تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,109,541 |
تعداد دریافت فایل اصل مقاله | 97,213,313 |
مدل سازی الگوی کرنل در تشخیص لندفرم های زمین (با تأکید بر لندفرم های یخچالی و مجاور یخچالی) در محدودۀ کمربند کوهستانی البرز | ||
پژوهش های جغرافیای طبیعی | ||
دوره 52، شماره 2، تیر 1399، صفحه 271-294 اصل مقاله (3.18 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2020.279988.1007370 | ||
نویسندگان | ||
سینا صلحی1؛ عبدالله سیف* 2 | ||
1دکترای ژئومورفولوژی، اصفهان، ایران | ||
2دانشیار، گروه جغرافیای طبیعی، دانشکدة علوم جغرافیایی و برنامهریزی، دانشگاه اصفهان، اصفهان، ایران | ||
چکیده | ||
مورفولوژی زمین اطلاعات زیادی برای محققان علوم محیطی فراهم می آورد. یکی از اهداف علم ژئومورفولوژی شناسایی، طبقهبندی، و آنالیز لندفرمهای زمین است. در گذشته، تشخیص و شناسایی لندفرمهای زمین براساس کارهای میدانی یا با استفاده از نقشههای توپوگرافیکی بهصورت دستی انجام میگرفت که بسیار وقتگیر بود و البته در مواردی با مسائل زیادی روبهرو میشد. در این بخش لندفرمهای یخچالی و مجاور یخچالی شامل سیرکهای یخچالی، دریاچههای یخچالی تارن، قلل، گردنهها، خطالرأسها و خطالقعرها، و مخروطهای رسوبی، با استفاده از مدل ارتفاعی بهطور خودکار شناسایی شد. بدین منظور، دو رویکرد، شامل مدلسازی مفهومی و شیءگرا، مدنظر قرار گرفت. در رویکرد نخست، شرایطی برای قیاس مورفولوژی زمین با الگوی کرنل مرجع فراهم آمد. دومین رویکرد مدلسازی شیءمحور است که از شیئی مرجع برای تشخیص لندفرمها استفاده میکند. ارزیابی نتایج نشان میدهد که صحت تشخیص لندفرمهای موردنظر در این پژوهش بهطور متوسط 60درصد بوده که با توجه به پیچیدگی لندفرمهای موردنظر مانند سیرکهای یخچالی و مخروطهای رسوبی عملکرد قابل قبولی است. صحت مدل آنالیز مفهومی الگوی کرنل 51/58درصد و مدل شیءگرا، 50/60درصد برآورد شد که بهطور کلی عملکرد مدل شیءگرا بهتر از مدل مفهومی بود. | ||
کلیدواژهها | ||
الگوی کرنل؛ تشخیص لندفرم؛ لندفرم زمین؛ لندفرم یخچالی و مجاور یخچالی؛ مدلسازی شیءگرا | ||
مراجع | ||
بنایی، م.ح. (1372). گزارش نقشهبرداری خاک، طبقهبندی و قابلیت آبیاری در اراضی واقع در جنوب رودخانة گرگان، تهران: مؤسسة تحقیقات آب و خاک ایران. Saaty, T. and Alexander, J. 1981. Thinking with Models. Pergamon Press, Oxford. Banaei, M.H. (1993). A report on soil survey, Land classification and irrigation capability for a region located south of the Gorgan River, Publication No 368, Tehran: Soil and water Research Institute of Iran. Bates, R.L. and Jackson, J.A. (Eds.) (2005). Glossary of Geology, 5th edition, New York: American Geological Institute. Burrough, P.A.; Van Gaans, P.F.M. and MacMillan, R.A. (2000). High‐resolution landform classification using fuzzy k‐means, Fuzzy Sets and Systems, 113(1): 37-52. Burrough, P.A.; Wilson, J.P.; Van Gaans, P.F.M. and Hansen, A.J. (2001). Fuzzy k‐means classification of topo‐climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA, Landscape Ecology, 16: 523-546. Clarke, K.C. (1988). Scale‐based simulation of topographic relief, American Cartographer, 15: 173-181. Conacher, A.J. and Dalrymple, J.B. (1977). The nine‐unit land surface model: An approach to pedogeomorphic research, Geoderma, 18: 1-154. Dehn, M.; Gartner, H. and Dikau, R. (2001). Principles of semantic modeling of landform structures, Computers and Geosciences, 27: 1005-1010. Deng, Y. and Wilson, J.P. (2008). Multi‐scale and multi‐criteria mapping of mountain peaks as fuzzy entities, 2008, International Journal of Geographical Information Science, 22(2): 205-218. Dikau, R. (1989). The application of a digital relief model to landform analysis. In: Raper, J.F. (Ed.), Three Dimensional Applications in Geographical Information Systems, Taylor & Francis, London, PP. 51-77. Dikau, R. (1990). Geomorphic landform modeling based on hierarchy theory. In: Brassel, K., Kishimoto,H. (Eds.), Proceedings of the 4th International Symposium on Spatial Data Handling, Department of Geography, University of Zürich, Zürich, Switzerland, PP. 230-239. Dikau, R.; Brabb, E.E. and Mark, R.M. (1991). Landform Classification of New Mexico by Computer, Washington, DC: US Geological Survey Open File Report, PP. 91-364. Dikau, R.; Brabb, E.E.; Mark, R.M. and Pike, R.J. (1995). Morphometric landform analysis of New Mexico, Zeitschrift für Geomorphologie, Suppl‐Bd, 101: 109-126. Drǎguţ, L. and Blaschke, T. (2006). Automated classification of landform elements using object-based image analysis, Geomorphology, 81: 330-344. Drăguţ, L. and Eisank, C. (2012). Automated object‐based classification of topography from SRTM data, Geomorphology, 141: 21-33. Dragut, L. and Eisank, C. (2012). Object representations at multiple scales from digital elevation models, Geomorphology, 129(3-4): 183-189. Etzelmüller, B. and Sulebak, J.S. (2000). Developments in the use of digital elevation models in periglacial geomorphology and glaciology, Physische Geographie, 41: 35-58. Evans, I.S. (1972). General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley, R.J. (ed.), Spatial Analysis in Geomorphology, London, UK: Harper & Row, PP. 17-90. Fels, J.E. and Matson, K.C. (1996). A cognitively based approach for hydro-geomorphic land classification using digital terrain models, In: Proceedings of the 3rd International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, January 21-25, 1996, National Centre for Geographic Information and Analysis, Santa Barbara, CA, USA. Gallant, A.L.; Douglas, D.B. and Hoffer, R.M. (2005). Automated mapping of Hammond’s landforms, IEEE Geoscience and Remote Sensing Letters, 2: 384-388. Gerçek, D.; Toprak, V. and Strobl, J. (2011). Object-based classification of landforms based on their local geometry and geomorphometric context, International Journal of Geographical Information Science, 25(6): 1011-1023. Guzzetti, F. and Reichenbach, P. (1994). Toward the definition of topographic divisions for Italy, Geomorphology, 11: 57-75. Hammond, E.H. (1964). Analysis of properties in land form geography: An application to broad‐scale land form mapping, Annals of the Association of American Geographers, 54: 11-19. Hammond, E.H. (1965). What is a landform? Some further comments, The Professional Geographer, 17(3): 12-13. Hrvatin, M. and Perko, D. (2009). Suitability of Hammond’s method for determining landform units in Slovenia, Acta Geographica Slovenica, 49: 343-366. Huggett, R. (1975). Soil landscape systems: A model of soil genesis, Geoderma, 13: 1-22. Irvin, B.J.; Ventura, S.J. and Slater, B.K. (1997). Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin, Geoderma, 77: 137-154. Iwahashi, J. and Pike, R.J. (2007). Automated classification of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature, Geomorphology, 86(3): 409-440. Jasiewicz, J. and Stepinski, T. (2013). Geomorphons - a pattern recognition approach to classification and mapping of landforms, Geomorphology, 182: 147-156. Karagulle, D.; Frye, C.; Sayre, R.; Breyer, S.; Aniello, P.; Vaughan, R. and Wright D. (2017). Modeling global Hammond landform regions from 250‐m elevation data, Transaction in GIS, 21(5): 1040-1060. Karagulle, D.; Frye, C.; Sayre, R.; Breyer, S.; Aniello, P.; Vaughan, R. and Wright, D. (2017). Modeling global Hammond landform regions from 250 m elevation data, Transactions in GIS, 21: 1040-1060. Leighty, R.D. (2001). Automated IFSAR Terrain Analysis System: Final Report, U.S. Army Aviation & Missile Command, Defense Advanced Research Projects Agency (DoD) Information Sciences Office, Arlington, VA, 59 pp. Lindsay, J.B.; Cockbum, J.M.H. and Russel, H.A.J. (2015). An integral image approach to performing multi-scale topographic position analysis, Geomorphology, 245: 51-61. Li, Z.; Zhu, Q.; Gold, C. 1960. Digital Terain Modeling, Principles and Methodology, Taylor and Francis London. Lloyd, C.D. and Atkinson, P.M. (1998). Scale and the spatial structure of landform: optimizing sampling strategies with geostatistics. In: Proceedings of the 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17-19 September 1998, University of Bristol, Bristol, UK, 16 pp. Lobeck, A.K. (1939). Geomorphology: An Introduction to the Study of Landscapes, New York: McGraw-Hill, 731 pp. Lucieer, A.; Fisher, P. and Stein, A. (2003). Texture-based segmentation of high-resolution remotely sensed imagery for identification of fuzzy objects, In: Proceedings of the Seventh International Conference on Geocomputation, University of Southampton, Southampton, UK, 9 pp. Mackay, D.S.; Samanta, S.; Ahl, D.E.; Ewers, B.E.; Gower, S.T. and Burrows, S.N. (2003). Automated parameterization of land surface process models using fuzzy logic, Transactions in GIS, 7: 139-153. MacMillan, R.A. and Shary, P.A. (2009). Landforms and landform elements in geomorphometry. In: T. Hengl & H.I. Reuter (eds) Geomorphometry: Concepts, Software, Applications, PP. 227-254. Amsterdam, Netherlands: Elsevier. MacMillan, R.A. and Shary, P.A. (2009). Landforms and landform elements in geomorphometry. In: T. Hengl., H.I., Reuter (eds) Geomorphometry: Concepts, Software, Applications, PP. 227-254. Amsterdam, Netherlands: Elsevier. MacMillan., R.A.; Pettapiece, W.W.; Nolan., S.C. and Goddard, T.W. (2000). A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic, Fuzzy Sets and Systems, 113(1): 81-109. Meijerink, A.M.J. (1988). Data acquisition and data capture through terrain mapping units, ITC Journal, 1: 23-44. Milne, G. (1935). Some suggested units of classification and mapping particularly for East Africa soils, Soil Research, 4: 183-198. Mokarram, M. and Hojati, M. (2016). Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM), The Egyptian Journal of Remote Sensing and Space Science, 21(1): 111-120. Moore, D.M.; Lees, B.G. and Davey, S.M. (1991). A new method for predicting vegetation distributions using decision tree analysis in a geographic information system, Environmental Management, 15: 59-71. Mulla, D.J. (1988). Using geostatistics and spectral analysis to study spatial patterns in the topography of southeastern Washington State, USA, Earth Surface Processes and Landforms, 13: 389-405. Pennock, D.J.; Zebarth, B.J. and De Jong, E. (1987). Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada, Geoderma, 40: 297-315. Pike, R.J. (1988). The geometric signature: quantifying landslide-terrain types from Digital Elevation Models, Mathematical Geology, 20: 491-511. Piloyan, A. and Konečný, M. (2017). Semi-Automated Classification of Landform Elements in Armenia Based on SRTM DEM using K-Means Unsupervised Classification, Quaestiones Geographicae (The Journal of Adam Mickiewicz University), 36(1): 90-103. Prima, O.D.A.; Echigo, A.; Yokoyama, R. and Yoshida, T. (2006). Supervised landform classification of Northeast Honshu from DEM-derived thematic maps, Geomorphology, 78(3-4): 373-386. Rigol-Sanchez, J.P.; Stuart, N. and Pulido-Bosch, A. (2015). Arc Geomorphometry: A toolbox for geomorphometric characterization of DEMs in the ArcGIS environment, Computers and Geosciences, 85(Part A): 155-163. Romstad, B. and Etzelmüller, B. (2009). Structuring the digital elevation model into landform elements through watershed segmentation of curvature. In: R. Purves, S., Gruber, R., Straumann & Hengl, T., (eds) Proceedings of Geomorphometry 2009, PP. 55-60. Zurich, Switzerland: University of Zurich. Romstad, B. and Etzelmuller, B. (2012). Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units, Geomorphology, 139-140: 293-302. Ruhl, R.V. (1960). Elements of the soil landscape, In: Proceedings of the 7th Congress of the International Society of Soil Science, Madison, WI, PP. 32-40, Ruhl, R.V. and Walker, P.H. (1968). Hillslope models and soil formation II: Open systems, In: Proceedings of the 9th Congress of the International Soil Science Society, Adelaide, Australia, PP. 551-560. Saadat, H.; Robert, B.; Sharifi, F.; Guy, M.; Namdar, M. and Ale-Ebrahim, S. (2008). Landform classification from a digital elevation model and satellite imagery, Geomorphology, 100: 453-464. Schmidt, J. and Dikau, R. (1999). Extracting geomorphometric attributes and objects from digital elevation models: Semantics, methods, future needs. In: Dikau, R., Saurer, H., (eds) GIS for Earth Surface Systems: Analysis an Modeling of the Natural Environment, Berlin, Germany: Schweizbart’sche Verlagbuchhandlung, PP. 153-173. Schmidt, J. and Hewitt, A. (2004). Fuzzy land element classification from DTMs based on geometry and terrain position, Geoderma, 121(3-4): 243-256. Schmidt, J.; Merz, B. and Dikau, R. (1998). Morphological structure and hydrological process modelling, Zeitschrift für Geomorphologie NF, 112: 55-66. Schmidt, J.; Hennrich, K. and Dikau, R. (1998). Scales and similarities in runoff processes with respect to geomorphometry, In: Geocomputation 1998: Proceedings of the 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17-19 September 1998, University of Bristol, Bristol, UK, 20 pp. Schneevoigt, N.J.; Sebastian, V.D.L.; Thamm, H.P. and Schrott, L. (2008). Detecting Alpine landforms from remotely sensed imagery, a pilot study in the Bavarian Alps, Geomorphology, 93: 104-119. Shary, P.A. (1995). Land surface in gravity points classification by complete system of curvatures, Mathematical Geology, 27: 373-390. Shary, P.A.; Sharaya, L.S. and Mitusov, A.V. (2002). Fundamental quantitative methods of land surface analysis, Geoderma, 107: 1-32. Shary, P.A.; Sharaya, L.S. and Mitusov, A.V. (2005). The problem of scale‐specific scale-free approaches in geomorphometry, Geografia Fisica e Dimanica Quaternaria, 28: 81-101. Skidmore, A.K.; Ryan, P.J.; Dawes, W.; Short, D. and O’Loughlin, E. (1991). Use of an expert system to map forest soils from a geographical information system, International Journal of Geographical Information Systems, 5: 431-444. Speight, J.G. (1968). Parametric description of land form, In: Stewart, G.A., (ed.), Land Evaluation: Papers of a CSIRO Symposium, Melbourne, Australia, PP. 239-250. Speight, J.G. (1990). Landforms, In: MacDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J., Hop, M.S., (eds) Australian Soil and Land Survey Field Handbook, PP. 9-57. Melbourne, Australia: Inkata Press. Summerfield, M.A. (1991). Global Geomorphology. London: Longman. Suryana, N. and de Hoop, S. (1994). Hierarchical structuring of terrain mapping units. In: Proceedings of the Fifth European Conference and Exhibition on Geographic Information Systems, EGIS 94, EGIS Foundation, Utrecht, The Netherlands, 1: 869-877. Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K. and Iwamoto, H. (2014). Precise Global DEM Generation by ALOS PRISM, ISPRS Annals of the Photogrammetry, Journal of Remote Sensing and Spatial Information Sciences, 2(4): 71-76. Takaku, J.; Tadono, T. and Tsutsui, K. (2014). Generation of High Resolution Global DSM from ALOS PRISM, The International Archives of the Photogrammetry, Journal of Remote Sensing and Spatial Information Sciences, XL(4): 243-248. Tomer, M.D. and Anderson, J.L. (1995). Variation in soil water storage across a sand plain hillslope, Soil Science Society of America Proceedings, 54: 1091-1100. Tribe, A. (1992). Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method, Journal of Hydrology, 139(1-4): 263-293. Weaver, G.D. (1965). What is a landform?, The Professional Geographer, 17(1): 11-13. Webster, R. and Oliver, M.A. (2001). Geostatistics for Environmental Scientists, Statistics in Practice, Wiley, Chichester, 265 pp. Weibel, R. and DeLotto, J.S. (1988). Automated terrain classification for GIS modeling, In: Proceedings of GIS/LIS, San Antonio, NM, PP. 618-627. | ||
آمار تعداد مشاهده مقاله: 625 تعداد دریافت فایل اصل مقاله: 567 |