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A B S T R A C T 

 

Rock physics models are widely used in hydrocarbon reservoir studies. These models make it possible to simulate a reservoir more accurately 
and reduce the economic risk of oil and gas exploration. In the current study, two models of Self-Consistent Approximation followed by 
Gassmann (SCA-G) and Xu-Payne (X-P) were implemented on three wells of a carbonate reservoir in the southwest of Iran. Then, in order 
to increase the accuracy and improve the efficiency of the models, a fusion model of Choquet Fuzzy Integral (CFI) was applied as a new 
approach. The compressional wave velocities were estimated using two models, i.e., SCA-G and X-P, and were then integrated using the CFI 
fusion model. Finally, by comparing the model results and the real well log data, the Choquet model was confirmed as a compatible model 
with proper results. The correlation coefficient (CC) and Root Mean Squared Error (RMSE) for the estimated velocities versus the actual 
values showed the reliability of the constructed models.  For example, in one of the studied wells, the CC and RMSE values were 99.2 and 44 
m/s, respectively, in support of the fusion model. This could be related to the optimization algorithms in the heart of the Choquet model that 
led to the optimization of the model parameters and also better results in the studied carbonate reservoir. 
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1. Introduction 

The main objectives of petroleum geophysics are to discover more oil 
or gas reservoirs, optimize new well locations, and improve oil recovery 
[1]. In order to achieve these goals, new methods have been introduced 
for seismic reservoir characterization and monitoring, including the 
prediction of fluid status, lithology, and pore type [2]. A key question 
for seismic reservoir characterization is how physical variations of the 
subsurface geological layers can be related to variations in the seismic 
properties of the medium. The answer is usually provided by rock 
physics models, which may offer a new vision to those relationships [3]. 
In carbonate reservoirs, unlike sandstone reservoirs, rock physics 
models have been less developed. In fact, due to the nature of carbonate 
reservoirs, which is complex in terms of porosity and the shape of pores 
and fractures, it is not recommended to use sandstone rock physics 
models for carbonate reservoirs [4, 5]. Although recent research studies 
show the improvement of the appropriate carbonate rock physics 
models, they are not adequate [6, 7]. However, some rock physics 
theories are convenient for both carbonate and sandstone reservoirs. 
One of them is an inclusion-based theory that makes a model between 
wave velocity and attenuation regard to the scattering theory and 
estimates the rock as an elastic mass of mineral perturbed by holes 
(porosity). Among inclusion models, the Kuster-Toksöz model is 
probably the best classic recognized one [8]. Based on Kuster-Toksöz, 
the Xu-White model has been suitable for shaley sandstones [9], and it 
has been extended to the Xu -Payne model which is appropriate for 
predicting velocities for carbonate rocks [10]. There are two approaches 
to account interactions for the second- or higher-order scattering effect 
of each inclusion. Moreover, the interactions between pores are 

considered in the solutions in the second- or higher-order scattering 
such as differential effective medium (DEM) [11] and self-consistent 
approximation (SCA) [12]. Both of these approaches simulate the 
behavior of high-frequency saturated rocks. Make a low-frequency 
model requires adding fluid using the Gassmann equation. In these 
models, the reservoir parameters that affect seismic P- and S-wave 
velocity and density are water saturation, clay content, and porosity. 
Also, porosity-velocity relationships are strongly affected by pore types 
in carbonate rocks. Therefore, the pore systems have the main role in 
carbonates [13, 14, 15]. In order to improve these models of rock physics 
in carbonate rocks, data fusion is used as well. Data fusion methods are 
novel techniques in upgrading and improving different processes and 
modeling purposes. The application of data fusion methods developed 
since the establishment of a joint laboratory between military specialists 
and the development of system researchers. The use of these methods 
in various scientific fields, including geosciences, has become 
widespread afterward [16]. Data fusion methods, in particular fuzzy 
integrals, have been used in different areas of sciences. Examples of such 
research studies are as follows: the determination of Litho-facies and the 
estimation of permeability in oil wells by using fuzzy methods [17, 18, 
35], seismic image segmentation by fuzzy fusion of the attributes, the 
discovery of fuzzy rules for assessing the oil content of a formation with 
soft computing fusion in oil exploration management [19, 20], and a 
fuzzy combination with geological and geophysical data based on a 
geographic information system (GIS) to map hydrocarbon resources 
and to investigate the application of fuzzy logic in geophysics [21, 22]. 
In this research, the validity of two self-consistent Approximation 
/Gassmann and Xu-Payne models in a carbonate reservoir in southern 
Iran was studied and evaluated. Then, these two models were integrated 
using the Choquet Fuzzy Integral fusion approach, and the new model 

Article History: 
Received: 04 March 2019, 
Revised: 27 May 2019 
Accepted: 30 May 2019. 
 

https://ijmge.ut.ac.ir/
https://dx.doi.org/10.22059/ijmge.2019.277343.594789
https://dx.doi.org/10.22059/ijmge.2019.277343.594789


102 H. Seifi et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 101-108 

 

was constructed and evaluated. Therefore, the compressional wave 
velocities, derived from two different rock physics models and a fusion 
model, were compared with the measured compressional wave velocity 
of the three wells.  In addition, the model with the best compatibility 
with the studied carbonate was selected. 

2. Materials and Methods 

The rock physics models were first named Xu-Payne model using the 
DEM approach (X-P), and then, Self Consistent model followed by 
Gassmann equation (SCA-G) used in this study. In the final stage, these 
two models were fused by Choquet fuzzy Integral fusion model (CFI). 
This paper briefly implements the needed steps of the procedure and, 
thereby, proposes the methodology. These steps and the proposed 
methodology have been found valuable in performing seismic reservoir 
characterization in carbonate rocks. Below, all the used models and their 
application in carbonates are discussed. 

2.1. Xu-Payne model using DEM approach 

The concept of the Xu-Payne (X-P) model was supported by the 
Kuster-Toksöz (K-T) theory using the Differential Effective Medium 
(DEM) approach. In reality, the X-P workflow improves K-T to be 
applied in medium- and low-frequency regimes (similar to well logs) for 
carbonate rocks. Moreover, the DEM approach was used to model two-
phase composite by adding the inclusions to the matrix phase. Matrix 
began as an initial phase when the concentration of inclusions was zero, 
then changed at every step along with the addition of material 
inclusions. The process continued until the desired proportion of the 
material was obtained. The basic foundation of this model is the K-T 
theory. Regarding the limitation of the K-T model in the low 
concentration of inclusions, one solution for high inclusion 
concentration is to first divide the inclusions into numerous parts with 
a small number of inclusions relative to the medium value of the 
background and then incrementally add inclusions in the background 
to simulate the two-phase medium case [23]. This method is the 
Differential Effective Medium (DEM) model, and it is used to treat 
rocks with variable lithology and treats the late-added components as 
isolated inclusions. For the Xu-Payne model, the DEM approach was 
used; also, this approach categorizes pores in different shape inclusions. 
Moreover, the Xu-Payne rock physics model [10] is an outstanding 
choice for sonic log prediction and porosity partitioning in carbonates. 
This model is an extension of the Xu-White (X-W) model [9] developed 
to handle stiff and soft pores in clastic reservoirs based on the Kuster-
Toksöz theory or the Effective Medium Theory. The X-W model 
connects these models in order to calculate velocities of the saturated 
rock. It uses the time average model (Wyllie method) to mix minerals, 
and then the DEM equation is used to introduce dry pores into the 
effective minerals. Finally, the Gassmann equation is applied to 
introduce fluids into the dry pores. Furthermore, the X-W model 
assumes that there are two minerals (quartz and clay) with defined 
aspect ratios (clay aspect ratio much lower than quartz). Therefore, the 
X-W model is more suitable for sandstone reservoirs. The X-P model, 
on the other hand, is designed for carbonate reservoirs. The X-P model 
follows almost the same steps as those of the X-W model, but the X-P 
model assumes that the total porosity consists of four pore types. This 
assumption makes it more suitable for sediments with various pore 
structures such as carbonate rocks. Therefore, the Xu-Payne model is a 
four-part process where the Differential Effective Medium Theory and 
the Effective Medium Theory are applied. In the X-P model, the total 
pore volume is separated into four pore types: (1) clay-related pores, (2) 
inter-particle pores, (3) micro-cracks, and (4) stiff pores, which 
Equation 1 shows the relation. 

     (1) 𝜙𝑇 = 𝜙𝐶𝑙𝑎𝑦 + 𝜙𝐼𝑃 + 𝜙𝐶𝑟𝑎𝑐𝑘 + 𝜙𝑆𝑡𝑖𝑓𝑓 

In addition, the pore space is divided into clay pores (𝜙𝐶𝑙𝑎𝑦) and non-
clay pores using the method offered by Xu and White as in Equation 2. 

     (2) 𝜙𝐶𝑙𝑎𝑦 = 𝑉𝑠ℎ𝜙𝑇 

The stiff pores (𝜙𝑆𝑡𝑖𝑓𝑓) generally represent the rounded moldic pores 
or vugs in carbonate rocks. Finally, the interparticle pores (𝜙𝐼𝑃) make 
up the dominant pore space in sedimentary rocks. They are, in general, 
insensitive to stress and have no preferred orientation. As well as 𝜙𝐶𝑟𝑎𝑐𝑘 
which shows the pores related to fractures. As shown in Figure 1, the X-
P model contains four steps [10]: 

1) The minerals that are present in the rock are mixed using a mixing 
law (e.g., the Reuss-Voigt-Hill average (VRH)). Therefore, a solid rock 
matrix has the properties of this mixture. 

2a) Micro-pores with bound water (e.g., clay pores) are added to the 
matrix using the differential effective medium or DEM [9] process and 
the Kuster-Toksöz theory to account for the mechanical interaction 
among the pores (Kuster-Toksöz, 1974). The calculated effective elastic 
properties (e.g., bulk modulus) will be used later as the “solid” properties 
for fluid substitution. 

2b) Going back to step 2a, all pores, including water-wet micro-pores 
and empty (or dry) non-bound-water pores, are added into the system 
using the effective medium theory to provide the effective elastic 
properties (e.g., bulk modulus) of the “dry” rock frame. 

3) The remaining water (which is not bound to micro-pores) is mixed 
with the hydrocarbons (oil and/or gas) using a fluid mixing law such as 
the Wood Suspension Model. 

4) Gassmann’s equations are used to add the fluid mixture into the 
pore system in order to obtain the final effective elastic properties of the 
saturated rock [10]. 

 
Fig. 1. Diagram of Xu-Payne rock physics model [after 10]. 

2.2. Self-Consistent Approximation model / Gassmann theory 

Various attempts have been made to investigate the scattering effect 
of each inclusion. The first order scattering solutions, such as Kuster-
Toksöz (K-T), do not account for the pore to pore interactions. These 
interactions among pores are considered in solutions in the second- or 
higher-order scattering such as Differential Equation Medium (DEM) 
and Self-Consistent Approximation (SCA). The DEM approach utilizes 
the principle of porosity growth to extend the results of the first-order 
scattering K-T solution to be valid at high porosities, while SCA 
considers a uniform host material embedded with ellipsoidal inclusions 
[12]. Moreover, both of these approaches simulate high-frequency 
saturated rock behavior and, therefore, are appropriate to apply to 
ultrasonic laboratory conditions. 

The concept of the SCA model originates from K-T. Note that the K-
T model is limited by the low concentration of inclusions in the 
background medium, owing to the difficulty of modeling the elastic 
interaction between nearby inclusions. However, in most cases, the 
inclusions exceed the dilute concentration limit. If some effective 
medium replaces the background medium with unknown elastic 
moduli, the interaction of inclusions can be approximately solved in the 
case of a slightly higher concentration of inclusions. The above 
description is related to the SCA model [24, 12, 25]. Constituents are 
continuously distributed and equally treated in the SCA model; 
therefore, it is more suitable for the rock matrix to consist of many 
different minerals. 

The SCA model is a part of the Effective Medium Theory, the same 
as the DEM model. The Effective Medium Theory undertakes that 
separated pores and cracks may or may not be connected [26, 27]. 
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Unlike the DEM theory, the SCA theory does not possess any limitation 
regarding the porosity and the aspect ratio. However, SCA is 
computationally much more expensive than DEM. Different pore 
systems and mineral constituents are added to the system to form a “dry” 
rock frame, and the effective elastic moduli are calculated through 
numerically solving differential equations (Equations 3 and 4 for N 
phases) of the SCA theory. Furthermore, the SCA equations are 
simultaneous. This is solved by taking the initial guess of elastic moduli 
as the VRH average value and iterating until suitable convergence is 
acquired. Hill introduced the SCA model, and then Budiansky 
computed the elastic properties of a two-phase medium [24, 28]. This 
method is based upon the following idea: a single inclusion, representing 
one of the components, is embedded within a large surrounding matrix 
whose elastic properties are those of the effective medium. Berryman 
gave a more general form of the SCA for N-phase composites: 

     (3)  ∑ 𝑥𝑖 (𝐾𝑖 − 𝐾𝑆𝐶
∗ )𝑃∗𝑖𝑁

𝑖=1 = 0 
     (4)  ∑ 𝑥𝑖 (𝜇𝑖 − 𝜇𝑆𝐶

∗ )𝑄∗𝑖𝑁
𝑖=1 = 0 

where 𝑖 refers to the 𝑖th material, 𝑥𝑖 is its volume fraction, 𝑃 and 𝑄 are 
geometric factors, and the superscript ∗ 𝑖 on 𝑃 and 𝑄 indicates that the 
factors are an inclusion of material 𝑖 in a background medium with self-
consistent effective moduli 𝐾𝑆𝐶

∗  and 𝜇𝑆𝐶
∗ . Besides, 𝐾 and 𝜇 are the bulk 

and shear moduli of an un-cracked medium, respectively. The 
summation is over all of the parts containing minerals and pores. These 
equations are coupled and must be solved by simultaneous iterations. In 
this research, the SCA model is used, following the Gassmann equation, 
in order to be applicable for carbonate rocks in a well-log-scale. In other 
words, since the pores are isolated to the flow, the SCA model simulates 
very high-frequency saturated rock behavior appropriate to ultrasonic 
laboratory conditions. At low frequencies, when there is time for wave-
induced pore-pressure increments to flow and equilibrate, the best way 
is to find the effective moduli for dry pores and then saturate them with 
the Gassmann low-frequency equation [8]. Therefore,the Gassmann 
theory is described in the following paragraph in summary. One of the 
most significant problems in the rock physics analysis of logs, cores, and 
seismic data is using seismic velocities in rocks saturated with a fluid to 
predict those of rocks saturated with another fluid, or equivalently, 
predicting saturated-rock velocities from dry-rock velocities, and vice 
versa. This is the fluid substitution problem [8]. The most common rock 
physics method for fluid substitution problem is to use the Gassmann 
theory [29], which the relationship can be written as Equation 5: 

     (5)  𝐾𝑠𝑎𝑡

𝐾0−𝐾𝑠𝑎𝑡
=

𝐾𝑑𝑟𝑦

𝐾0−𝐾𝑑𝑟𝑦
+

𝐾𝑓𝑙

𝜙 (𝐾0−𝐾𝑓𝑙)
 , 𝜇𝑠𝑎𝑡 = 𝜇𝑑𝑟𝑦  

Here, 𝐾𝑠𝑎𝑡, 𝐾𝑑𝑟𝑦, 𝜇𝑠𝑎𝑡, 𝜇𝑑𝑟𝑦, 𝐾0, 𝐾𝑓𝑙, ∅ are saturated bulk modulus, dry 
bulk modulus, saturated shear modulus, dry shear modulus, mineral 
bulk modulus, effective fluid bulk modulus, and porosity, respectively. 
In Fig. 2, some of the characteristics of rocks are shown in Gassmann’s 
theory as a cube of rock is characterized by four components: the rock 
matrix, pore/fluid system, dry rock frame, and saturated rock [30].  

 
Fig. 2. Different parts of rock for rock physics model [after 30]. 

Briefly, the SCA-Gassmann method represents the low-frequency 
model, which describes well-connected pore spaces where the high-
frequency SCA method treats inclusions as isolated to the fluid flow, 
preventing hydraulic communication and pore-pressure equilibrium. In 
the current study, the SCA-Gassmann method is used for creating one 

of the rock physics models. First, the SCA method is applied for dry 
ellipsoidal pores to obtain the elastic modulus of a dry frame, and then 
Gassmann’s theory is applied to obtain the elastic properties of a fluid-
saturated rock [8]. 

2.3. Choquet Fusion Model: 

Choquet Fuzzy Integral (CFI) is one of the data fusion methods 
which is applicable for industrial uses. Based on fuzzy integral operators, 
a method has been developed to integrate various evidence linearly or 
nonlinearly. The practice of fusion on the membership functions and 
taking into account the relative importance of information resources in 
decision making is applied. When using the fuzzy theory for data fusion, 
two main goals are to maximize accuracy and minimize complexity. 
Fuzzy generators are suitable combiners to integrate the output of other 
classifiers. The philosophy of fuzzy combiners is that they not only 
examine the power of each classifier individually but also examine the 
effective power of each subset of classifiers separately. This most 
influential power is called the fuzzy number (measure). The algorithm 
used for the most effective fuzzy integral is the Choquet integral, which 
is a linear compound [21, 31, 22]. Inside aggregation operators, fuzzy 
integrals are recognized to be one of the most powerful and flexible 
functions as they allow the aggregation of the information under 
different assumptions on the independence of the information sources. 
Besides, fuzzy integrals, in general, and Choquet integrals, in particular, 
are well-known aggregation operators. The flexibility of such operators 
is tightly related to the difficulties of using them in practical 
applications. Fuzzy integrals combine the data supplied by several 
information sources, according to a fuzzy measure [32, 33]. Choquet-
fuzzy integral is an effective fusion method based on fuzzy integral 
introduced by Choquet, whose definition is: 

Choquet integral of a function: d X → [0, 1] with regard to fuzzy 
measure 𝑔 is defined, and suppose that 𝑔 is a fuzzy measure on X. For 
each input vector x,  whose components are the output of other 
classifiers, a new vector is created, whose components are arranged from 
small to large, respectively. The new vector follows Equation 6 in which 
d is a function of x: 

     
(6) 

 [di1,k(x),di2,k(x),di3,k(x),…,dil,k(x)]
T
 

where, the following relation is established (Equation 7): 
     

(7) 
 di1,k(x)<di2,k(x)<di3,k(x)<…<dil,k(x) 

The alternatives of the initial values of the fuzzy size corresponding 
to the high-order vector are selected as 𝑔, which is a fuzzy measure in 
the following equation: 

     (8)  𝑔i1 ,𝑔i2 , 𝑔i3….,𝑔iL 

Recursively, the final values of the fuzzy size are calculated according 
to the following equation.  

     (9)  𝑔(𝑡) = 𝑔𝑖𝑡 + 𝑔(𝑡 − 1) + 𝜆𝑔𝑖𝑡𝑔 (𝑡 − 1) 
where, according to the fundamental theorem regarding the fuzzy 

measure, 𝜆 -value has three cases, and 𝑡 is the component. The following 
procedure is performed to calculate the integral operator value for each 

input vector: the function of the Choquet integral (μ
j
(x)) is as follows 

(Equation10):  
     

(10) 
 μ

j
(x)=di1,k(x)+ ∑ [dik-1,j(x)-dik,j(x)]𝑔 (k-1)L

k=2  

Where, 𝑖,𝑗,k are the components in set X [34]. 
In the Choquet fuzzy integral method, first, shear wave velocities are 

calculated from two rock physics models, and each of these velocities is 
considered as an independent source of information. Then, to calculate 
the fuzzy number or worth values (weight), such as each one, the values 
of the rock physics model velocities are compared with the actual values 
of the measured velocity at each depth of the well, and the worth values 
with the minimum error are selected and used for the calculation of the 
next value. Then, using weight values and the Choquet Fuzzy Integral 
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algorithm, the velocity estimation of each rock physics model is fused 
with their fuzzy numbers with the velocity estimation values of another 
rock physics model. 

3. Results and Discussions  

The main objective of this study is to improve the predictions of 
elastic properties of carbonate rock type through the SCA/Gassmann 
and X-P rock physics models using the Choquet fusion method. In the 
current research, first, the X-P (Xu-Payne) model is used. This model 
conceptually originates from the Kuster-Toksöz theory. Also, the X-P 
model is supported by the Differential Effective Medium (DEM) 
approach. Consequently, the X-P model is applicable for carbonate 
rocks. Second, the SCA-Gassmann model is used. This model is a Self-
Consistent Approximation followed by the Gassmann equation. 
Furthermore, the SCA-Gassmann model is applicable for carbonates, 
even on a well-log scale. These two models have two major advantages 
for carbonates: ease of calculation and flexibility of application. Finally, 
the Choquet fusion model is used to improve the two previous major 
models. The target of the studied wells is carbonate reservoirs which 
consist of limestone, dolomite, shale, and some streaks of anhydrite. The 
rock properties mostly depend on the inclusion shape. For carbonate 
rocks, the inclusion shape and generalized formula affect the moduli and 
velocities of inclusion models [12]. 

In order to implement the rock physics model, in the current 
examination, the clay-related pore space is represented utilizing the 
shale volume curve. Pores in clay are relied upon to be water-saturated, 
bound, and of low aspect ratio (0.02-0.05). The rest of porosity has been 
partitioned into contributions from commonly three representative 
pore space segments, each with a characteristic pore aspect ratio, see 
Table 1. This step is performed by inverting the measured log data on a 
sample by sample basis. The generated multi-porosity results are used in 
the X-P and SCA/G models. The main pore types considered in the 
establishment of rock physic models in this study are intra-particle 
pores, Micro-cracks, and Stiff pores, as observed in the examined rock 
thin section. These pores have been used for rock physics modeling. 
Table 1. The aspect ratio for the range of pore types used to construct the multi-

porosity model [after 10]. 

Pore component Range of pore aspect ratio 

Intra-particle 
pores 

0.15-0.20 

Microcracks 0.01-0.02 
Stiff pores 0.80-0.90 

Fig. 3.a shows a section related to pore type of fracture. The 
dominance of fine-grained or muddy matrix indicates a deep 
sedimentary environment in which the high frequency of fossil particles 
reflects sedimentation in a shallow environment. Fig. 3.b illustrates a 
thin section related to inter-particle pores or inter-granular porosity. In 
addition, Fig. 3.c shows a section a fracture pore type, part of which is 
filled and some unfilled. There is a fracture in the middle of the section 
with a right-left direction where the fracture porosity remained unfilled 
whereas the fracture on the top looks different. Also, the fracture on the 
top is filled with some secondary crystals. Fig. 3.d shows a section related 
to pore type of moldic beside fracture. 

Moreover, in a rough estimation, it can be argued that about one-fifth 
of porosity can be subsumed under the fracture pore category, three-
fifth of the moldic pore type, and the rest can be inter-particle. Fig.s 3.e 
and 3.f both are typical moldic pore types. It can be seen from Fig. 3.f 
that some diagenetic events such as dissolution and replacement affect 
the particles which embody porosity.  

The reservoir rocks are significantly heterogeneous. To validate the 
studies, the CT-Imaging also was used. According to the CT scan of the 
pore structure, the pores are mostly spherical, or nearly spherical or 
ellipsoidal with large pore aspect ratios. It shows that the aspect ratio of 
these pores may vary between 0.1 and 0.8, and they constitute the more 
significant fraction of the pores. Fractures are primarily credited to 
tectonic activities during late diagenesis, and the majority of them are 

half or completely filled with calcite; nevertheless, a few numbers of 
unfilled fractures are detected. The presence of fractures contributes 
little to the total porosity of the reservoir rocks, but significantly affects 
the physical and elastic properties (e.g., velocity). The pore types of the 
collected samples fall into two groups: The first group comprises vuggy 
and Inter-particle pores, and the second group includes fractures. Fig. 4 
shows the epoxy resin thin sections beside the X-ray CT (computed 
tomography) scan of core plugs from the carbonate reservoir in a well, 
which the blue parts in thin sections represent pore space. These blue 
parts indicate that they are unsaturated in terms of fluid content. These 
thin sections are representatives of the carbonate reservoir, which show 
a mud-supported texture with variable porosity ranging from fracture-
like pores to micro-porosity and vuggy pores, which indicate that these 
rocks are modified and imprinted by complicated diagenetic history. As 
mentioned above, Fig. 4 indicates the matrix porosity and vuggy/moldic 
pores. 

Also, for validation of microstructure, the SEM (Scanning Electron 
Microscope) images were used for the determination of aspect ratio for 
various types of pores available in samples. Fig. 5 exposes that main 
porosity is a vuggy porosity which results from the dissolution of 
benthic foraminifera and in some case from the dissolution of matrix 
framework (Fig. 5). 

Compressional wave velocity logs were calculated from sonic logs to 
evaluate the performance of X-P, SCA-G, and Choquet model, and these 
logs were compared with estimated compressional wave velocity logs 
from models. Also, to compare the mentioned models in the studied 
carbonate reservoir, three wells were used for making the models. The 
estimation was performed by two main rock physics models (X-P, SCA-
G), and was fused by the fusion model (Choquet). The estimations of P-
wave velocities from these models for one well (Well A) are shown in 
Fig. 6. It displays the estimated and measured velocities for the studied 
carbonates described as typical carbonate sediments. In fact, on the right 
side of the figures, the cross plot has been drawn better to understand 
the correlation between real and modeled velocity. To define the axes of 
the cross plot, the measured P-wave velocities (real) are on the Y-axis, 
and the estimated P-wave velocities from models are on the X-axis. 

On the left side of Fig. 6, the composite log with real and estimated 
velocities is shown. In the velocity graphs, the red graph is the real Vp 
log, which is measured (from the sonic log), and the blue graph is the 
estimated Vp using different models. Moreover, cross plots and graphs 
have been analyzed for the evaluation of these models. 

The acceptable and fairly good compliance of the measured and 
estimated Vp-logs in well A using the SCA-G model is visible (Fig. 6.a). 
In this graph, the composite log verified that this correlation was 
significant from the depth of 1175m to 1190m. There is a good 
correlation between the SCA-G model and real data, for which the 
correlation coefficient is 97.8 percent (Fig. 6.b).  

Fig. 6.c presents the results of the X-P model, in which the trend and 
value are good for all interval depths of 1155m-1190m except the interval 
depths of 1165m-1175m. In the remaining intervals that the difference 
between these two logs is increased, major differences are not observed. 
The same fluctuation trend, however, is visible, although the values may 
be slightly different. It seems that the mineralogy and fluid contents 
have leading roles, which causes these results. As shown in Fig. 6.d, the 
correlation coefficient is 98.4 percent, which shows the high correlation 
between real and X-P model velocities. There is a highly significant 
correlation between the Choquet model and the real data for which the 
correlation coefficient is 99.2 percent. Also, the composite log 
demonstrates that this correlation is significant in all depths of 
investigation (Fig. 6.e and Fig. 6.f). Furthermore, the velocity cross-plots 
of well A show a root mean square error (RMSE) of 83 m/s, 80 m/s, and 
44 m/s for SCA-G, X-P, and Choquet models, respectively. The 
estimation of compressional wave velocities using all these models has 
error values of less than 100 m/s. The analysis of these graphs also shows 
the good ability of these models to estimate the P-wave velocity in a 
carbonate reservoir, especially in the range of 3500 to 5500 m/s.  
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 Fig. 3. Pore types in carbonate formation, (a) shows a photomicrograph related to pore type of fracture, (b) related to inter-particle pores or inter-granular 
porosity, (c) fracture pore type, (d) pore type of moldic beside fracture, and (e and f) both are typical moldic pore type. 

 

 
Fig. 4. The epoxy resin thin sections beside the X-ray CT scan of core plugs from the carbonate reservoir in well A indicating matrix porosity and vuggy pores. 
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Fig. 5. The SEM (Scanning Electron Microscope) photomicrograph of the sample 

from the carbonate reservoir in well A. 

Compared with the estimated results, the compression wave velocity 

obtained from the Choquet fusion model has a higher correlation 
coefficient than the two self-consistent Approximation/Gassmann and 
Xu-Payne rock physics models in the studied wells. In addition, the 
estimated error of the Choquet fusion model is the lowest. 

After comparing the different models and also comparing them with 
real log data (measured log) from the same well, the following results 
are concluded. The blue and red graphs corresponding to sonic logs and 
models, respectively, show the appropriate correlation. Above, log-
measured P-wave velocities are on the Y-axes, while the estimated P-
wave velocities from various models are on the X-axes. The RMSE error 
is low for all the estimations. Even, the correlation coefficient is 
relatively high for the models. The results of models indicate that SCA-
G slightly underestimates the P-wave velocities. The discrepancy 
between the estimated and measured P-wave velocities increases as the 
aspect ratio of pore decreases in the sedimentation environment.  

Generally, the Choquet model gives the best estimation, while the X-
P and SCA-G models underestimate the values. The accuracy of 
Choquet estimations varies across the log. There is a good correlation 
between modeled data and the sonic data in some parts, while other 
parts show reduced correlation. Moreover, the investigation of these 
differences is important and provides useful information. For instance, 
an evaluation of the composite logs with the estimated velocity logs 
exposes that the accuracy of the models decreases as the shale content 
increases. 
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Fig. 6. Comparing P-wave velocities in well A: (a,c,e) Graphs related to composite log with real P-wave velocities and estimated P-wave velocities using three models, 
(b,d,f) Cross-plots of real P-wave velocities (Y-axis) versus the estimated P-wave velocities using the three models (X-axis). 
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Shales change the matrix of the rocks, and thus, the physical 
properties of shales extensively change shear and bulk moduli, which 
may explain the observed discrepancies. In order to assemble an exact 
model, the volume of shale, related shear, and bulk moduli must be 
assessed definitely. Therefore, the logs have to be accurately adjusted for 
shale content and correct relative saturation logs. Consequently, these 
adjusted logs must be used in the calculations. Despite the mentioned 
pitfalls, the Choquet model provides the best estimates for carbonate 
rocks in comparison with the other models considered in this paper. 
Table 2 is used for analyzing data and model results in all three wells. 
The RMSE error is used between the real and model data in each plot. 
Also, the correlation coefficient is used to show how close the estimate 
is to the measured velocities (see details in Table 2). 

Table 2. The RMSE and Correlation Coefficient of Results.  

VP RMSE(m/s) Correlation Coefficient (%) 

Well Xu_Payne SCA/Gassmann Choquet Xu_Payne SCA/Gassmann Choquet 
A 80.4 83.6 44.5 98.4 97.8 99.2 
B 66.6 87.2 35.2 96.2 94.8 98.3 
C 115.3 205.4 79.3 97.8 93.6 98.5 

4. Conclusions 

Having a single model for estimating wave velocities is highly crucial 
but often unachievable. In this study, the accuracy of different rock 
physics models was investigated in three wells of an Iranian oil field in 
which the carbonate rock is the main reservoir. Two models of Self-
Consistent-Gassmann and Xu-Payne rock physics were evaluated and 
compared using petrophysical and geological data. Moreover, 
observations showed that although Self-Consistent-Gassmann and Xu-
Payne models were considered for sedimentary carbonate rocks, the 
fused model improved the accuracy and efficiency of these models by 
using the Choquet fuzzy integral fusion method. According to the 
consequences, it can be concluded that choosing one universal rock 
physics model for carbonate rocks requires precise considerations. 
However, regarding the results, it is evident that with a roughly similar 
correlation coefficient, one model can provide better results in terms of 
Root Mean Squared Error (RMSE). In this regard, the Choquet model 
shows the best performance in the estimation of compressional wave 
velocity with the minimum error and highest correlation coefficient 
among all models for three wells (wells A, B, and C). Furthermore, 
microstructure and pore type are of the main factors that control the 
elastic properties of the rocks; therefore, before choosing any model, the 
rock microstructure and pore type must be studied in detail. As for the 
complexity and the abundance of microstructures and pore types of the 
studied carbonate rock, the best results from the Choquet model were 
acquired. Also, it can be concluded that this model was successful in 
providing robust outcomes. The study of these two different rock 
physics models (SCA/Gassmann and Xu-Payne) in carbonate rocks 
provides rock elastic parameters (velocities) that have been obtained 
from the modeling of inputs, i.e., properties of lithology, fluid content, 
and pore type. The lateral discontinuity of geological facies such as inter-
well variation of shale content might affect the amount of applicability 
of these models in the studied area. In conclusion, evaluating the 
velocity values obtained from the models with actual velocities shows 
enhancement in the results in the fused method compared to those of 
the two rock-physics models. The reason for this could be related to the 
use of optimization algorithms in the Choquet. The results of this study 
can be used in feasibility studies for time-lapse seismic projects and also 
in forward-modeling workflows when the studies deal with fluid 
substitution and saturation changes. The rock physics models should 
experience an upscale approach to be bridged to the bigger scale 
properties log and seismic responses. This approach is practical and 
easily repeatable in each reservoir. It can be claimed that the effect of 
involving complementary data such as adequate thin sections, sidewall 
core plugs, digital rock images, and accurate laboratory measurements 
is undisputable on acquiring more reliable results. 
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