تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,095,360 |
تعداد دریافت فایل اصل مقاله | 97,201,630 |
ارزیابی روند فصلی شاخص هواویز (AI) ایران مبتنی بر داده های ماهواره ای Nimbus 7، Earth Probe، و Aura | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 4، دوره 52، شماره 1، فروردین 1399، صفحه 51-64 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2020.279630.1007366 | ||
نویسندگان | ||
عباسعلی داداشی رودباری1؛ محمود احمدی* 2؛ علیرضا شکیبا3 | ||
1دانشجوی دکتری آب و هواشناسی شهری، دانشکدة علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
2دانشیار آب و هواشناسی، دانشکدة علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
3دانشیار سنجش از دور و GIS، مرکز GIS و سنجش از دور، دانشگاه شهید بهشتی، تهران، ایران | ||
چکیده | ||
هدف از این پژوهش ارزیابی روند شاخص هواویز (AI) فصلی در ایران است. در این راستا، دادههای سنجندة TOMS دو ماهوارة Nimbus 7 و Earth Probe و سنجندة OMI ماهوارة Aura اخذ شد و از آزمون ناپارامتریک من- کندال (MK) برای شناسایی روند شاخص هواویز استفاده شد. نتایج نشان داد دادههای سنجندة TOMS ماهوارة EP برای مطالعة روند مناسب نیست، زیرا از سال 2001 دادههای این سنجنده کالیبراسیون نمیشود. بیشینه و کمینة روند شاخص هواویز ایران بهترتیب برای سنجندة OMI و TOMS ماهوارة Nimbus 7 محاسبه شد. در فصل بهار بهدلیل فعالشدن چشمههای گرد و غبار از مناطقی با روند کاهشی کاسته شد و بر مناطقی با روند افزایشی افزوده شد. بیشینة روند افزایشی معنیدار و همچنین بیشینة مقدار متوسط شدت روند شاخص هواویز (AI) براساس سنجندة OMI در فصل پاییز محاسبه شد. روند افزایشی شاخص هواویز (AI) در ایران بهدلیل شرایط محیطی (خشکسالی و تغییرات کاربری اراضی) و آب و هوایی (باد شمال تابستانه، الگوهای دینامیکی و حرارتی غرب آسیا، و کمفشار حرارتی سِند) است. مقایسة دادههای ماهوارهای با دادههای ایستگاههای همدید گرد و غبار در پهنههای مختلف آب و هوایی نشان از تطابق دادههای ماهوارهای و زمینی دارد. | ||
کلیدواژهها | ||
آزمون من- کندال (MK)؛ ایران؛ سنجندة OMI؛ سنجندة TOMS؛ شاخص جذب هوایز (AAI) | ||
مراجع | ||
احمدی، م. و داداشی رودباری، ع. (1397). آشکارسازی روند و نقطة تغییر گرد و غبار با استفاده از شاخص جذب هواویز (AAI) در پهنههای کلان آب و هوایی ایران مبتنی بر برونداد دادههای سنجش از دور، هفتمین همایش ملی مدیریت آلودگی هوا و صدا، 8 و 9 بهمن 1397 دانشگاه شهید بهشتی، تهران. ارجمند، م.؛ راشکی، ع. و سرگزی، ح. (1397). پایش زمانی و مکانی پدیدة گرد و غبار با استفاده از دادههای ماهوارهای در جنوب شرق ایران، با تأکید بر منطقة جازموریان، اطلاعات جغرافیایی سپهر، 27(106): 153-168. براتی، غ.؛ مرادی، م.؛ شامخی، ع. و داداشی رودباری، ع. (1396). تحلیل روابط طوفانهای غباری جنوب ایران با کمفشار سِند، مخاطرات محیط طبیعی، 6(13): 91-108. داداشی رودباری، ع. و احمدی، م. (1398). وردایی زمانی- مکانی و نقطة تغییر شاخص جذب هواویز (AAI) ایران مبتنی بر برونداد سنجندههای TOMS و OMI، فیزیک زمین و فضا، 45(3): 609-623. Ahmadi, M. and Dadashirodbari, A. (1397). Detection of the trend and point of dust change using AAI in Iran's large Climatological zones based on Remote Sensing Data Output, 7th National Conference on Air Pollution and Sound Management, 8th and 9th Bahman 1397 Shahid University Beheshti, Tehran (In Persian). Anuforom, A.C.; Akeh, L.E.; Okeke, P.N. and Opara, F.E. (2007). Inter-annual variability and long-term trend of UV-absorbing aerosols during Harmattan season in sub-Saharan West Africa, Atmospheric Environment, 41(7): 1550-1559. Arjmand, M.; Rashki, A. and Sargazi, H. (2018). Monitoring of spatial and temporal variability of desert dust over the Hamoun e Jazmurian, Southeast of Iran based on the Satellite Data. Scientific- Research Quarterly of Geographical Data (SEPEHR), 27(106):153-168 (In Persian). Babu, S.S.; Manoj, M.R.; Moorthy, K.K.; Gogoi, M.M.; Nair, V.S.; Kompalli, S.K.; Satheesh, S.K.; Niranjan, K.; Ramagopal, K.; Bhuyan, P.K. and Singh, D. (2013). Trends in aerosol optical depth over Indian region: Potential causes and impact indicators, Journal of Geophysical Research: Atmospheres, 118(20). Barati, G.; Moradi, M.; Shamekhi, A. and dadashirodbari, A. (2017). Analysis of Relations between Dust Storms and Indus Low Pressure over Southern Iran, Natural Environmental Hazards, 6(13): 91-108 (In Persian). Bollasina, M.; Nigam, S. and Lau, K.M. (2008). Absorbing aerosols and summer monsoon evolution over South Asia: An observational portrayal, Journal of Climate, 21(13): 3221-3239. Dadashi Roudbari, A. and Ahmadi, M. (2019). Spatio-temporal variation and change point of Iran Aerosol absorption index (AAI) based on the output of TOMS and OMI sensors, Journal of the Earth and Space Physics, 45(3): 609-623 (In Persian). Duhan, D. and Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India, Atmospheric Research, 122: 136-149. Fallah-Ghalhari, G.; Shakeri, F. and Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran, Theoretical and Applied Climatology, 138: 1539-1562. Ghasem, A.; Shamsipour, A.; Miri, M. and Safarrad, T. (2012). Synoptic and remote sensing analysis of dust events in southwestern Iran, Natural hazards, 64(2): 1625-1638. Godon, N.A. and Todhunter, P.E. (1998). A climatology of airborne dust for the Red River Valley of North Dakota, Atmospheric Environment, 32(9): 1587-1594. Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media. Hammer, M.S.; Martin, R.V.; Li, C.; Torres, O.; Manning, M. and Boys, B.L. (2018). Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index, Atmospheric Chemistry & Physics, 18(11). Harrison, S.P.; Kohfeld, K.E.; Roelandt, C. and Claquin, T. (2001). The role of dust in climate changes today, at the last glacial maximum and in the future, Earth-Science Reviews, 54(1-3): 43-80. Herman, J.R. and Celarier, E.A. (1997) Earth surface reflectivity climatology at 340–380 nm from TOMS data, Journal of Geophysical Research: Atmospheres, 102(D23): 28003-28011. James Gauderman, W.; McConnell, R.O.B.; Gilliland, F.; London, S.; Thomas, D.; Avol, E.; Vora, H.; Berhane, K.; Rappaport, E.B.; Lurmann, F. and Margolis, H.G. (2000). Association between air pollution and lung function growth in southern California children, American journal of respiratory and critical care medicine, 162(4): 1383-1390. Kaskaoutis, D.G.; Houssos, E.E.; Rashki, A.; Francois, P.; Legrand, M.; Goto, D.; Bartzokas, A.; Kambezidis, H.D. and Takemura, T. (2016). The Caspian Sea–Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia, Global and Planetary Change, 137: 10-23. Kaskaoutis, D.G.; Nastos, P.T.; Kosmopoulos, P.G.; Kambezidis, H.D.; Kharol, S.K. and Badarinath, K. V. S. (2010). The aura–OMI aerosol index distribution over Greece, Atmospheric Research, 98(1): 28-39. Kaskaoutis, D.G.; Rashki, A.; Houssos, E.E.; Goto, D. and Nastos, P.T. (2014). Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms, Atmospheric environment, 94: 374-384. Kendall, M.G. (1955). Rank correlation methods. Kosmopoulos, P.G.; Kaskaoutis, D.G.; Nastos, P.T. and Kambezidis, H.D. (2008). Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data, Remote Sensing of Environment, 112(5): 2354-2366. Li, J.; Carlson, B.E. and Lacis, A.A. (2009). A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data, Journal of Geophysical Research: Atmospheres, 114(D9). Liu, H.; Remer, L.A.; Huang, J.; Huang, H.C.; Kondragunta, S.; Laszlo, I.; Oo, M. and Jackson, J.M. (2014). Preliminary evaluation of S‐NPP VIIRS aerosol optical thickness, Journal of Geophysical Research: Atmospheres, 119(7): 3942-3962. Maghrabi, A. H. and Alotaibi, R. N. (2018). Long-term variations of AOD from an AERONET station in the central Arabian Peninsula, Theoretical and Applied Climatology, 134(3-4): 1015-1026. Mann, H.B. (1945). Nonparametric tests against trend, Econometrica: Journal of the Econometric Society, 245-259. Miller, S.D.; Kuciauskas, A.P.; Liu, M.; Ji, Q.; Reid, J.S.; Breed, D.W.; Walker, A.L. and Mandoos, A.A. (2008). Haboob dust storms of the southern Arabian Peninsula, Journal of Geophysical Research: Atmospheres, 113(D1). Namdari, S., Valizade, K. K., Rasuly, A. A., & Sarraf, B. S. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9(3): 191. Pozzer, A., De Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., & Astitha, M. (2015). AOD trends during 2001–2010 from observations and model simulations. Atmos. Chem. Phys, 15(10): 5521-5535. Rashki, A.; Kaskaoutis, D.G.; Eriksson, P. G.; Rautenbach, C.D.W.; Flamant, C. and Vishkaee, F.A. (2014). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations, Natural hazards, 71(1): 563-585. Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C. and Francois, P. (2019). Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer–The July 2016 case, Aeolian Research, 36: 27-44. Sabetghadam, S., Khoshsima, M., and Alizadeh-Choobari, O. (2018). Spatial and temporal variations of satellite-based aerosol optical depth over Iran in Southwest Asia: Identification of a regional aerosol hot spot. Atmospheric Pollution Research, 9(5): 849-856. Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X. and Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science, Aeolian Research, 2(4): 181-204. Wurzler, S.; Reisin, T. G. and Levin, Z. (2000). Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions, Journal of Geophysical Research: Atmospheres, 105(D4): 4501-4512. Yu, Y.; Notaro, M.; Kalashnikova, O.V. and Garay, M.J. (2016). Climatology of summer Shamal wind in the Middle East, Journal of Geophysical Research: Atmospheres, 121(1): 289-305. Ziemke, J.R.; Oman, L.D.; Strode, S.A.; Douglass, A.R.; Olsen, M.A.; McPeters, R.D.; Bhartia, P.K.; Froidevaux, L.; Labow, G.J.; Witte, J.C. and Thompson, A.M. (2019). Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmospheric Chemistry and Physics, 19(5): 3257-3269. | ||
آمار تعداد مشاهده مقاله: 786 تعداد دریافت فایل اصل مقاله: 400 |