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ABSTRACT: In this paper, the formulation of a modified applied element method for linear 

analysis of structures in the range of small and large deformations is expressed. To calculate 

deformations in the structure, the minimum total potential energy principle is used. This 

method estimates the linear behavior of the structure in the range of small and large 

deformations, with a very good accuracy and low analytical time. The results show that 

analysis of a console beam by proposed method, even with minimum numbers of elements, 

in range of small deformations, has a computation error of less than 2%. Meanwhile, solving 

the same problem by Applied Element Method (AEM), has more than 31% error. Also, the 

buckling and post-buckling behavior of the structure, within the range of large deformations, 

is well-suited. So, with minimum number of elements, and very high accuracy, the buckling 

behavior of the fixed-base column was simulated. Also, the computational time of the 

proposed method is less than 40 percent of the computational time in the application of the 

applied elements method with 10 series of connection springs. 

 

Keywords: Applied Element Method, Linear Analysis, Minimum Total Potential Energy 

Principle, Small And Large Deformations. 

 

 

INTRODUCTION 

 

Many studies have been conducted on 

analytical and efficient methods for the 

accurate simulation of the progressive 

collapse mechanism. Among these studies, 

some researches in this field can be cited 

(Tavakoli and Kiakojouri, 2013, 2014; 

Tavakoli and Akbarpoor, 2014). Also in the 

last two decades, methods based on discrete 

elements have grown dramatically. Various 

branches of Distinct Element Method (DEM) 

family developed. DEM was proposed by 

Cundall in 1971 (Zhang et al., 2019). 

Generalized Discrete Element Method 

(Williams et al., 1985), Discontinuous 

Deformation Analysis (DDA) (Shi, 1992) and 

the Finite-Discrete Element Method (Munjiza 

et al., 1995), concurrently developed by 

several groups. Distinct Element method was 
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originally developed by Cundall in 1971 to 

analysis rock mechanics problems (Zhang et 

al., 2019). The theoretical basis of this 

method was established by Sir Isaac Newton 

in 1697 (Bićanić, 2017).  Williams et al. 

(1990)  showed that discrete element method  

could be viewed as a generalized finite 

element method and described its application 

to geomechanics problems. Today distinct 

element method  is widely accepted as an 

effective method of addressing engineering 

problems in granular and discontinuous 

materials, especially in granular flows, 

powder mechanics, and rock mechanics 

(Govender et al., 2016). Recently, the method 

was expanded into the Extended Discrete 

Element Method (EDEM) taking 

thermodynamics and coupling to 

Computational Fluid Dynamics (CFD) and 

Finite Element Method (FEM) into account 

(Alizadeh et al., 2019). 

First, rigid body and springs method was 

introduced (Kawai, 1980). This method 

simulates cracking in a simpler way than the 

finite element method. But the growth path of 

the cracks in this method essentially depends 

on the shape, size and arrangement of the 

elements. (Ueda and Kambayaashi, 1993; 

Soltani and Moshirabadi, 2019). Then 

Meguro and Hakuno (1989) developed 

modified discrete element method. It was 

good to follow the extreme non-linear 

behavior of the structure. But in some cases, 

the accuracy was not enough and compared 

with the finite element method and rigid body 

and springs method, it required a relatively 

longer CPU time. Meguro and Tagel-Din 

(1997) presented the Applied Element 

Method. This method, with simple 

formulation, can follow the behavior of the 

structure with high accuracy and acceptable 

computational time from the initial stages of 

loading to the destruction stages. But it is less 

accurate than, FEM, in the range of small 

deformations (Gohel et al., 2013). Therefore, 

in order to overcome this problem, more 

number of elements with smaller size should 

be used, which will increase the 

computational time. In addition, due to the 

nature of the rectangularity of the elements, 

the path of crack growth, is depended on the 

shape, size, and arrangement of the elements 

(Worakanchana and Meguro, 2008). Applied 

Element Method, is a new method for 

structural analysis, that combines traits of 

both the Finite Element Method and Discrete 

Element Method (DEM). FEM can be 

accurate until element separation, while DEM 

can be used when elements are separated 

(Shakeri and Bargi, 2015) . 

Today, a wide range of research is 

conducted on the progressive collapse 

analysis by AEM. This includes simulation of 

an industrial building demolition (Simon and 

Dragomir, 2013), theoretical research on 

progressive collapse of Reinforce Concrete 

(RC) frame buildings (Lupoae and 

Constantin, 2013), and even progressive 

collapse analysis of existing building 

(Prionas, 2016). 

In applied element method, the structure is 

considered as a set of discrete elements. 

Unlike the FEM, instead of the principle of 

minimum total potential energy, the concept 

of equilibrium and hardness matrix are used 

to solve the problem. Therefore, it is less 

accurate in the range of small deformations 

(Liu and Piemoz, 2016). To overcome this 

problem, the number of elements and springs 

between the elements should be increased, 

which will increase the computational time of 

this method. However, due to the assumption 

that structural materials are discrete in this 

method, the simulation of structural behavior 

in the range of large deformations and 

cracking is much simpler than the FEM, 

which makes it possible to model the 

destructive and post-destructive behavior of 

the structure with less computational time 

(Borja and Thomas, 2015). 

The proposed modified applied element 

method, applies two effective modifications 
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to the applied element method. First, due to 

the use of the principles of minimum total 

potential energy instead of equilibrium 

concept, has a better performance than the 

applied element method. Also the concept of 

side elements was developed to more 

accurately model the structure, especially 

when it is going to model the structure with 

few elements. Using this method, the outer 

half of the elements adjacent to the structural 

boundary are included in the modelling, 

whereas in the conventional modelling 

method, this part of the elements is not 

included in the modelling. Therefore models 

that are performed by this method, especially 

when the size of the elements are large, will 

be far more accurate than the conventional 

models. As a result, this method yields more 

accurate answers with fewer elements and 

lower computational time. Also, due to the 

use of discrete elements, structural behavior 

can be easily tracked in the stages of large 

deformation, cracking and failure. Even in the 

large deformation range, it is more accurate 

and faster than the applied element method 

due to the use of the principles of minimum 

potential total energy and fewer springs. 

In this paper, first, the formulation of the 

modified applied element method is 

expressed for linear materials and small 

deformations. Then, the corrections needed to 

simulate large deformations are expressed. 

To investigate the results within the range of 

small deformations, a sensitivity analysis will 

also be presented on the effect of the number 

of elements, and the results will be compared 

with the applied element method. In the 

following, three examples, including a simple 

support beam, a two-bar truss, and a fixed-

based column, are considered in the range of 

large deformations analysis. The verification 

of the proposed method is done by comparing 

the results obtained with the theoretical 

values. 

  

 

FORMULATION OF MODIFIED 

APPLIED ELEMENTS METHOD  
 

Analysis of Small Deformations 

This article is concerning to implement 

Applied Element Method for analysis of 

structures in the range of either small or large 

deformations. To this end, the domain of the 

structure is divided into some rigid parts 

(elements), which are connected with the use 

of some linear springs at their boundaries 

covering axial, shear and bending behavior of 

the structure. The total energy (the sum of 

internal energy and the work done by the 

external forces) is considered as the target 

functional to be minimized. As a result the 

displacements/rotations of different nodes are 

the primary unknowns in their analysis. Thus, 

a system of algebraic equations should be 

primarily solved to obtain the 

displacements/rotations of different nodes. 

The large deformations have been carried out 

by dividing the nonlinear problem into some 

consequently linear deformations as usual. 

Figure 1 shows the elements arrengment of 

the structure and the connection of the 

elements by the springs. 

The spring between the two elements 

represents the forces and deformations 

between the two adjacent elements. Its axial, 

shear and bending stiffness, obtained from 

Eq. (1). The effect zone of the spring between 

the two elements is also shown in Figure 1.  
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where Kn, Ks  and Kθ: are the axial, shear and 

bending stiffness of the springs, respectively. 

t: is the thickness of the element, b: represents 

element's width, a: represents element's 

length,  E and G: represent the modulus of 

elasticiy and the shear modulus of the 

material, respectively. These relationships 

indicate that spring stiffness represents the 

properties of materials. 
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Fig. 1. Modeling of structure in modified applied element method 

 

For better modeling of the structure, the 

concept of side elements was developed in 

this method. This concept has been developed 

due to the effect zone of the springs on the 

side elements of the structure. As shown in 

Figure 1, in the middle elements only half of 

the element is modeled by a spring coneccted 

to the adjacent element. Therefore, if the side 

elements are not used, the other half of the 

element will not be modeled by springs and 

therefore the correct model of the structure 

will not be presented. Therefore, the concept 

of side elements is developed. The degrees of 

freedom, and the corresponding positive 

directions, are given in Figure 1. 

According Figure 2 i   and i   represent 

the variations of the axial and shear 

displacments of ith element under angle  , 

and δi and εi, are the variations of the 

horizontal and vertical displacments of ith 

element, and θi is the rotation of ith element. 

a: is also the size of the element. For 

calculating i   and i  , Eqs. (2a) and (2b) are 

used in terms of δi and εi. 

 

cos( ) sin( )i i i          (2a) 

cos( ) sin( )i i i          (2b) 

 

Given the fact that each element has three 

degrees of freedom on the plane, which 

includes the horizontal, vertical, and bending 

degree of freedom, the deformation of the 

springs between the two elements can be 

expressed in terms of these degrees of 

freedom of  two adjacent elements. 

According to Figure 1, and given the positive 

direction of degrees of freedom agreement, 

axial, shear and bending deformation of 

springs can be calculated in the range of small 

deformations as follows. Axial deformation, 

is related to the connecting springs of 

elements i and j (Eq. (3)). 

 

j i      (3) 

 

Shear deformation, is related to the 

connecting springs of elements i and j (Eq. 

(4)). 

  2j i j i
a           (4) 

 

Bending deformation, is related to the 

connecting springs of elements i and j (Eq. 

(5)). 
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 (b)                   (a)  

Fig. 2. Elements shape, spring position and degrees of freedom: a) side elements; b) middle elements 

 

j i     (5) 

 

By placing the Eq. (2) into Eqs. (3) and (4) 

the deformation of the spring between the two 

adjacent elements will be obtained as a 

function of the displacement of these two 

elements. Therefore, by knowing the values 

of the displacements of the adjacent elements, 

the deformation and, consequently, the spring 

forces between the two elements can be 

calculated. 

Regarding the principle of minimum total 

potential energy, the actual deformation of 

the structure is the same deformation that 

minimize the potential energy of the entire 

structure. Eq. (6) represents the total potential 

energy of the structure: 
 

U V    (6) 

 

where  : is the total potential energy of the 

structure, U: is the internal potential energy 

and V: is the external potential energy of the 

structure. 

Due to the use of discrete elementalization 

in present method, which considers the 

structure as a set of rigid elements and 

springs, it is clear that internal potential 

energy can be derived from the sum of stored 

energy in all existing springs of the structure, 

according to Eq. (7). 
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 (7) 

 

where 
inK , 

isK  and 
i

K
: represent axial, shear 

and bending stiffness of the ith
 spring, 

respectively, and nf : is the total number of 

structural springs. Also i , i  and i : are 

axial, shear and bending deformation of ith 

spring, that are a function of the 
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displacements of elements, and U: is also a 

function of the displacements of all elements 

of the structure, The number of these 

variables in a two-dimensional model is three 

times of the number of elements (equal to the 

total number of degrees of freedom in the 

structure). 

Similarly, Eq. (8) can be used to calculate 

the external potential energy V: 
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 (8) 

 

where ne: is the total number of elements of 

the structure, Pi and δi: represent horizontal 

force and displacement of ith element, Fm and 

εm: are vertical force and displacement of ith 

element and Mn and θn: represent the moment 

and bending displacement of ith element. 

External potential energy is composed of 

the potential energy generated by external 

forces and support reactions. Also, with 

respect to Eq. (8), it can be seen that external 

potential energy is a function of the 

displacement of the elements under external 

loads or support reactions, and the number of 

these variables in general can be the total 

number of degrees of freedom in structure. 

According to the formulation of V and U, 

it can be concluded that   is a function of the 

displacements of the structural elements 

(whole structure elements degrees of 

freedom). So it has 3 en variables (where ne is 

the total number of structural elements). 

Given the principle of minimum total 

potential energy, to find the deformations in 

the structure, it is sufficient to derive   

relative to the displacements of the elements 

and equal to zero. Thus, the displacement 

values of the elements corresponding to the 

minimum , which are the unknowns of the 

problem, will be obtained. 
 

0
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
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 
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1 efor i to n  independent linear equation.s 

 

First, according to Eq. (9), the derivative 

of   will be set to zero with respect to the 

horizontal displacement of the elements (δi). 

This gives us ne linear equations. Then the 

derivative of  , with respect to the vertical 

displacement of the elements, (εi) will be set 

to zero, which according to Eq. (10), ne more 

linear equations will be obtained. Finally, the 

derivative   will be set to zero with respect 

to the bending displacement of the elements 

(θi). According to Eq. (11), there are also ne 

linear equations in this way. Therefore a 

linear relation system including 3 en  relation 

will be obtained. By solving this equations, 

the displacements of the elements, which are 

unknown will be obtained.  

 

Analysis of Larg Deformations 

To analyze the structure under large 

deformations, the problem can be divided 

into steps involving small deformations, in 

each of these steps, the theory of small 

deformations is acceptable. Therefore, in 

each step, the method described in the 

previous section can be used to solve the 

problem. But in formulating the   relation at 

each step, considering the change in the 

position of the elements and springs, the 

following points should be noted: 

1.  In order to calculate the internal energy 

of the structure (U) in each step, the axial, 

shear and bending deformations of the 

springs must be calculated according to the 

positioning of the elements due to the 
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previous step. 
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 (12) 

 

In fact, due to the change in the position of 

the elements in each step compared to the 

previous one, at the beginning of each step, 

we will be faced with a new geometry and 

thus a new problem. Therefore, 
si , 

si  and 
si

in Eq. (12) represent axial, shear and bending 

deformations of the ith spring in the sth step, 

which can be calculated from Eqs. (2-5) 

according to the state of the elements in the 

previous step.  

2. To calculate the external potential 

energy of the structure V at each step, and 

considering the change in the direction of the 

springs at the end of each step, the 

equilibrium of the elements will not be 

satisfied with the initial assumption at the 

beginning of the same step. Therefore, for 

each element, the non-balancing forces in the 

preceding step should be considered as an 

external force at next stage in this way, the 

cumulative error due to the change in the 

geometry will be prevented.  
 

1 1 1

e e e

s s s s s s

n n n

i i i i i i

V

P F M  



 
      
 
  

 

 (13) 
 

where 
siP and 

si : represent horizontal force 

and displacement of ith element in sth step, 
smF

and 
sm : are vertical force and displacement, 

of ith element in sth step and 
snM and 

sn : 

represent the moment and bending 

displacement of ith element in sth step, 

respectively. 

 

 

 

PROCEDURES FOR THE 

APPLICATION OF THE MODIFIED 

APPLIED ELEMENT METHOD 
 

Given that each element has 3 degrees of 

freedom in two-dimensional mode, the 

problem containing the ne element will have 

a total of 3×ne unknowns (elements 

displacements). Of course, depending on 

boundary conditions, some of these 

displacements may be equal to zero or a 

known value, whereby, in the bounded degree 

of freedom, support reactions will sometimes 

occur whose values are unknown. Therefore, 

the total number of unknowns remain equal

3 en , and the number of equations is exactly 

the same. Since for each degree of freedom, 

the   relation is differentiated, and therefore 

a linear equations system including 3×ne 

equations that can be solved by conventional 

solving methods. A description of the 

program steps is given below. The flowchart 

of the program developed in Matlab is also 

shown in Figure 3.  

First, in the preprocessing stage, the basic 

information includes the values of elastic 

module and shear module, the dimensions of 

the element, the number and position of the 

elements with constraints and type of 

constraints, the number and position of 

loaded elements and the amount of load 

corresponding to each degree of freedom will 

be received. Then the program forms   

relation by considering the element 

numbering matrix, taking into account the 

number of elements and springs between 

them, as well as considering the external 

forces, and the possible support reactions. 

Then, by computing the derivative of 

relative to each of the elements' 

displacements, a linear equations system will 

be formed. By solving this system of 

equations, the displacements corresponding 

to each degree of freedom will be calculated. 

Therefore, the forces and displacements of 

the springs between the elements are also 

obtained. 
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Fig. 3. Stages of linear analysis of structure using the modified applied element method 

 

 

INVESTIGATION OF MODIFIED 

APPLIED ELEMENT METHOD FOR 

STRUCTURAL ANALYSIS OF SMALL 

DEFORMATIONS 

 

The Effect of Element Size on the Accuracy 

of the Responses and Comparison of the 

Modified Applied Method with AEM 

A sensitivity test was carried out on the 

effect of the size of the elements on the 

computational accuracy and the analysis time 

of the proposed method. Thus, a console 

beam with an elastic module E = 2.1×108 

KN/m2 and a Poisson coefficient υ = 0.3 and 

the dimensions as shown in Figures 4 and 5 

with thickness t = 0.25 m under the lateral 

load P = 10 KN were considered. The beam 

Start 

Get basic information such as:  

Structural shape and dimensions, Material properties 

including 𝐸, 𝐺 and υ, Loading conditions and boundary 

conditions, Dimensions of elements 

Mesh generating and element numbering matrix forming 

 

Force matrix formation with regard to external forces, 

support reactions and unbalanced forces resulting from 

previous step 

 

Formation of  equation, considering the position of 

elements in the previous step 

Calculation of  differential relative to each 

individual displacements of elements and forming of 

linear equations system  

 

Solve the linear equations system and calculate the corresponding 
displacement of any degree of freedom, Calculate the deformation 

and force of the springs between the elements. 

Draw diagram of structural deformation 

  

End 

Preprocessing 

Repeat for all 

steps 
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was analyzed for the models 1 to 6, 

respectively, according to Figures 4 and 5. 

Deformation of beam were compared with 

theoretical values, and finally, the error 

percentage and computational time of each 

model were compared with other models. In 

the analysis of these models with applied 

element method models with 10 and 20 

springs for connecting adjacent elements 

were used. 

 

 
Fig. 4. Size and arrangement of elements for the console beam model under lateral load used in the applied element 

method 
 

 
Fig. 5. Size and arrangement of the elements for the console beam model under lateral load in the modified applied 

element method 
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The console beam theoretically 

deformation, can be calculated according to 

Eq. (14). 

 
2

(3 )
6

x

PX
L X

EI
    (14) 

 

in which δx: represents beam deformation at 

X meter distance from the support, P: 

represent lateral force applied to tip of the 

console, L: is length of the beam, and I: 

indicates the moment of inertia of the beam 

section. 

Figure 6 shows deformation curve of the 

beam obtained by AEM and modified applied 

element method for the model (1) of the 

console beam. According to the figure, there 

is a very high correlation between the 

calculated values of the modified applied 

element method and theoretical values. It 

should be noted that model (1) uses 1 m 

elements and the entire beam is modeled with 

only seven elements. Also, according to the 

results of the analysis of the beam in model 

(1) by applied element method, the difference 

between computational values and theoretical 

values can be seen clearly. 

According to Figure 7, in the applied 

element method, the processing time of the 

program is also reduced by reducing the 

number of springs connecting elements, so 

that the processing time in the model with 10 

springs for connecting elements, is 

approximately half of the corresponding time 

in the model with 20 spring for connecting 

elements (Tagel-Din, 1998). The same trend 

was observed in the modified applied element 

method, so that the processing time in this 

method was approximately 40% of the 

processing time associated with the model 

with 10 connecting springs in the applied 

element method. This result can be justified 

due to the fact that, the number of connection 

springs in the proposed method is reduced to 

one spring and also due to the use of side 

elements in this method, which leads to an 

increase in the number of elements compared 

to the applied element method. 

The results of Figure 7 show that the 

modified applied element method, using the 

concept of side elements for better modeling 

of the structure and using the concept of 

energy to solve the problem, even with a row 

of elements in the base of the beam, had the 

ratio of error less than 2%. While the error of 

similar model in the applied element method 

was more than 31%. This error for the 

proposed method decreases with increasing 

number of elements, so that the error 

percentage for 5 or more rows of elements 

will be less than 0.2%. Therefore, the 

proposed method, even with the larger 

dimensions of elements and much lower 

computational time will produce more 

accurate answers than the applied element 

method. 
 

 
Fig. 6. Deformation of the beam - model (1) - analyzed by applied element method, modified applied element 

method, and comparison with theory  
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Fig. 7. The effect of dimensions of element on computational time and the computation error ratio 

 

Evaluation of Energy Absorption in the 

Frame Using Modified Applied Element 

Method and Comparison with AEM 

To investigate the efficiency of the 

proposed method for solving various 

problems, a one story one span frame, with 

simple supports was considered. The elastic 

modulus E = 2.1×108 KN/m2, Poisson 

coefficient υ = 0.3 and element thickness t = 

0.25 m where considered. The dimensions of 

the frame are as shown in Figure 8 and frame 

is under the tensile load of P in the middle of 

the span. 

The behavior of the frame was evaluated 

using the applied element method and 

modified applied element method. 

Deformation curve in BC part of the frame 

was compared with the theoretical curve. 

Also, energy absorption of the frame was 

calculated with respect to the area values 

below the force-deformation curve in each of 

the applied element method and modified 

applied element method and compared with 

the corresponding theoretical values.  

Deformation curvature of BC, calculated 

by applied element method and modified 

applied element method, and comparison 

with the theoretical results, is presented in 

Figure 9. It can be seen that the modified 

applied element method has a very high 

correlation with theoretical values. While the 

applied element method has a high 

computational error. So that to calculate the 

maximum deformation in BC using the 

modified applied element method, an error of 

0.15% will occur, while the corresponding 

error in the applied element method is 

estimated to be more than 31%. According to 

the results obtained from the frame analysis, 

very good agreement with results of console 

beam is visible. 

 

Table 1. Comparison of the frame ductility for applied element method and modified applied element method 

Area 

error (%) 

Area below the force-

deformation diagram (m2) 

Displacement 

error (%) 

Displacement 

(× 𝟏𝟎−𝟓 𝒎) 
Analysis method 

- 7.1458×10-5 - 1.6333 Theoretical method 

+3.1 7.3732×10-5 +0.17 1.6362 Modified applied element method 

-41.2 4.1982×10-5 -31.31 1.1219 Applied element method 
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Fig. 8. Size and arrangement of elements for one span frame modeling used in: a) modified applied element method; 

b) applied element method 
 

 
Fig. 9. Deformation of the BC part of the frame with the application of applied element method, modified applied 

element method and comparison with theory 
  

According to the concept of ductility and 

its relation to the area below the force-

deformation diagram, and Table 1, the results 

are similar to those of the previous section, so 

that the error of estimation of ductility in the 

modified applied element method is 3.1% and 

the corresponding value in the applied 

element method is more than 41%. 

 

INVESTIGATION OF MODIFIED 

APPLIED ELEMENT METHOD FOR 

STRUCTURAL ANALYSIS OF LARGE 

DEFORMATION 

 

Simulation of a Simple Support Beam 

under Large Deformations 

A simple support beam with 12 m span and 

a square cross-section with 1 m length, and an 

elastic modules E = 210 Mpa was considered. 

As shown in Figure 10, when load increase 

and taking into account the effect of the large 

deformations, beam shape changes in a way 

that the rolled support is displaced. While, 

without considering the effect of the large 

displacements, rolled support displacement 

would not be modeled. 

The changes of the applied force against 

the horizontal displacement of the rolled 

support, DX and vertical displacement in the 

middle of the span, DY is shown in Figure 

11. The results of applied element method 

were obtained with 300 elements for 

modeling, while the results obtained from 

modified applied element method were 
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obtained only using 12 elements. 

Nevertheless, results matched very well and 

computational time decreased. As can be 

seen, by load increasing the stiffness of the 

system increases. This is due to a change in 

the form of the beam from flat to arc that will 

increase the stiffness of the beam. 

 

Local Buckling of Symmetrical Two-Bar 

Truss  

Dimensions, shape and the way of truss 

loading are shown in Figure 12. The elastic 

module of truss members E = 210 Mpa is 

considered. Bar cross-section are square with 

dimensions of 0.1 m. Half of the structure was 

modeled due to the symmetry. Displacement 

of the middle of the span was increased 

gradually. The relationship between the 

applied force (P) and the internal force of the 

member (S) against the change in the 

displacement ratio (d/H) was investigated. 

The comparison of the results with theoretical 

values (Szabo et al., 1986) show complete 

accommodation. A model with only a single 

row of elements, including 11 elements with 

dimension of 0.1 m was used. 
 

 
Fig. 10. Simple support beam deformation curve 

  

 
Fig. 11. Beam load- displacement curve with a simple support for large deformations 
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The steps for changing the truss were as 

follows: 

1. The bar under pressure suffers a 

decrease in length. This process continues 

until the bar is in a horizontal position. At this 

stage, bar resist maximum stress, and applied 

load P would be zero. 

2. As the displacement increases, internal 

force of the bar will be released and direction 

of the load P changes, when the displacement 

reached 2×(d/H), bar reaches its initial length, 

and therefore the internal force of the bar and 

the applied load will be zero. 

3. As the displacement increases, the bar 

undergoes an increase in length and thus 

tensile strength. The direction of the external 

load also varies. 

 

Buckling Behavior Simulation for Fixed-

Base Column 

A fixed base column under pressure was 

checked as shown in Figure 13. The section 

of the column was square and 1 m in size, the 

height of the column was 12 m and its elastic 

module was E = 840 Mpa. Column modeled 

by a row of elements that consist of only 13 

squared elements. Horizontal displacement of 

the column tip was increased with a constant 

ratio. To change the symmetry, an extremely 

small moment was inserted into the column 

tip at the first step. 

The horizontal and vertical displacement of 

the tip of the column was calculated under 

load P and was compared with theoretical 

values of Timoshenko and Gere (1961). Like 

the applied element method, good 

accommodation was observed. With the 

difference that the model made in the 

modified applied element method simulated 

the buckling behavior of the column only 

with 13 elements. 

 

 

 

Fig. 12. The curve of change in the applied load and the internal force of the truss relative to the change in the 

middle of the span 
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Fig. 13. Deformation curve of fixed base column 

under axial load 
 

With respect to the load-displacement 

Curve in Figure 14, it can be concluded that: 

1. The buckling load is increased while 

the load is constant, and this phenomenon is 

in good accommodation with theoretical 

results. 

2. After reaching the buckling load, it is 

observed that with a slight increase in load, a 

great increase in displacement occurs, which 

is why the load control method cannot be 

used for analyzing this problem. 

3. By increasing the loading and column 

deformation, the shape of the column and, as 

a result, the nature of the column stiffness 

changes, and the stiffness of the structure 

increases. 

 

CONCLUSIONS 
 

In this study, an effective modification was 

performed on the applied element method. In 

this method, instead of using several springs 

for connecting two elements, one spring with 

axial, shear and bending stiffness were used. 

This method estimates the deformations in 

the structure based on the minimum total 

potential energy principle. Also more 

accurate model of the structure will be 

provided by developing the concept of side 

elements. The comparison of proposed 

method and applied element method showed 

that: 

 

 
Fig. 14. Load-displacement Curve of fixed base column under axial load  
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- The computational accuracy in proposed 

method is obviously higher than applied 

element method, especially in modeling with 

larger elements. For example, the 

computational error for a console beam with 

a single row of elements in the proposed 

method was less than 2%, while the 

corresponding error in the applied element 

method of the same element size was more 

than 31%. 

- The computational time of modified 

applied element method was approximately 

40% of similar analysis by applied element 

method with 10 joint springs for connecting 

adjacent elements. This result can be justified 

by the fact that the number of joint springs is 

reduced to one-tenth that decrease the 

computational time seriously, otherwise by 

using the concept of side elements that caused 

a little increases in the number of elements 

and computational time. 

- The behavior of the structures is calculated 

precisely even with the minimum number of 

elements. 

- This method simulates large deformations 

like the applied element method. With the 

difference that it is highly accurate with a 

very small number of elements and a short 

computational time. 

Therefore, in comparison to applied 

element method, the advantage of the 

proposed method is that, by fewer elements 

and lower computational time, more precise 

analysis can be performed. Considering the 

appropriate results obtained for linear 

analysis by the proposed method, nonlinear 

materials behavior for large deformations is 

being studied by modified applied element.  
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