays, centrifugal compressors are commonly used in the oil and gas industry, 
particularly in the energy transmission facilities just like a gas pipeline stations. 
Therefore, these machines with different operational circumstances and thermodynamic 
characteristics are to be exploited according to the operational necessities. Generally, 
the most important operational parameters of a gas pipeline booster station includes the 
compressor's input and output pressures, input and output temperatures and also the 
flow rate passing from the compressors. Different values of those parameters related to 
every point of operational conditions will exactly affect on the compressor poly-tropic 
efficiency and their driver fuel consumption. Although, calculating of the poly tropic 
efficiency and fuel consumption using the existing thermodynamic relations, would 
need to apply rather awkward equations for each operating point. In this research, a feed 
forward perceptron artificial neural network is presented to predict the output 
operational conditions. The network would be trained at least in two scenarios applying 
by practical data in the neuro solution software version.5 using the Levenberg-Marquadt 
algorithm and the optimum model is experimentally selected according to R2, MSE and 
NMSE. 
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Introduction 
A gas transmission network generally consists of 

one or more operational gas compressor stations on the 
route of the main gas pipeline, in which a few turbo 
compressors are equipped according to the predefined 
operational demands, particularly the vital parameters of 
the network such as the required consumption flow rate 
and supplying the upstream pressure. The overall 

network monitoring of the consumption points is 
assigned to the gas transmission control and monitoring 
center just known as dispatching office that coordinates 
their demands with the gas compressor station operators 
to put some turbo compressors in service. Generally, 
providing the dispatcher demand based on the desirable 
passing flow rate and the output pressure of a gas 
compressor station are empirically met by two 
parameters of the number of the turbo compressor 
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running and their speeds notwithstanding the turbo 
compressor efficiencies in period of time. The absence 
of a unified database as a predetermined inferential 
information system of the important operational 
variables of turbo compressors can lead to imposition of 
additional operating costs specially the fuel 
consumption of gas turbine just used for the compressor 
driver. Moreover the ambiguity and confusion of the 
effectively recognition of how many turbo compressors 
to be run, would cause to depreciation of the hot parts 
and prematurity of the overhaul time.    

Today, applying the predictive and modeling tools to 
create a robust database system to manage the data are 
common and practical in industry and it would be 
expectedly accessed to achieve the judgmental scope as 
a decision support system by a suitable design of the 
patterns and models. Data mining uses a variety of 
techniques to find hidden patterns and relationships in 
large pools of data and infer rules from them that can be 
used to predict future behavior and guide decision 
making [1]. The neural network is invented and also 
extended, just like a paralleled data mining analyzer 
tool, interpreting the phenomena's physical and 
arithmetic laws which modeled from the human nervous 
processing system. 

The present study aims to develop a feed forward 
perceptron neural network to smoothly predict the 
effective operational parameter values of turbo 
compressors situated at gas transmission network's 
stations, such as the outlet pressure, the outlet 
temperature and the flow rate passing across each 
compressor. The model's input elements are also as the 
compressor's inlet pressure and temperature, ambient 
temperature, number of compressors (appointed to be 
run) just considered as a control variable and speed of 
each compressor running. Then it is to be continued 
about the relevant researches, model presentation and 
how to achieve the optimal network, model validation 
by real operational data and also the model input 
parameters sensitivity analysis. 

Besides, the ridge regression model is deployed for a 
comparison to feed forward perceptron. Hence, there 
would be rather intensive collinearity between the 
variables used , then the ridge regression is selected. 
Ridge regression is a technique for analyzing 
multiple regression data that suffer from 
multicollinearity.  

When multicollinearity occurs, least squares 
estimates are unbiased, but their variances are large so 
they may be far from the true value. Actually, ridge 
regression is a remedial measure taken to alleviate 
multicollinearity amongst regression predictor variables 
in a model. 

Paper structure 
The research is followed by some literature of 

review associated with using the ANN, specially for 
compressor map prediction. Furthermore, the research is 
continued by methodology section. It includes of issues 
which discussing about the ANN structure, curve fitting 
of data and collinearity challenges among the input 
vector ( consisting of Pin, Tin , Tamb ,Pout , Tout ). After 
proofing the non orthogonality of input variables , the 
ridge regression model is deployed to have a model 
comparison with the ANN model selected earlier. 
Finally, a case study and sensitivity analysis is then 
applied for the ANN model output (Pout , Tout , q) and 
evaluating the compressor's vital characteristics 
including the HP , ηP and FC. 

 
Literature 
The modern view of neural networks began in the 

1940s with the work of warren McCulloch and Pitts 
who showed that networks of artificial neurons can in 
principle compute any arithmetic or logical function [2] 
. Moraal's results show that ANN modeling could be 
superior to other curve fitting techniques if the model is 
sufficiently trained [3]. Today the ANN is widely used 
to explain and model the physical phenomena of every 
kind of industrial machines. Thus interpreting the turbo 
compressor's thermodynamical behavior isn’t excluded 
as a typical kind of industrial machines used  at gas 
transmission pipeline. 

Ghorbanian and Gholamrezaei used the ANN to 
predict the eight stages axial compressor performance 
map ( pressure ratio- flow rate curve).They developed 
two hidden layers with ten neurons into their presented 
model. Although they also made use of two models to 
predict the operational performance curves. In the first 
model the pressure ratio is function of mass rate and 
vice versa, in the second, the mass rate is function of 
pressure ratio at constant speed. They ran 42  real 
operational points as the working data, into their model 
[4]. In another study, Bao et al. generated a back 
propagation neural network for modeling of helical and 
centrifugal compressor performance map [5]. The 
BPNN was also used to map the compressor working 
curve by Yu et al. [6]. Torabian and Karimian deployed 
a three layers ANN which trained by the BP algorithm 
to forecast the performance map of centrifugal 
compressor located at gas booster station. Their model 
calculates the outlet flow rate of compressor in terms of 
variety of different speeds and input pressures. They 
also used vendor's data to train the model [7]. Sanaye et 
al. simulated the mass rate and the output temperature of 
rotary blade compressor, by ANN according to its 
speed, input temperature and output pressure[8]. Sue 
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young et al. also used ANN to design a three 
dimensional geometrical shape of centrifugal 
compressor impeller. The impeller figure characteristics 
are generally dependent on the input & output pressure 
profile on the compressor hub and impeller peak point 
[9]. Shaojun et al. made use of the back propagation 
neural network to forecast the separating centrifugal 
compressor map in ethylen utilities[10]. Thomas et al. 
applied a feed forward perceptron neural network for 
predicting of an axial two stages compressor. They 
simulated the compressor performance map, changing 
the spaces between the different stages of compressor 
and considering the pressure ratio as a function of mass 
flow rate and compressor speed and also the mass flow 
rate as a function of pressure ratio and speed. They 
assigned the 206 field data which divided into 60% for 
training , 20% for cross validation and 20% to test the 
model results. Their model consists of a hidden layer 
that emerged to the optimum structure by changing the 
neuron numbers from 1 neuron to 10 [11]. Pin Chen et 
al. used the back propagation neural network to model a 
predictive control system of supply centrifugal air 
compressor at the unit of nitric acid in China's 
petrochemical industry. The number of hidden layers 1, 
3 and 17 were considered to determine the optimal 
model in their study [12]. Yang et al. offered a neural 
network model to predict the ison-tropic and volumetric 
efficiency of positive displacement compressor of 
refrigeration system. The compression ratio, the 
condenser temperature and the evaporator temperature 
are the inputs of the neural network in their model and 
the compressor speed is looked as the network output 
[13]. Vilalta et al. studied the accuracy and efficiency of 
various regression models and artificial neural networks 
in modeling the compressor pressure ratio, given the 
mass flow rate and rotational speed of the centrifugal 
compressor [14]. Fei et al. proposed an artificial neural 
network integrating feed-forward back-propagation 
neural network with Gaussian kernel function to predict 
the compressor pressure ratio[15]. Li et al. developed 
regression model to predict both the pressure ratio and 
the efficiency of a centrifugal compressor using partial 
least squares [16]. 

Most previous studies have been generally done in 
order to plot the performance map of a centrifugal 
compressor or to determine its geometrical designing 
parameters. The model presented in this study is flexible 
due to the number of paralleled units to be put into 
operation as a controlling input variable of the model 
and also is practical just using the real data, so it can be 
effectively applicable as a decision making support 
system to simulate the output data, by operators and 
dispatcher. 

Research Methodology  
In the late 1950s, Frank Rosenblatt and several other 

researchers developed a class of neural networks called 
perceptrons. The neurons in these networks were similar 
to those of McCulloch and Pitts. Rosenblatt's key 
contribution was the introduction of a learning rule for 
training perceptron networks to solve pattern 
recognition problems [2]. 

Up to now, generalizing of these kinds of perceptron 
networks in the proposed multi-layer models and also in 
increasing of the number of neurons in hidden layer, are 
progressed to explain the natural phenomena and 
scientific modeling.  

Putting the turbo compressors of gas booster station 
into operation in a transmission network would be a 
challenging topic and lack of a predefined and authentic 
information system as an operational data bank in order 
to support the operators, is missing to best decide for the 
output parameters based on current conditions as well. 
Generally speaking, the most important input data of a 
gas booster station are the gas input temperature and 
pressure and the ambient temperature which often the 
operators would control the gas flow rate and the 
compressor's outlet pressure and temperature by means 
of the number of units to be candidates for service and 
the power turbine speed, as the two main degree of 
freedom. It would be explicable that the number of 
compressor to turn on, is selected by the operator 
according to existing conditions in order to supply the 
needed flow rate. All turbo compressors minus one can 
be commonly turned on to pass the demanded flow rate 
through a gas booster station .For example for a gas 
booster station with three compressors, two units 
usually run to service. Control room operators (no need 
to recycle the flow) can experimentally  run a turbo 
compressor relatively at high speed or two compressors 
at lower speeds to maximize the gas flow rate through a 
typical station. These two  distinct scenarios of 
operational conditions would lead to select the 
compressors with different poly-tropic efficiencies and 
also imposition of the cost of fuel consumed (in gas 
turbines) to drive the compressors. Consequently, the 
factor of number of compressors to be turned on, is as 
an input controlling variable of the proposed model.  

In this research a feed forward  neural network 
equipped with two hidden layers is used to predict the 
gas flow rate, outlet pressure and output temperature 
based on the input pressure and temperature, ambient 
temperature, compressor speed and the number of units 
in service ( as a control variable). It must be said that all 
the pressures and temperatures are respectively scaled in 
Bar and Celsius and the gas flow rate is scaled in 
Million Cubic Meter standard per a day. It has been 
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tested for each hidden layer by 4,6,8,12 neurons in the 
supposed model and also the transfer function of tanh 
and sigm has been used for these hidden layers. It is 
noteworthy that the transfer function of  model's output 
layer is linear and the LM algorithm is also used for 
training of the model. The number of 200 operational 
field data which divided by 60% for training , 15% for 
network's validation and 25% for testing of the network 
have been imported into the model in batch. All data are 
really taken from the practical operating conditions of 
MAN turbo compressor located in neka gas booster 
station in Iran. The statistical information of data can be 
seen in the Table 1. 

Moreover the information of Pearson  correlation of 
data are gathered in Table 2. 

Hence the Table 2 implies, the correlation values 
(green highlighted numbers) between the model's output 
parameters and input parameters are rather high. Thus 
all those mentioned input parameters have been initially 
applied into the model and also the parameter of units 
running (no) which is highly correlated with compressor 
flow rate (q), would be also considered as a controlling 
input variable of the neural network.  

First the data are randomly sorted, then applied into 
the proposed neural network for each structure just 

selected by different layers, neurons and the transfer 
functions. Finally the software outputs are collected in 
the Table 3. 

As it is obvious in the Table 3, the network 
structured in two hidden layers with which 12 neurons 
in each layer using the sigm transfer function, is the best 
constructed model due to the R2  coefficient , the mean 
of standard deviation (MSE) and the normal mean of 
standard deviation (NMSE). It should be said that 
training of the model in neuro solution 5. lasts for 
almost 15 minutes (Fig. 1). 

Moreover, the model's output for the parameters of 
Pout , Tdis and q are compared with the 50 primary real 
data which both graphs for each parameter are shown in 
Figure 2. The cutoff lines are designated for neural 
network that they are acceptably matches on the real 
data. 

In this part the curve fitting module of SPSS 
spreadsheet is used to get a mathematical equation fitted 
on the scattered data points to have a comparison 
feature with neural network outputs. Notifying the 
correlation data of input parameters in the Table 2, it 
must be paid attention that there are no general 
prerequisites for inferring an authentic multivariable 
regression model ,consequently a new variable R 

 
Table 1. Statistical information of data 

 Pin Tin Tamb Pt.rpm Pout Tdis q 
Mean 42.76 16.54 11.03 6420.25 52.64 40.44 16.24 
Standard Error 0.50 0.29 0.39 34.42 0.66 0.44 0.18 
Median 44.20 15.00 11.00 6300.00 55.15 41.00 17.15 
Mode 34.00 15.00 12.00 6100.00 51.30 40.00 18.00 
Standard Deviation 7.01 4.07 5.56 486.74 9.35 6.22 2.54 
Sample Variance 49.19 16.57 30.92 236912.00 87.45 38.73 6.46 
Kurtosis -1.42 -1.25 0.44 -1.10 -0.99 -0.78 -0.42 
Skewness -0.25 0.56 0.74 0.36 -0.39 -0.50 -0.61 
Range 22.80 12.00 26.00 1800.00 34.40 23.00 13.20 
Minimum 31.60 11.00 0.00 5600.00 33.70 27.00 7.80 
Maximum 54.40 23.00 26.00 7400.00 68.10 50.00 21.00 
Count 200.00 200.00 200.00 200.00 200.00 200.00 200.00 
Largest 54.40 23.00 26.00 7400.00 68.10 50.00 21.00 
Smallest 31.60 11.00 0.00 5600.00 33.70 27.00 7.80 

 
 

Table 2. Pearson correlation 
 Pin Tin Tamb Pt.rpm Pout Tdis q 

pin 1.00       
tin 0.76 1.00      
tamb 0.65 0.62 1.00     
no -0.46 -0.10 -0.06 1.00    
pt.rpm -0.19 -0.09 -0.27 -0.38 1.00   
pout 0.95 0.77 0.65 -0.28 -0.15 1.00  
tout 0.59 0.79 0.48 0.03 0.20 0.76 1.00 
q -0.49 -0.12 -0.11 0.79 0.05 -0.37 0.01 
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defined (equation 4) just considering the 
thermodynamical relationships between the input 

parameters (Pin, Tin, Tamb, no, Pt.rpm) and the values for 
each output parameters (Pout, Tout , q) are fitted on this 

Table 3. The software outputs 
NMse Mse R Square Transfer function for the 

second hidden layer  
Neurons of the second 

hidden layer 
Transfer function for 
the first hidden layer  

Neurons of the first 
hidden layer 

0.0227 0.0054 0.9754 Tanh 4 Tanh 4 
0.0220 0.0052 0.9775 Sigm 
0.0138 0.0033 0.9847 Tanh 6 
0.0153 0.0037 0.9827 Sigm 
0.0088 0.0021 0.9910 Tanh 8 
0.0113 0.0027 0.9892 Sigm 
0.0050 0.0012 0.9944 Tanh 12 
0.0076 0.0018 0.9934 Sigm 
0.0263 0.0063 0.9712 Tanh 4 Sigm 
0.0316 0.0075 0.9655 Sigm 
0.0140 0.0033 0.9855 Tanh 6 
0.0209 0.0049 0.9771 Sigm 
0.0140 0.0033 0.9857 Tanh 8 
0.0112 0.0027 0.9866 Sigm 
0.0054 0.0013 0.9948 Tanh 12 
0.0055 0.0013 0.9948 Sigm 
0.0145 0.0034 0.9851 Tanh 4 Tanh 6 
0.0189 0.0045 0.9799 Sigm 
0.0088 0.0021 0.9912 Tanh 6 
0.0065 0.0015 0.9930 Sigm 
0.0049 0.0011 0.9958 Tanh 8 
0.0066 0.0016 0.9936 Sigm 
0.0037 0.0009 0.9962 Tanh 12 
0.0036 0.00009 0.9970 Sigm 
0.0176 0.0042 0.9805 Tanh 4 Sigm 
0.0154 0.0037 0.9821 Sigm 
0.0103 0.0025 0.9888 Tanh 6 
0.0101 0.0024 0.9884 Sigm 
0.0064 0.0015 0.9763 Tanh 8 
0.0055 0.0013 0.9952 Sigm 
0.0038 0.0009 0.9956 Tanh 12 
0.0035 0.0008 0.9968 Sigm 
0.0085 0.0020 0.9916 Tanh 4 Tanh 8 
0.0101 0.0024 0.9922 Sigm 
0.0047 0.0011 0.9952 Tanh 6 
0.0047 0.0011 0.9944 Sigm 
0.0036 0.0009 0.9978 Tanh 8 
0.0033 0.0008 0.9974 Sigm 
0.0013 0.0003 0.9986 Tanh 12 
0.0026 0.0006 0.9994 Sigm 
0.0074 0.0018 0.9930 Tanh 4 Sigm 
0.0083 0.0019 0.9914 Sigm 
0.0065 0.0016 0.9932 Tanh 6 
0.0144 0.0034 0.9859 Sigm 
0.0030 0.0007 0.9976 Tanh 8 
0.0043 0.0010 0.9970 Sigm 
0.0016 0.0038 0.9998 Tanh 12 
0.0129 0.0031 0.9932 Sigm 
0.0032 0.0008 0.9964 Tanh 4 Tanh 12 
0.0050 0.0012 0.9952 Sigm 
0.0023 0.0005 0.9988 Tanh 6 
0.0023 0.0006 0.9992 Sigm 
0.0011 0.0003 0.9986 Tanh 8 
0.0012 0.0003 0.9988 Sigm 
0.0002 0.00005 0.9992 Tanh 12 
0.0003 0.00008 0.9988 Sigm 
0.0049 0.0018 0.9954 Tanh 4 Sigm 
0.0047 0.0012 0.9956 Sigm 
0.0036 0.0009 0.9978 Tanh 6 
0.0025 0.0006 0.9998 Sigm 
0.0026 0.0006 0.9964 Tanh 8 
0.0013 0.0003 0.9990 Sigm 
0.0008 0.0002 0.9992 Tanh 12 
0.0003 0.00006 0.9998 Sigm 
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solution will be 1 or 2. The proposed network outputs 
that determined by neuro solution 5. and also the 20 
operational points  can be seen in the Table 12. 

For example, if an operator wants to run one 
compressor with which 6600RPM for the operational 
conditions including the input pressure 46 bar, input 
temperature 15°c and the ambient temperature 13°c, then 
the output pressure and temperature and the flow rate 
passing through the compressor by the ANN would be 
respectively modeled as 55.99 bar, 39.18°c and 11.36 
MMCD and whether two compressors are run in 5800 
RPM with the same those mentioned input conditions 
then the model output would be respectively 56.98 bar, 
39.19°c and 15.46 MMCD. 

The compressor head, poly-tropic efficiency and its 
driver's fuel consumption for each of the operational 

data given in the Table 12 can be thermodynamically 
calculated by the equations [15,16,17]. 

 
2

2
pH Q QA B C

S S S
   = + +   
   

                    (15) 

1

2

k
k

dis
suc suc

suc
p

dis suc

PT T
PQ QD E F

S S T T
η

−

 
× − 

     = + + =    −   
      (16) 

 
1

510 1 1

k
k

dis
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suc

M T P

P kQP P k
FC

HV

α

η η η

−  
   × −  −     =
× × ×

     (17) 

 

Table 11. Performance of each estimator 
 Mse Average Absolute error 
Estimator model Pout Tout Q Pout Tout Q 
Logarithmic curve fitting 50.32 26.91 4.95 6.11 4.24 1.88 
ANN (perceptron) 1.22 1.26 0.46 0.83 0.89 0.49 
Ridge regression 4.43 5.54 1.68 1.57 1.95 1.01 

 

Table 12. The proposed network outputs 
Working point pn tin tmb no Pt.rpm pout tout q 

1 46 15 13 1 6600 55.99116 39.1847 11.35873 
2 46 15 13 2 5800 56.97998 39.1929 15.45717 
3 41.8 14 12 1 5700 45.9967 27.13791 10.93688 
4 41.8 14 12 2 5500 46.88801 29.64939 17.80682 
5 46.1 16 17 1 6800 57.40835 43.16096 11.60754 
6 46.1 16 17 2 5700 57.87845 40.50694 14.27565 
7 44.1 17 11 1 6800 56.26898 44.84222 10.75519 
8 44.1 17 11 2 6300 59.61326 47.71606 14.48764 
9 47.9 18 12 1 6200 56.93267 38.67555 11.56409 
10 47.9 18 12 2 5800 61.96017 44.57932 13.99417 
11 49.1 14 14 1 6100 54.65499 31.23981 12.67964 
12 49.1 14 14 2 5600 56.64087 33.69328 17.49114 
13 41.5 16 10 1 6000 50.24671 37.6776 8.0661 
14 41.5 16 10 2 5700 53.53144 40.4583 13.00016 
15 42.3 17 12 1 6400 53.56963 43.11186 8.595982 
16 42.3 17 12 2 6000 57.4423 46.63514 12.11301 
17 48.9 24 13 1 6700 56.94215 44.1238 13.12955 
18 48.9 24 13 2 5800 59.59073 44.95882 16.29717 
19 51.3 20 23 1 7100 57.48579 43.06732 16.73196 
20 51.3 20 23 2 6000 65.4207 46.38069 18.10121 

 
Table 13. Poly tropic efficiency regression  coefficients of under studied turbo compressors 

Compressor 1 ( ) ( )2

0.559 0.297 0.122p
Q Q

S Sη = + −  

Compressor 2 ( ) ( )2

0.669 0.135 0.071p
Q Q

S Sη = + −  

Compressor 3 ( ) ( )2

0.611 0.215 0.092p
Q Q

S Sη = + −  
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Estimating of each under study compressor's poly-
tropic efficiency regression  coefficients (Ai,Bi,Ci) 
would be carried out via equation [16] and applying 100 
operational working points (Tsuc,Tdis,Psuc,Pdis,Qac,S) 
associated to every turbo compressor by curve fitting 
tool in SPSS software. The poly-tropic efficiency of 
each compressor is listed in the Table 13. 

It should be noticed that the flow rate (q) in the 
Table 12 is measured in MMSCD which must be 
converted to the actual volumetric cubic meter per an 
hour and then used it in Formula 17. The Formula 18 
has been used to yield the conversion. 

 

( )1.013 273.15
3600

0.0864 288
st suc

ac
suc

Q T z
Q

P
× × + ×

= ×
× ×    

(18)
 

 
The obtained values of the compressor head, poly-

tropic efficiency and their driver's fuel consumption for 
each of the 20 working points of the Table 12 are totally 
listed in the Table 14. 

The following ideas are derived from the Table 14 at 
a glance: 

1. Generally speaking, there has been relatively 
more head value that produced by one compressor than 
two compressors (working points marked by odd 
numbers in Table 14) which be put into operation under 

 
Table 14. Values of the compressors head, poly tropic efficiencies and their driver's fuel consumptions 

Working point Flowrate Comp.1 Comp.2 Comp.3 
Hp η p FC Hp η p FC Hp η p FC 

1 9952.572 
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20 7,234.27 26630.64 0.7 1132.16 26228 0.73 1149.544 26513.42 0.74 1137.17 
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the same working conditions. It should be paid attention 
that more head generated by centrifugal compressors is 
very operationally important to be dynamically more 
stable. 

2. It would be more flow rate passing through by 
running two compressors (working points marked by 
even numbers in Table 14) under the same operating 
conditions, although it will results in increasing the fuel 
consumed by gas turbines. 

Consequently, concerning the two mentioned 
notifications above, it could be faced two scenarios just 
regarding the importance account of the head and 
supplying the flow rate. One scenario is about to select a 
compressor running at high speed for gaining higher 
head along with dynamically steady state performance 
,and the other one is about to select two compressors to 
provide more flow rate. Expectedly, these two scenarios 
followed by their own practical benefit and loss. 
Generally, one compressor running at high speed, 
concludes the more flame temperature in turbine's 
combustor chamber which this can along with so much 
load on the compressor lead to parts deterioration and 
results in earlier system overhaul time. In the second 
scenario, each compressor running at lower speed could 
totally.Yielding more flow rate and additionally to get 
better poly-tropic efficiencies for compressors but the 
turbines fuel consumption would attentively increase. 

In order to normally and easily comparing the 
compressor's behavior for every operating points, it is 
suggested to define a measuring scale (equation [19]) 
named as "positive energy meter" (just shown as PEM 

hence forth) which its values will be calculated for each 
working points. Consequently, based on the previous 
operational working conditions of each compressor, the 
machine with the more PEM would be selected to be 
turned on to service. Indeed, this index calculates the 
internal energy added to the unit mass of gas flow 
(head) per a cubic meter fuel consumption in an hour. 

 
Headpositive energy meter    ,   (joule hour per cubic meter kilogram)

Fuel  Consumed
=

 (19) 
 
PEM values for each point of the Table 14 are 

gathered in the Table 15. 
Now, the compressor operating points could be 

mapped for each machine. Actually, this graph which is 
very important to control the steady state of the dynamic 
compressor would define the head produced by 
compressor for the amount of different passing flow 
rates from it. As an example, if the operating points of 
the Table 14 that labeled by odd numbers are considered 
for compressor no.1, then its head-flow graph would be 
plotted just shown as in Figure 7. 

If this graph is supposed to be plotted for the 
operating points that labeled by even numbers in the 
Table 14 then the head-flow graph for compressors 
no.1and 2 would be plotted as indicated in Figure 8. 

Thus, if those determined compressor's head-flow 
points in Figures 7, 8 are being compared with the 
compressor performance map (Fig. 9) then it could be 
perceived that the compressor working points are 

Table 15. PEM values for each point 
 PEM 

Working point Comp.1 Comp.2 Comp.3 
1 27.77 26.39 27.51 
2 29.73 28.96 29.50 
3 39.89 38.15 40.22 
4 41.83 39.72 41.49 
5 25.79 24.52 25.54 
6 29.03 28.53 28.88 
7 25.15 23.95 24.89 
8 26.18 25.87 26.09 
9 26.65 25.29 26.46 

10 26.71 26.53 26.67 
11 37.24 35.38 37.17 
12 36.84 35.48 36.46 
13 33.93 32.59 33.57 
14 28.52 27.97 28.36 
15 29.26 28.16 28.96 
16 27.63 27.70 27.69 
17 29.81 28.30 29.70 
18 29.63 28.77 29.38 
19 32.70 31.36 33.08 
20 23.52 22.82 23.32 
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consumed for driver (gas turbine) and the depreciation 
cost of the parts. The ANN modulation tool with a 
suitable structure as a reliable predictor data bank can 
be helpful for operators to optimally select the machines 
and it would be also effective to determine the 
compressor's dynamical performance conditions. In this 
research, it has been clearly justified  that the real 
existing operational conditions is not generally good 
enough for the steady state dynamical operation. So, it 
needs to be more paid attention to specially  supply the 
input pressure for the steady state operation of 
centrifugal compressors. The following research could 
be pursued for future study: 

1. It could be appointed to calculate the input 
pressure of compressor by fuzzy neural network to meet 
the dispatcher demand based on supplying the output 
pressure limit and passing the needed flow rate from 
each compressor ,thus considering the power equation 
(in order to pass the load)  it then would be estimated 
the number of machines to be run along their dedicated 
speeds. 

2. Hence there is usually the operational input 
pressure lower than the needed enough to steady state 
working condition for centrifugal compressor which it 
will result to increase the gas velocity to the sonic 
velocity in the compressor's impeller ,therefore it is 
offered to determine the erosion velocity variation due 
to input pressure fluctuation by the ANN. 
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Nomenclature 
A,B,C,D,E,F Regression coefficients Pout Gas station outlet pressur Tsuc Compressor input temperature 

FC Fuel consumption Psuc Compressor suction 
pressure 

Z Compressibility coefficient 

HP Compressor poly tropic head  Pt.rpm Lp turbine speed α Power corrective coefficient 

HV Heating value q, Q Flow rate ηm Lp tubine mechanical 
efficiency 

k Poly tropic index Qac Real flow rate ηp Compressor poly tropic 
efficiency 

MSE Mean of standard error Qst Standard flow rate ηt Hp turbine thermal efficiency 

MAE Maximum absolute error R2 Regression R square λmax Maximum eigenvalue 

NMSE Normal mean of standard 
error 

S Compressor speed λmin Minimum eigenvalue 

no Number of compressor Tamb Ambient temperature   

Pdis Compressor output pressure Tdis 
Tout 

Compressor output 
temperature 

  

Pin Gas station inlet pressure Tin Gas station inlet 
temperature 

  

 


