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A B S T R A C T 

 

Compared to drag anchors, suction caissons (Q) in clays often provide a cost-effective alternative for jacket structures, catenary, tension leg 
moorings, and taut leg. In this research, two computational approaches are proposed for predicting the uplift capacity of Q in clays. The 
proposed approaches are based on the combinations of adaptive network-based fuzzy inference system (ANFIS) models (ANFIS-subtractive 
clustering (ANFIS-SC) and ANFIS-fuzzy c-means (ANFIS-FC)) with metaheuristic techniques (ant colony optimization (ACO) or particle 
swarm optimization (PSO)). In these approaches, the PSO and ACO algorithms are employed to enhance the accuracy of ANFIS models. In 
order to develop hybrid models, a comprehensive database from open-source literature is used to train and test the proposed models. In these 
models, d (diameter of caisson), L (embedded length), D (depth), Su (undrained shear strength of soil), θ (inclined angle), and Tk (load rate 
parameter) were used as the input parameters. The performance of all models was evaluated by comparing performance indexes, i.e., means 
squared error and squared correlation coefficient. As a result, PSO and ACO can be used as reliable algorithms to enhance the accuracy of 
ANFIS models. Moreover, it was found that the ANFIS– subtractive clustering-ACO model provides better results in comparison with other 
developed hybrid models. 
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1. Introduction 

Suction caissons (Q) in clays can be designed in a way to be lighter 
than the steel required for an equivalent pile foundation [1] . A critical 
issue to the performance of Q is their uplift capacity. Various approaches 
have been utilized to find the uplift capacity of Q such as laboratory 
models [11; 25; 32], upper bound analyses [9], prototype model tests [8; 
14], finite element methods [4; 16; 40; 42]  and centrifuge models [10].  
These studies have tried to understand the lateral and axial load capacity 
of Q. The importance of the uplift capacity of Q implies a need to 
develop a robust model to evaluate this factor. For this purpose, ANFIS, 
which is a computational intelligence method, integrates the fuzzy 
inference system (FIS) concept into the artificial neural network 
(ANN). This method has been widely used in the field of civil and 
mining engineering [19; 21; 33; 41]. Mapping the relationship between 
output and input variables through training for the determination of the 
membership function (MF) can be evaluated uaing ANFIS. This 
technique is a strong methodology for simulating complex relationships 
between inputs and outputs. However, in ANFIS models, a series of 
parameters exist that are required to be chosen by the user. Therefore, 
for these parameters, it is essential to apply metaheuristic algorithms for 
searching the suitable value [27; 37]. In the present paper, the proposed 
approaches are based on hybrid ANFIS models (ANFIS- FC and ANFIS- 
SC) with ACO and PSO. In ANFIS models, the PSO and ACO 
algorithms are applied to enhance the accuracy of ANFIS models. In 
hybrid approaches, PSO and ACO are used to optimize and tune the 
values of antecedent and consequent parameters of the ANFIS models.  

 

2. Materials and methods 

In this part, first, a literature review of ANFIS, SC, and FC methods is 
presented, and then, some descriptions about the PSO and ACO 
algorithms are provided as well. 

2.1. ANFIS 

An ANFIS approach [22]  is a combination of neural learning and 
Sugeno fuzzy to capture the input–output relationship. The structure of 
a two-input ANFIS approach is presented in Fig. 1. 

 

Fig. 1 The structure of a two-input ANFIS approach (after  [22] ). 

Layer 1 is responsible for the fuzzification [39] : 
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Where,  , ,i i iV b  is a series of parameters influencing the 

membership function (MF); Ai is the linguistic label, and x is the input.  
Layer 2 is [22] : 

2 ( ). ( ) 1,2i i Ai BiQ W x y i     (2) 
Layer 3 as follows [22] : 

3

2

1

, 1, 2i
i i

j

j

w
Q W i

w


  


 (3) 

Where, wi is the firing strength of the ith rule computed in Layer 2.  
Layer 4 as follows [39] : 

4 ( )i i i i i i iQ W f W p x q y r      (4) 

where, iW  is the output of layer 3.  

Layer 5 is the output layer, summed as: 
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Different ANFIS models can be built using different identification 
methods and for a given data set. In this paper, in order to identify the 
antecedent MFs, SC and FC are two methods used. Further details on 
the SC method can be found in Chiu [7]. Also, more information about 
the FC method can be found in Bezdek [3]. 

2.2. ACO algorithm  

ACO was first suggested by Dorigo [13]. In this algorithm, each 
artificial ant builds a tour using frequently applying a stochastic greedy 
rule; 
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(r,u): the edge between point u and r; τ(r,u) stands for the 
pheromone; and η(r,u) is the edge desirability. q is a random number, 
and q0 is 0≤ q0 ≤1 (user-defined parameter).  

for local updating rule; 

    0( , ) 1 . ,r s r s        (13) 

ρ: pheromone evaporation (0<ρ<1).  
 for global updating rule; 

     ( , ) 1 . , ,r s r s r s        (14) 
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δ  (0<δ<1) is the global pheromone decay parameter, Δτ(r,s) is used 
to increase the pheromone and Lgb is the length of the globally best tour 
[43]. Further details on ACO can be found in [12]. 

2.3. PSO algorithm 

The PSO algorithm was firstly proposed by Eberhart and Kennedy 
[15]. The particle moves around according to its position and velocity at 
each iteration. Each particle position is updated by its velocity vector, as 
presented in Eq. (17). 
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1 1t t t

i i iX X V      (17) 

where, t

iV : velocity vector, t

iP  : the global best position; r1and r2 

represent random numbers (0< r1 and r2<1); C1: cognitive parameter; ω: 
inertia weight; C2: social parameter and t

gP denotes the best particle 

position [35].  

2.4. ANFIS trained by PSO or ACO 

In this research study, a similar methodology was inspired by the 

works carried out by [2; 5; 6; 17; 18; 20; 23; 24; 26; 28; 29; 30; 34; 36; 38]. 
Fig. 2 shows the process of training ANFIS models with ACO or PSO. 

 
Fig. 2. The process of training ANFIS models with ACO or PSO. 

3. Experimental database 

The database contains 62 experimental test results, including field test 
results and laboratory-scale models gathered by Rahman, Wang, Deng, 
and Carter [31]. The database includes several variable measurements 
such as d (diameter of caisson), L (embedded length), D (depth), Su 
(undrained shear strength of soil), θ (inclined angle) and Tk (load rate 
parameter) and Q. A detailed information on the database can be found 
in section 2.1 from [31]. In this paper, all data were randomly divided 
into two subsets: 80% (training data) for model construction and 20% 
(testing data) for assessing the accuracy of the model. 

4. Evaluation criteria 

In this paper, two statistical criteria viz. squared correlation 
coefficient (R2) and the mean squared error (MSE) were chosen to be a 

measure of reliability (Eqs. 18 and 19), in which tk: actual value, ˆ
kt : 

estimated value, and n: observations number. 
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5. Prediction of uplift capacity of Q 

The optimization made using the ACO or PSO algorithms 
meaningfully improved the capability of ANFIS. The choice of PSO or 
ACO algorithm parameters plays a significant role in optimization. 
Table 1 presents both of the applied ACO and PSO algorithm 
parameters. The ACO and PSO parameters presented in the table were 
chosen based on trial-and-error.  

These models used to build an estimation model for the prediction of 
Q using MATLAB. In these models, the L/d, θ, Su, D/L, and Tk were used 
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as the input parameters. Correlations between the estimated and actual 
Q values for the testing and training data are presented in Figs. 3 to 6. 
Also, a comparison between the estimated and actual Q values for the 
testing and training data is presented in Figs. 7 to 10. 

As shown in Figs. 3 to 10, in comparison with measured data, the 
results of the ANFIS-ACO-SC model show excellent precision.  

In addition, we compared the results obtained by Rahman et al. [31] 
with our results. This comparison is shown in Table 2. 

 

Table 1: PSO and ACO algorithm parameters. 

PSO parameters ACO parameters 

Population size=25 The number of ants =20 
Maximum number of iterations=200 Iterations number =200 

ω =1 Pheromone intensity=100 
Damping ratio of inertia weight =0.99 Important factor of utility=4 

C1= 1 Important factor of evaporation =1 
C2= 2 ρ=0.1 

 τ=100 

 
  (a)  (b) 

Fig. 3. Correlation between the estimated Q values and the measured values using ANFIS-ACO-SC a) training phases, b) testing phases. 

 
 (a)  (b) 

Fig. 4. Correlation between the estimated Q values and the measured values using ANFIS-PSO-SC a) training phases, b) testing phases. 

 
 (a)  (b) 

 Fig. 5. Correlation between the estimated Q values and the measured values using ANFIS-ACO-FC a) training phases, b) testing phases. 

 



112 H. Fattahi  &  H. Nazari  / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 109-116 

 

 
 (a)  (b) 

Fig. 6. Correlation between the estimated Q values and the measured values using ANFIS-PSO-FC a) training phases, b) testing phases. 

 
 

 
(a) 

 
 (b) 

Fig. 7. Comparison between the estimated and measured Q values using ANFIS-ACO-SC a) training phases, b) testing phases. 
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(a) 

 
(b) 

Fig. 8. Comparison between the estimated and measured Q values using ANFIS-PSO-SC a) training phases, b) testing phases. 

 
(a) 

 
 (b) 

Fig. 9. Comparison between the actual and estimated Q values using ANFIS-ACO-FC a) training phases, b) testing phases. 
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(a) 

 
 (b) 

Fig. 10. Comparison between the estimated and measured Q values using ANFIS-PSO-FC a) training phases, b) testing phases. 

Table 2. Comparison of the performance of the previously presented model and 
the proposed models in this study. 

Description MSE R2 

ANFIS-SC-ACO 
(Proposed in this paper) 

Training phases 0.0066 0.9532 
Testing 0.0022 0.9973 

ANFIS-SC-PSO 
(Proposed in this paper) 

Training phases 0.0053 0.9734 
Testing phases 0.0015 0.9876 

ANFIS-SC 
(Proposed in this paper) 

Training phases 0.0096 0.9478 
Testing phases 0.0033 0.9836 

ANFIS-FC-ACO 
(Proposed in this paper) 

Training phases 0.0149 0.9295 
Testing phases 0.0061 0.9379 

ANFIS-FC-PSO 
(Proposed in this paper) 

Training phases 0.0108 0.9304 
Testing phases 0.0195 0.9413 

ANFIS-FC 
(Proposed in this paper) 

Training phases 0.0150 0.9011 
Testing phases 0.0308 0.9155 

ANN 
(Proposed in [31] ) 

Training phases ----- ----- 
Testing phases 0.0339 0.9721 

As seen, the ANFIS-ACO-SC model indicates better results relative 
to the previously presented model. As Table 2 shows, ANFIS-ACO-SC 
was found to be the best model with R2=0.9973 and MSE=0.0022. 

6. Conclusions 

Reliable assessment of the uplift capacity of Q in clays is a critical 
challenge for design engineers. In this paper, ANFIS models (ANFIS–
FC-ACO, ANFIS–FC-PSO, ANFIS–SC-ACO, ANFIS–SC-PSO, ANFIS–
FC, and ANFIS–SC) were applied to predict Q. In these models, the L/d, 
θ, Su, D/L, and Tk were used as the input parameters. Optimization 
increased the accuracy of ANFIS models. The optimization algorithms 
applied for improving the accuracy of ANFIS models were PSO and 
ACO. The following conclusions were made: 

 Among the two algorithms (PSO and ACO) applied for training 
ANFIS, ACO showed a better performance.  

 All suggested models in this paper were able to successfully 
estimate Q. 

 According to the training and testing error values, ANFIS–FC-
ACO, ANFIS–FC-PSO, ANFIS–SC-ACO, and ANFIS–SC-PSO 
performed better than ANFIS–FC and ANFIS–SC.  

 The comparison between the previously presented model and the 
proposed models in this study revealed the superiority of ANFIS–
SC-ACO in the estimation of Q. 

Applying optimization algorithms meaningfully increased the 
accuracy of finding optimal values of ANFIS. 
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