![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,076 |
تعداد مشاهده مقاله | 125,703,540 |
تعداد دریافت فایل اصل مقاله | 98,937,249 |
ساخت و ارزیابی یک نانوحسگر pH مبتنی بر روش طیف سنجی امپدانس الکتروشیمیایی به منظور استفاده در سامانه پایش شکمبه گاو | ||
مهندسی بیوسیستم ایران | ||
مقاله 1، دوره 51، شماره 2، تیر 1399، صفحه 235-245 اصل مقاله (1.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2020.295667.665261 | ||
نویسندگان | ||
ایرج بگوند1؛ محمود امید* 2؛ طاهر علیزاده3؛ حسین موسی زاده4 | ||
1دانشجوی دکتری رشته مهندسی مکانیک بیوسیستم گرایش طراحی ماشین های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، ایران | ||
2استاد گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران کرج ایران | ||
3استاد گروه الکتروشیمی، دانشکده شیمی، دانشگاه تهران، ایران | ||
4دانشیار گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، ایران | ||
چکیده | ||
بکارگیری روشهایی برای پایش pH شکمبه و حفظ آن بین 5/5 تا 7 ضروریست. هدف از این پژوهش، ساخت یک نانوحسگر pH مبتنی بر روش طیفسنجی امپدانس الکتروشیمیایی، EIS، بهمنظور استفاده در سامانه پایش pH شکمبه گاو میباشد. نانولولههای تکدیواره (SWNT) با گروههای کربوکسیل (COOH) و نیز، با گروههای آمین (NHRNH2) عاملدار شدند. الکترود شانهای با یک قطره از محلول حاصل از پخش یک نسبت معین از COOH-SWNT و NHRNH2-SWNT در محلول PECH در THF، پوشش داده شده و الکترود حاصل به عنوان الکترودکاری در آزمایشات EIS بر روی نمونه های آزمایشگاهی و نمونه واقعی (مایع شکمبه ای)، که به صورت محلولهای بافر تنظیم شده در pH های مختلف درآمده بودند، استفاده شد. در نهایت هر آزمایش با اعمال پتانسیل متناوب 20mV (0.1Hz-1MHz) انجام پذیرفت. الکترود ساخته شده به pH حساس بوده و با افزایش pH، مقدار امپدانس، بهصورت خطی، برای نمونههای واقعی، افزایش (R2 = 0.99، Freq.= 0.4Hz) یافت. | ||
کلیدواژهها | ||
اسیدوز شکمبه ای؛ pH شکمبه ای؛ نانوحسگر pH؛ نانولوله های تکدیواره؛ طیف سنجی امپدانس الکتروشیمیایی | ||
مراجع | ||
Alizadeh, T., & Jamshidi, F. (2015). Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. Journal of Solid State Electrochemistry. 19 (4): 1053-1062. Folkertsma, L., Gehrenkemper, L., Eijkel, J., Gerritsen, K., & Odijk, M. (2018). Reference-Electrode Free pH Sensing Using Impedance Spectroscopy, In: The Eurosensors 2018 Conference. 9–12 September. Graz, Austria. 2(13): 63-72. Halliwell,J., Savage, A.C., Buckley, N. & Gwenin, D.G. (2014). Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sensing and Bio-Sensing Research. 2:12-15. Jung, D., Han, M.E., & Lee, G.S. (2014). pH-sensing characteristics of multi-walled carbon nanotube sheet, Materials Letters. 116 :57–60. Lin, X. (2009). Evaluation of Kahne rumen sensors in fistulated sheep and cattle under contrasting feeding conditions, M.Sc. Thesis, Massey University, Palmerston North, New Zealand. Liu, L., Shao, J., Li, X. (2016). High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs, Applied Surface Science. 386: 405–411. Krause, K.M. & Oetzel, G.R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Animal Feed Science and Technology, 126(3):215-236. Manjakkal, L., Synkiewicz, B., Zaraska, K., Cvejin, K., Kulawik, J. & Szwagierczak, D. (2016). Development and characterization of miniaturized LTCC pH sensors with RuO2 based sensing electrodes. Sensors and Actuators. B: Chemical, 223: 641-649. Mottram, T., Lowe, J., McGowan, M. & Phillips, N. (2008). Technical note: a wireless telemetric method of monitoring clinical acidosis in dairy cows. Computers and Electronics in Agriculture. 64:45–48. Gou, P., Kraut, N.D., Feigel, L.M.Star, A. (2014). Carbon nanotube chemiresistor for wireless pH sensing, Scientific Reports. 4: Article number: 4468. Penner, G.B., Beauchemin, K.A., & Mutsvangwa, T. (2006). An evaluation of the accuracy and precision of a stand-alone submersible continuous ruminal pH measurement system. Journal of Dairy Science. 89: 2132–2140. Phillips, N., Mottram, T., Poppi, D., Mayer, D., & McGowan, M.R. (2010). Continuous monitoring of ruminal pH using wireless telemetry, Animal Production Science. 50:72–77. Qin, Y., Kwon, H.J., Subrahmanyam, A., … (2016). Inkjet-printed bifunctional carbon nanotubes for pH sensing. Materials Letters. 176: 68–70. Ramanathan, T., Fisher, F.T., Ruoff, R.S., & Brinson, L.C. (2005). Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chemistry of Materials. 17(6):1290-1295. Sato, S., Mizuguchi, H., Ito, K., Ikuta, K., Kimura, A. & Okada, K. (2012). Technical note: Development and testing of a radio transmission pH measurement system for continuous monitoring of ruminal pH in cows, Preventive Veterinary Medicine. 103:274–279. Sato, S. (2016). REVIEW ARTICLE: Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Animal science journal. 87:168–177. Takeda, S., Nakamura, M., Ishii, A., Subagyo, A., Hosoi, H., Sueoka, K., & Mukasa, K. (2007). A pH sensor based on electric properties of nanotubes on a glass substrate, Nanoscale research letters. 2:207–212. Wang, Y.B., Iqbal, Z., Malhotra, S.V. (2005). Functionalization of carbon nanotubes with amines and enzymes. Chemical physics letters. 405: 96–101.
| ||
آمار تعداد مشاهده مقاله: 338 تعداد دریافت فایل اصل مقاله: 335 |