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Abstract 

In this work, the entanglement of a superposition of bipartite qubit coherent states 
with non-phased coherent parameters is studied. We use Generalized-concurrence as the 
measure to quantify the entanglement and drive analytical results in terms of the 
effective parameters involved. Analyzing the results, we conclude that such states may 
attain maximum entanglement or no entanglement at all, depending on the choice of the 
parameters involved. 
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Introduction 
Entanglement is one of the most interesting and 

mysterious phenomena in the world of quantum 
mechanics. This phenomenon, which has become 
one of the most important and interesting topics in 
the quantum information theory in recent decades, 
was first introduced in 1935 by Schrödinger [1]. 
Entanglement has very important applications in 
the field of quantum information processing theory 
[2, 3], like quantum computing, quantum 
teleportation and quantum cryptography [4-8]. 
Recently, entangled coherent states have also 
found many applications in quantum information 
theory. In this paper, we study the entanglement of 
the superposition of the bipartite qubit spin 
coherent states with non-phased coherence 
parameters using the generalized concurrence as 
the entanglement measure. Numerical studies are 
the approach that is usually taken to calculate the 

entanglement of the quantum states. However, 
analytical computations and discussions of the 
results have always been of great importance in 
physics. Such analytical studies are means of 
understanding of the concepts related to various 
physics problems; this is the approach we take in 
this work. 

 
Materials and Methods 

Generalized concurrence measure  
Among the most widely used measures for 

analyzing the degree of entanglement of bipartite 
systems, are concurrence and the generalized 
concurrence [9, 10]; the latter is in fact a 
generalization of concurrence [11, 12] for systems 
with dimensions greater than two. It is defined for 
a bipartite system consisting of A and B parts as 
follows [9]. 
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2( ) 2(1 )ψ ρ= −AB
AIC tr                           (1) 

 
In this relation, Aρ , is the reduced density 

matrix of subsystem A  and is given by  
AB AB

A Btrρ ψ ψ=
                      

                 
(2) 

 
we may expand the state of such a system in 

terms of computational bases, in the related Hilbert 
space, 

,
,

,AB A B
i j

i j

c i jψ =    

Where ψjic ji ,:, = . Then, it can be shown 
that generalized concurrence is obtained in terms 
of the expansion of coefficients in relation (2) as 
follows [13]. 

 
2

, , , ,
,

( ) 2ψ ′ ′ ′ ′
′ ′> >

= −AB
i j i j i j i j

i i j j

IC c c c c      (3) 

 
The generalized concurrence defined in 

relations (1) and (3) can be used as a measure of 
entanglement for bipartite systems of arbitrary 
dimensions. The minimum of its value for a 
separable state is equal to zero, and the maximum 
for entangled bipartite systems with arbitrary 
dimensions d is equal to 2( 1) /d d− . For 
example, the maximum amount of this measure for 
entangled qubits and qutrits is 1 and ඥ4 3⁄ , 
respectively 

 
Density matrix of superposed coherent states and 
generalized concurrence 

The general form of the spin coherent states, 
also known as Radcliffe states, is expressed as 
follows [13] 

1
2

2

21, ,
(1 )

j
j m

j
m j

j
j j m

m j
α α

α
+

=−

 
=  ++  

       

(4) 
 
where mj,  are the eigenstates of angular 

momentum operator. For 1
2

j =   

( )
1

2 2

1 0 1
1

α α
α

 = + 
+

         (5) 

 
 we use the following definitions 

1 1 1 1 10 : , , 1 : , , ,
2 2 2 2 2

α α= − = =          

(6) 
 
To study the entanglement of coherent states, 

we must consider a superposition of these states. 
One of the purely entangled states of the two 
qubits, which consists of the superposition of 
separable coherent states, can be written as follows 

 

( ) ( )1 [ ]iCos e Sin
N

φχ θ α β θ α β′ ′= ⊗ + ⊗    

(7) 
 
Using relation (5), we calculate α , β , α′ , 

β′ and put them in relation (7) 

1 2 3 400 01 10 11M M M Mχ = + + +        
(8) 

 
In which we use the following definitions: 
                       

[ ] [ ]

[ ] [ ]
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         (9-a) 

 

( ) ( )

( ) ( )

1/2 1/22 2

1/2 1/22 2

cos

1 1

sin

1 1

ie φ

θη
α β

θκ
α β

=
+ +

=
′ ′+ +

                               (9-b) 

 
In order to calculate generalized concurrence 

for the state introduced in relation (8), we must 
obtain a reduced density matrix of Aρ  based on 
relation (1). To calculate the reduced density 
matrix, we first compute the density matrix of the 
state introduced in relation (8) as follows          

2 * * *
1 1 2 1 3 1 4

2* * *
2 1 2 2 3 2 4

2* * *
3 1 3 2 3 3 4

2* * *
4 1 4 2 4 3 4

00 00 00 01 00 10 00 11

01 00 01 01 01 10 01 11

10 00 10 01 10 10 10 11

11 00 11 01 11 10 11 11

M M M M M M M

M M M M M M M

M M M M M M M

M M M M M M M

ρ χ χ= = + + +

+ + + +

+ + + +

+ + + +
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              (10) 
 
In which the Hilbert space bases for this two-

qubit system are defined as follows 
 

1 0 0 0
0 1 0 0

00 , 01 , 10 , 11
0 0 1 0
0 0 0 1

       
       
       
       
       
       

    

(11) 
 
By inserting the computational bases of relation 

(11) in relation (10) we have a density matrix 
 

2 * * *
1 1 2 1 3 1 4

2* * *
2 1 2 2 3 2 4

2* * *
3 1 3 2 3 3 4

2* * *
4 1 4 2 4 3 4

M M M M M M M

M M M M M M M

M M M M M M M

M M M M M M M

ρ

 
 
 
 
 
  
 

       

(12) 
 
Finally, after calculating the reduced density 

matrix, Aρ , generalized concurrence is obtained 
using  relation (1) for the state introduced in 
relation (8) as follows 

 

( ) ( )

( ) ( )

2 22 2 * *
1 2 1 3 2 4

1/2
22 2 2* *

3 1 4 2 3 4

2 1IC M M M M M M

M M M M M M

  = − + + +  

+ + + +   

             

(13) 
 
Now, using the relation (13), we can investigate 

the effect of different coherence and superposition 
parameters on the entanglement of superposed 
coherent states. 

 

Results and Discussion 
Analytical solutions for entanglement of 
superposed coherent states  

 To consider a combination of real and 
imaginary parameters, we insert the values of 
α α′ = −i and iβ β′ = −  in relation (7), we will 
examine the generalized concurrence obtained in 
relation (13) for different values ofα , β ,θ  and φ . 
We consider several cases as follows: 

Case 1:  For 0φ =  and 
4
πθ = , These are 

among the values obtained by maximizing the 
relation (13) in terms of superposition parameters, 
By analytical calculations for the generalized 
concurrence in relation (13), we have, 

 

2 2

2
2

IC
αβ

α β
=

+ +
                             (14) 

 
Where, its variations and its contour are 

displayed in Figures 1 and 2 respectively. 
According to our expectations, expect for α and β  
or both being zero, the state introduced in relation 
(8) is entangled. 

Case 2: For β α= , generalized concurrence in 
relation (13) in terms of α ,θ  and φ  leads to the 
following analytical solution, 

 
2

4 2

2 sin 2
( 2 1)

IC
α θ

α α δ
=

+ + +
                             (15) 

 
Where, δ  is defined as follows 

2 4Sin 2 [2 Sin Cos (1 )]δ θ α ϕ ϕ α= + −  
Now, by fixing one of the parameters in relation 

(15), we can examine the variations of generalized 
concurrence for different values of the other two 
parameters. Assuming 0ϕ = in relation (15), we 
plot the variations in generalized concurrence as a 
function of α  and θ  in Figure 3. For (2 1)

4
n πθ = +  

and 0α ≠ , we obtain the largest value, while, for 

2
nπθ = and any α  the concurrence is zero. We note 

that for the latter choices the state introduced in 
relation (7) will turn to a separable state. We have 
displayed related graphs for 0ϕ =  in Figure 3. 

By inserting 
4
πθ =  in relation (15), we have 

plotted the variation of generalized concurrence as 
a function of α  and ϕ  in Figure 4. It is observed 
that the generalized concurrence as a functions of 
α  and ϕ , varies between 0 and 1. We also note 
that, for 0α = and any ϕ , the generalized 
concurrence is 0. We have plotted the relevant 
graphs in Figure 4. 

Finally, by inserting 1α =  in relation (15), we 
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