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ABSTRACT 

In recent years, forest fires have increased drastically due to global warming. Forest fire prediction is the 

best way to control the spread of fire. Therefore, several studies have focused on developing models that 

predict the behavior of forest fires. Predicting fire spread and its behavior is crucial to mitigate the adverse 

effects on weather conditions, environment, and human activities. Improving forest fire prediction using 

higher quality data can be expensive. In some cases, obtaining or even precise estimation of these data is 

difficult. On the other hand, using prediction models are more reasonable and feasible to increase 

prediction accuracy. In this paper, we introduced a novel Belief-Desire-Intention (BDI) agent-based model 

to predict the behavior of forest fires in the Mazandaran region in the north of Iran. This paper attempted 

to map the concepts of BDI agent architecture into generic GIS. A novel BDI-GIS model was then 

proposed in which an agent’s belief, desire, and intention were defined based on spatial or non-spatial data 

and GIS functions. Therefore, an agent-based model was developed to determine the prediction of forest 

fires and implemented it on a real dataset. The experimental results showed that the proposed model could 

be successfully applied to the real-world scenarios with a Kappa Coefficient of more than 68.2%. 
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1. Introduction 

Fire agencies aim to prevent forest fires before they have 

an impact on the environment. Forest fires impose severe 

problems in this area. Forests are the primary resource for 

providing oxygen and clean weather in the world. Protecting 

forests is an important task especially in regions that have 

the drycontrol due toout ofburningarelightning or

conditions as the major reasons for forest fire ignition. 

Annually, about 1-4 billion tons of carbon is released into the 

atmosphere by forest fires all over the globe (Andreae and 

Goldammer, 1992). The prediction of fire propagation across 

landscapes is necessary for safe and effective fire 

management. Fire simulation provides a valuable tool for 

handling fires and consequent contaminations. 

Forest fires usually spread at high speeds from their 

originating point. Their direction unexpectedly changes, and 

they are capable of passing the barriers such as roads, rivers, 

and fire-breaks. The ignition can be initiated by lightning, 

sparks from rock-falls, spontaneous combustion, volcanic 

eruptions, coal seam fires, extreme heat in the environment, 

and human negligence. The fire can be prevented by isolating 

the spread by trenches in the ground, spray of sand, water, 

and chemicals. The hazards include loss of human and 

animal lives and forest resources. Smoke, ash, and dust 

damage the lungs and respiratory systems.  

Recently, humans are facing the risk of increasing 

population density, creeping urban sprawl from the incursion 

into the wild-land urban interface (WUI), and from changes 

in land-use patterns that conflict with societal and ecological 

protection. Climatic and weather condition changes are 

exacerbating these problems (Tedim et al., 2015).  

The main reasons causing uncontrolled fires are a 

combination of severe drought, destructive logging practices, 

and slash-and-burn agriculture. During protracted dry 

seasons, drought stress causes evergreen trees to shed their 

leaves, particularly in logged-over areas (Heyer et al., 2018; 
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Young et al., 2019). In general, if the precipitation falls 

below 100 mm/month, and if there is no precipitation for two 

or more weeks, the forest vegetation sheds its leaves 

progressively with increasing drought stress. Besides, the 

remnants of the deadwood left after felling this accumulated 

dry litter lead to a rapid spread of an uncontrolled fire 

(Goltenboth et al., 2006). 

Forest fire prediction has been the focus of many studies 

in various countries since its inception in the 1920s. Chen 

and Chen (2015) used a given day's highest temperature, 

temperature variation, the accumulated period without 

rainfall, and drought index as weather factors for deriving 

forest fire in Hsiao. In that study, they also considered space 

and time variations in weather factors using the GIS system 

to conduct temperature and rainfall space-time estimates and 

also to rate forest fire hazards for forests in Taiwan. The 

methodology used in (de Groot et al., 2015) and (Herrera, 

2016) were also similar but with different case studies.  

Forest fires have influenced the contemporary physical, 

chemical, and biological properties of streams and lakes. The 

increases in sulfate and nitrate and hydrological outputs from 

streams in burned areas persist from a few to several years, 

depending on fire severity, weather and climate 

(ROSENBERG et al., 2005). 

There are several ways of modeling forest fires. Recently, 

machine learning algorithms have helped researchers to 

model the problem. The methodologies introduced by , 

(Thach et al., 2018) and (Bui et al., 2018) are some examples 

that are based on machine learning for forest fire prediction. 

For instance, a new machine learning method, named as 

DFP-MnBpAnn, was developed based on Artificial Neural 

Network (ANN) for spatial modeling of forest fire hazards 

(Bui et al., 2018). The study conducted by (Hodges et al., 

2019) was another case that used ANN for fire prediction. 

Hodges et al. (Hodges et al., 2019) presented a data-driven 

approach to predict spatially resolved temperatures and 

velocities within a compartment based on zero-dimensional 

zone fire modeling using a transpose convolutional neural 

network (TCNN).  

With the advent of remote sensing, forest fire data and 

analysis have been modified. (Schroeder et al., 2016), (Vidal 

and Devaux-Ros, 1995), and (Nurdiana and Risdiyanto, 

2015) are among some researchers who used Landsat images 

for forest fire perdition. Furthermore, Reddy and Satish 

(2018) used multi-temporal Landsat and Indian Remote 

Sensing satellite data to quantify burnt forest areas. In China, 

ground-based data of forest fires at the county level have 

been used to study forest fires and five relevant factors: 

climate, fuel, topography, human activity, and firefighting 

facilities at regional and local scales. The results provided a 

first ground-based snapshot of forest fire patterns in China at 

a high spatial resolution, revealed different features of 

natural- and human-caused forest fires, and highlighted the 

spatial variation of fire drivers (Ying et al., 2018). Murthy et 

al. (Murthy et al., 2019) tried to understand a wildfire in the 

Himalayan foothills through fine-scale analysis of fire 

incidences. They built a temporal model with spatially 

explicit information on anthropogenic, bio-physical, and 

climatic variables to develop a fire risk map.  

Cellular Automaton (CA) is one of the new algorithms 

which is widely used in spatial issues such as forest fire 

prediction (A Hernández Encinas et al., 2007a; Ghisu et al., 

2015; L Hernández Encinas et al., 2007b). By integrating the 

Extreme Learning Machine (ELM) with the CA framework, 

a new cellular automaton modeling approach was proposed 

for the simulation of forest fire spreading. In that research, 

CA was used to simulate complex mechanisms of fire 

spreading (Zheng et al., 2017). In order to predict the 

behavior of wildfires, a two-dimensional mathematical 

model was considered, which was derived by averaging the 

three-dimensional equations over the thickness of the forest 

fuel material layer (Kuleshov et al., 2013). At a local scale, a 

3D multi-physical model referred to as “FireStar3D” was 

developed for forest fire (Morvan et al., 2018). Moreover, 

Iudin et al. (Iudin et al., 2015) applied new arithmetic to a 

CA forest-fire model connected to the percolation 

methodology, and in some sense, integrated the dynamic and 

the static percolation problems, which would exhibit critical 

fluctuations under certain conditions. They discovered that 

both instantaneous forest combustion and stepwise firing 

could be revealed by using the same cellular automaton 

forest-fire model. In another study, Hamilton–Jacobi 

equations were used to model wildfire spread (Fečkan and 

Pačuta, 2018). Besides, a new fuzzy-based model was 

introduced for the calculation of plant growth potential in the 

context of forest development simulation, which has become 

an important tool for prediction and monitoring of forest 

biodiversity. The enhanced expressiveness about the 

tolerance of tree species for deviation of growth conditions 

allows fuzzy models to improve the accuracy of forest 

composition prediction concerning the crisp model (Strnad 

et al., 2018). 

The accuracy of the predicted model was analyzed by 

calculating error statistics and compare model predictions 

with observed spread rates of field observations of wildfires 

and prescribed fires. Comparing the changes in error metrics 

of older models to newer ones showed the new one to be 

better (Cruz et al., 2018). 

Ager et al. (2018) developed and applied a wildfire 

simulation package in the Envision agent-based landscape 

modeling system. They said that the Wildfire package 

combines statistical modeling of fire occurrence with a high-

resolution, mechanistic wildfire spread model. This package 

can capture fine-scale effects of fire feedbacks and fuel 

management, and replicate restoration strategies at scales 

that are meaningful to forest managers. Their study revealed 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/machine-learning
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/artificial-neural-network
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/artificial-neural-network
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-modeling
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/artificial-neural-network
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/landsat
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/satellite-data
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biodiversity
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that the potential for fire-on-fire feedbacks was higher for 

human versus natural ignitions due to human ignition 

hotspots within the study area (Ager et al., 2018). 

Agent-based modeling (ABM) is a powerful simulation 

modeling technique that has been frequently used in the last 

few years, including its applications to real-world business 

problems. In ABM, a system is modeled as a collection of 

autonomous decision-making entities called agents. Each 

agent individually assesses its situation and makes decisions 

based on a set of rules. Agents may execute various 

behaviors appropriate for the system they represent 

(Bonabeau, 2002). For example, Niazi et al. (2010) presented 

the verification and validation of an agent-based model of 

forest fires. By using a combination of a Virtual Overlay 

Multi-Agent System (VOMAS) and a Fire Weather Index 

(FWI), the forest fire Simulation was validated. In this study, 

each virtual "sensor" agent uses FWI to calculate fire 

probability and compares it with the simulation model. They 

concluded that VOMAS verification and validation 

methodology for agent-based models would allow for 

interactive design of Agent-Based Models involving both the 

Simulation Specialists as well as the Subject Matter Experts 

(Niazi et al., 2010). 

Furthermore, a designing of fire suppression simulation 

can be conducted using a discrete event agent model based 

on a discrete cellular space (Hu and Sun, 2007). Hu and Sun 

(2017) presented a framework of wild-land fire suppression 

simulation and described how firefighters' direct attack, 

parallel attack, an indirect attack were modeled. 

Experimental results were also provided to demonstrate the 

agent models and to compare them in different fire 

suppression scenarios. 

The behavior of a system can be estimated by simulating 

the actions of each entity within the system, including how 

these entities interact with each other or how they are 

affected by physical and social factors of the surrounding 

environment. Thus, in the current study, this method is used 

for modeling forest fire and estimating the behavior of 

broadcasting fire in an area.   

In this paper, an agent-based model is proposed to handle 

forest fire prediction. In this architecture, agents try to 

understand the conditions of the problem by generating and 

arranging some cells, and then they use these cells to solve 

the problem. This paper first reviews and identifies the basic 

concepts of agents. All concepts of spatial-agents are then 

translated to the spatial domain. Section 3 of this paper is 

devoted to a case study - prediction of forest fire spread- in 

which a detailed implementation of the newly introduced 

architecture is elaborated. The final section of this paper is 

discussing the obtained results. 

2. The Proposed Method 

Figure 1 shows the proposed Agent-Based method, which 

handles spatial problems. The agent observes spatial data and 

generates its specific database. This procedure is planned 

based on the structure of the problem. Then, the agent's belief 

is produced based on its action and its database. A 

combination of the agent's belief and the goal is used to 

generate the agent's desire. The agent’s intention is also 

important in generating its desire. An optimization operator 

such as a genetic algorithm (GA) can be used to generate 

such an intention. Finally, the intention generated by the 

agent is converted to action based on the agent's 

commitment. The followings are a detailed description of our 

proposed architecture. 

 

 
Figure 1. The proposed architecture for handling spatial problems. 

 

2.1. Environment 

Environment (E) is a space in which agents are present. 

The environment can be sensed by agents and modified by 

their actions. Time, position, and attributes are the three 

fundamental components of a GIS entity. In the proposed 

architecture, the spatial dataset forms the environment. Such 

an environment is a set of sub-environments (ei) that varies 

in time. Each sub-environment consists of one or more layers 

of data (𝐿𝑗
𝑖 ), having one positional (Posj) and one or more 

information attributes (𝑎𝑡𝑡𝑚𝑗

𝑗
). Therefore, each layer is 
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shown as a set of positions and attributes. 

 

2.2. Agent 

An agent is an entity that is put in the environment to do 

some action based on its perceptions to achieve its goal 

(Arend Ligtenberg et al., 2010). In an agent-based model, a 

set of agents are working in the environment, each of which 

is trying to attain its goals based on the competition and 

cooperation with others (Tweedale et al., 2007). To define 

agents in the environment, it is necessary to specify the 

perception, action, competition, and cooperation of the agent. 

 Agent’s Actions 

Agents make some changes (in this paper, referred to as 

actions) in positions and attributes. The changes are made to 

reach the goals. Agents try their best to satisfy their 

predefined goals. Actions also play an effective role in 

defining the number of agents – more actions require more 

agents. In his paper, actions are classified into two general 

categories: 1) changes in the attribute information (𝑎𝑡𝑡𝑚𝑗

𝑗
), 

and 2) changes in position (Pos j). When an agent is put in an 

environment, the class of agent’s action (one of the above 

two cases) must be specified. 

 Agent’s Goals 

The outcome expected from the whole system is called the 

goals. These goals are divided into several sub-goals which 

the agent wants to accomplish in the environment. In 

practice, the goal is used in two different parts of the 

package: 1) in environment evaluator - it is part of the 

package which assesses the action of agent performed on the 

environment, and 2) in generating the agents. 

 Agent’s Observation 

To achieve the goals, an agent needs to sense the 

environment. In this method, the set of information on the 

environment and the determined actions is considered as a 

set of tuples. In each epoch of time (ei), information is put in 

a matrix named “Environment Matrix;” therefore, the 

number of environment matrices is equal to the number of 

time epochs. Environment matrix is a square matrix with its 

dimension equals to the total number of position and attribute 

information in set E. For instance if there are n layers in the 

environment and each layer (𝐿𝑗
𝑖 ) of information includes mi 

attributes of information – considering one position for each 

layer - the dimension of the matrix will be equal 

to ∑ (1 + 𝑚𝑖)
𝑛
𝑖=1  × ∑ (1 + 𝑚𝑖)

𝑛
𝑖=1 . Figure 2 shows the 

environment matrix driven from a sample of the data layer in 

one epoch of time. The environment consists of four 

information layers; each layer has a varying number of 

attributes. 
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Figure 2. An environment matrix. 

 

Each cell of the environment matrix represents the 

relationship between positions and attributes information. 

"Environment Graph" is presented to visualize the flow of 

the information, and the sequences of spatial analysis. The 

environmental graph is generated based on the environment 

matrix. If the environment matrix is considered as an 

adjacency matrix of a graph, then the position and attributes 

parts of a layer in the environment are regarded as nodes. 

Edges of this graph can show the relations among all nodes; 

therefore, each edge in the environment graph plays the role 

of each cell of the environment matrix. Environment matrix 

and graph are two different representations of the same 

phenomenon. The environment matrix shows the process 

done for solving the problem, while the environment graph 

represents the flow of the data among the component of the 

environment. Figure 3 shows the environment graph of a 

sample environment matrix. 

 
Figure 3. An environment matrix, and its environment 

graph. 
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 Agent’s Belief 

In the geospatial information field, an agent’s belief is 

considered as the current state of the environment (A. 

Ligtenberg, Wachowicz, M., Bregt, AK., Beulens, A., 

Kettenis, DL, 2004). Therefore, an environment matrix can 

be considered as one part of agents' beliefs. The matrix is the 

same for all agents. The second part of agents' beliefs is about 

their actions, and therefore, this part varies. As assumed 

earlier, each agent can only do one action which can be the 

changes in position or attribute information of the 

environment. If the environment matrix is considered as an 

adjacency matrix of a graph, then the part of the data which 

is supposed to be changed is considered as the end node and 

its associated position information is regarded as the start 

node. It is possible that the start and end nodes to be the same 

in the environment matrix. It happens when the agent wants 

to change position. In summary, the agent’s belief is the 

environment matrix plus the start and terminal nodes of the 

environment graph. Due to the differences in the start and 

end nodes of agents' actions, their beliefs are different. Each 

cell in the belief matrix has a specific name, and it is obtained 

from the name of its related row and column. Figure 4 shows 

the name of each cell in a sample belief matrix. 

 
   L1      

  Pos Att1 Att2 11111111    

 Pos     L1.Pos - L1.Pos L1.Pos - L1.Att1 L1.Pos - L1.Att2 

L1 Att1     L1.Att1 - L1.Pos L1.Att1 - L1.Att1 L1.Att1 - L1.Att2 

 Att2     L1.Att2 - L1.Pos L1.Att2 - L1.Att1 L1.Att2 - L1.Att2 

a) The Environment Matrix       b) The name of each cell in environment matrix 

Figure 4. the name of each cell in the environment matrix of the Belief. 

 

Each cell stores the current state of the environment related 

to its row and column. The cells of the belief matrix are 

categorized into four groups: cells which show the relation 

between position and position, position and attribute, 

attribute and attribute, and attribute and position. The 

structures of data stored in these groups are different from 

each other.  

The existing spatial data are stored in cells related to 

position-position. In cells related to position-attribute, the 

current state between position and attribute is stored. In this 

case, if the cell in the belief matrix is related to the position 

and attribute of the same layer, the layer itself can show the 

relationship. However, if the cell is related to the position and 

attribute of different layers, a pattern recognition algorithm 

such as Neural Network (NN) plays the role of belief in the 

cell. 

In cells related to attribute-attribute, the current 

relationship between these two attributes is considered as the 

belief. If both attributes are from the same layer, the 

probability of occurring the second attribute (related to the 

column) is obtained based on the first attribute (related to the 

row). If both attributes are from two different layers, the 

occurrence probability of the second attribute (regardless of 

the first attribute) is considered as the belief.  

In cells related to attribute-position, the distribution of 

each type of attribute in the area is considered as the belief. 

 Agent’s Desire 

In the concept of the agent, desire is defined as option 

generation (Hall et al., 2005; Tweedale et al., 2007; Behzadi 

and Alesheikh, 2013), namely: 

(Bel) × (Int)  (Des)  (1) 

Equation 1 states that an agent has different intentions (Int) 

based on the current state of the environment (Bel); the agent 

assesses the results of its intentions on the belief concerning 

its goal (Des). The intention is defined as the processor of the 

agent; it tests different actions on the environment. This 

determines the behavior of the agent's desire based on the 

action. Intention function is defined based on some 

parameters (Int = I (P)). Equation 1 indicates that the desire 

of an agent is a function of its intention; therefore, the desire 

of an agent is a function of the parameters of intention (Des 

= D (P)). Therefore, both intention and desire functions are 

related to each other by an intermediate value of parameters. 

The intention is implemented on belief, more specifically, on 

the structure of belief. The belief is represented in the cells 

of the environment matrix; thus, the intention must be 

represented as the structure of the cells. Accordingly, the 

intention is also considered as a matrix with the same 

dimension of the belief matrix. The structure of the intention 

matrix is stemmed from the belief matrix. Each cell in the 

intention matrix has a specific name similar to those defined 

in the belief matrix. Each cell also has a definite state. 

 Agent’s Intention 

Numerous intentions have resulted from the previous 

section. This section is to determine the one that the agent 

selects. The intention of the agent is defined as (Casali, 

2005): 

(Bel) × (Des) × (Int)  (Int) (2) 

Equation 2 shows that the agent must intend to the 

intention on the environment (belief) that successfully passes 

through the desire function. In our proposed architecture, the 

following process must be executed on the desire function to 

find acceptable intention values. The highest values of desire 

are the most favorable values of parameters for intention. 

The agent must consider other values of parameters as 

alternatives to work on if the highest values are not practical. 
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Based on the values obtained from desire functions, the 

values of parameters are prioritized using an optimization 

algorithm. Since each agent has only one goal, a single-

objective genetic algorithm (SOGA) can be a useful 

optimizer. The optimizer estimates the value of parameters 

that has the highest desire. To specify the other values of 

parameters with less desire, it is important to determine the 

relative maximums of the desire function. These points are 

determined through rerunning the optimizer in the domain 

except for the highest values location. Therefore, the second 

maximum value of desire is obtained and the related 

parameters of this maximum value are considered as the 

second priority of the agent's intention. 

 Agent’s Commitment and action 

The priorities of intention are known to the agent, but the 

type of commitment that each agent has specifies the 

preferences of the agent. Three types of commitments are: 

blinded, single-minded, and open-minded (Guerra-

Hernández et al., 2009; Guerra-Hernández et al., 2008), each 

of which must be defined based on the structure of desire and 

intention of the agent in our proposed architecture. In blind 

commitment, the agent focuses only on the intention that has 

the highest desire. Single-minded commitment makes the 

agent commit to the highest intention if achievable. 

Otherwise, the agent searches in the area around the highest 

intention. In open-mind commitment, the agent is allowed to 

drop an intention when it finds out the intention is 

unattainable, so it can intend to each of the intentions it 

wants. When the agent commits to the specific intention, it 

obtains the preference which must intend to do as an action.  

3. Experimental Results 

In this part, the main problem of forest fire is tried to be 

solved based on the structure of the proposed BDI-GIS. In 

this study, programming was accomplished using the 

MATLAB® package. Preliminary model validation was 

performed on a real forest fire case happened in the 

Mazandaran region in Northern Iran, on 12th of August, 

2001. The fire began around 13:00 and lasted 14 hours. The 

region selected for this study is located between 53°47´ to 

53°52´ E, and 36°34´ to 36°37´ N and has an area of about 

36 km2. At first, Alexandridis’ model was calibrated using 

the available data, and then three different scenarios were 

generated. Three burned areas were considered: the first one 

was used for calibrating agents and the other two were used 

for prediction.  

 

 

 
Figure 5. The case study for forest fire prediction, a) Density of vegetation, b) Elevation, and c) Types of vegetation cover. 
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Forest fire spread prediction was investigated by taking 

into account factors such as elevation, as well as the type and 

the density of vegetation. Each layer was considered as a 

two-dimensional grid tessellation. The structure of input data 

that the agent wanted to assess was composed of three layers. 

They included the states of altitude, vegetation density, and 

vegetation type (Figure 5). Vegetation density was 

categorized into eleven groups; the value of a cell showed its 

density. These values showed the desire for burning; the 

higher the value, the greater the tendency for burning. The 

vegetation type was also categorized into four groups based 

on burnability. The topography of the area (elevation) is a 

type of data that the agent needs for the process. Therefore, 

the environment is shown as: 

 1eE   

 BurnAreaDensityVegetationElavatione ,,,1   
 attPosElevation ,  
 attPosVegetation ,    (3) 

 attPosDensity ,  

 attPosBurnArea ,  

 

The action of the agent was defined as changing the 

attribute of one layer to a finite number: (N=1: there was no 

related data, N=2: The cell had not burned, N=3: The cell 

was burning, N=4: The cell had been burned). The similarity 

between the agent's action and the ground truth was 

considered as the goal of the agent; if the differences were 

slight, the agent would obtain more profit from the evaluator 

of the environment. Since only one action and one goal were 

defined for this problem, only one agent was generated.   

The agent observed the environment, and the environment 

matrix was generated (Figure 6a) as the result of the 

observation. Based on the environment matrix, the 

environment graph is generated (Figure 6b). The 

environment matrix shows the computation, while the flow 

of the data is better seen in the environment graph. The action 

of the agent (BurnArea.Att) determined specific nodes in the 

environment graph and also specific row and column in 

environment matrix (as seen in Figure 6). 

 

 

                

   Vegetation BurnedArea Elevation Density      

   Pos att Pos att Pos att Pos att      

 
Vegetation 

Pos              

 att              

 
BurnedArea 

Pos              

 att           Start Row   

 
Elevation 

Pos           End Column   

 att              
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a) the environment matrix of forest fire case 

 
b) the environment graph of the forest fire 

Figure 6. a) The environment matrix, and b) The environment graph of forest fire prediction. 

 

Three different events of forest fire were investigated. 

In the first event, the agent recognized the structure of 

the environment parameters, and then the other events 

were used to assess the behavior of the agent for forest 

fire prediction. In the first event, the belief of agent 

(Figure 7) and the best value of parameters that made 

the highest desire for the agent were obtained; these 

parameters generated the specific intention for the 

agent (Figure 8). 
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 Figure 7. The belief of an agent.  



Earth Observation and Geomatics Engineering 3(2) (2019) 51–63 

59 
 

 
Figure 8. The intention of the agent that obtained the highest desire. 
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The representation of the agent's belief can be categorized 

into four groups: the belief about position-position, position-

attribute, attribute- attributeandposition, -attribute 

agent’s beliefrelationships (Figure 7). The  about the 

position-position relationship is defined as the agent's 

perception of the spatial relationship between entities. In this 

case, topological relationship, distance, and angle among 

entities are obtained and stored in the agent’s database. So, 

the components Bij (i=1, 3, 5, 7; j=1, 3, 5, 7) of the belief 

matrix show the agent’s belief between the position of one 

layer to the position of another layer. In this case, the 

topological relationship, distance, and angle of all entities in 

the first group related to the entities of the second group were 

calculated and considered as the current state of the 

environment for those parts of the data. The belief of the 

agent about position-attribute cells clarifies how the current 

relationship between position and attribute is. In this case, if 

the position and attribute were from the same layer, that layer 

can be the best way for expressing the current state as seen 

in B12, B34, B56, and B78 components of belief matrix. But, if 

the attribute and position are from different layers, a model 

which exposes the distribution of attribute in the area is 

needed. A neural network model was used in the rest of the 

position-attribute cells of the belief matrix. The agent’s belief 

toward attribute-position presents the distribution of each 

value of the attribute in the area. Thus, the current state of the 

relationship between attribute and position was obtained (Bij 

components of the belief matrix (i=2, 4, 6, 8; j=1, 3, 5, 7) 

showed such a relationship). The attribute-attribute cells of 

the belief matrix show how much the attributes of different 

layers are related to each other. If both attributes are from the 

same layer, that layer can be used for extracting the 

frequency of occurrence each value of the first attribute to 

the ones of the second attribute. But if both attributes are not 

from the same layer, the frequency of occurrence of the 

values of the second attribute is regarded as the belief of the 

 

 

 

 

 

agent for attribute-attribute cells.

  Figure 8 shows the intention of the agent for achieving its 
goal.  The  value  of  the  matrix  can  be  categorized  into  four

groups:  the  intention  related  to  position-position,  position- 
attribute, attribute-position, and attribute-attribute. For each 
part  of  the  matrix,  based  on  the  type  of  the  cells,  and  the 
calculation is done by the agent, the best value for intention 
parameters  are  estimated.  The  value  for  position-position

cells in intention matrix shows the type of topology, distance, 
and angle  which the agent selects as its intention to define 
the relationship of the second part of the data (column part)

to the first part of the data (row part) in the matrix. Based on 
these values, the entities of the second layers (entities related

to the column) are selected based on the entities of the first 
layer (layer related to the row of the matrix). The intention 
of  the  agent  toward  position-attribute  is  shown  by  a  two- 
dimensional polynomial, so the magnitude of the value of the 
attribute in each position is shown by bubbles in Figure 8.

The  intention  of  the  agent  for  attribute-position  cells  is 
defined as 𝐹(𝑥, 𝑦, 𝑎𝑡𝑡) function. In these cells, each layer of

the  function  shows  the  distribution  of  the  value  of  the 
attribute. Therefore, the cells of the intention matrix related

to  attribute  show  the  distribution  of  each  value  of  the 
attribute in the area. The intention of the agent for attribute- 
attribute cells is a table whose values show the frequency of 
synchronous occurrence of the values of both attributes. The

histogram of values of this table is shown as the intention of

the agent for attribute-attribute cells.

  This intention  is considered as the intention of the agent 
for  the  other  two  events  of  forest  fire  prediction.  The 
resulting  action of  this  intention  was  performed  on  the 
environment for these two events, and then the burned area

that  the  agent  predicted  was  obtained.  
The      result     of     the    agent’s     prediction    and     the  
actual-observed  results  were compared as shown in Figure 

9, and Table 1.

 

 

Table 1. A comparison between agent prediction and actual-observed data. 
Event 1 

 
Actual-observed data 

Burned cell Unburned cell Total 

Agent prediction 

Burned cell 164553 97797 262350 

Unburned cell 192 884652 884844 

Total 164745 982449 1147194 

 

Event 2 

 
Actual-observed data 

Burned cell Unburned cell Total 

Agent prediction 

Burned cell 183501 187188 370689 

Unburned cell 6 776499 776505 

Total 183507 963687 1147194 

 

Event 3 

 
Actual-observed data 

Burned cell Unburned cell Total 

Agent prediction 

Burned cell 85281 42948 128229 

Unburned cell 5880 1013085 1018965 

Total 91161 1056033 1147194 
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Figure 9. a) The starting point of fire b) The burned area estimated by the agent c) The burned area in reality. 

 

4. Discussion
 

Table 1 shows that the burned area predicted by our agent 

is quite close to the actual one. To assess the result of the 

agent's prediction more accurately, a boundary box was 

drawn around the burned area, and the states of pixels in that 

area were compared. At first, the agent understood the 

structure of forest fire by using the data in the first event. So, 

the results were the same. The three events of forest fire were 

used for accuracy assessment. As seen in Table 1, in event 1, 

the state of 1049205 pixels of the area was predicted 

correctly, but the model specified the state of 97797 pixels as 

unburned while in reality those pixels were burned. On the 

other hand, the model determined 192 pixels as burned while 

those were not burned in reality. The Kappa Coefficient for 

prediction in event 1 was 72.1%. In Event 2, while 960000 

pixels were predicted accurately, 187194 pixels predicted 

was wrong, as unburned and burned pixel respectively. The 

Kappa Coefficient for this Event was 57.0%. In event 3, the 

state of 1098366 pixels of 1147192 pixels was predicted 

correctly while agent predicted 42948 pixels as unburned 

pixels which were burned and it predicted 5880 pixels as 

burned which was unburned. In this event, the Kappa 

Coefficient for predicting the burned area was 75.5% and 

also the Kappa Coefficient for all predictions were 68.2%.  

5. Conclusion 

In this paper, at first, all concepts of the agent-based model 

such as observation, belief, desire, and intention, were 

modified to the spatial domain, and a new type of spatial 

analysis architecture was introduced. In our architecture, the 

agent perception of the spatial environment generated two 

matrixes called belief and intention matrixes. The belief 

matrix stored the environment data, while the intention 

matrix contained some processors. The cells of an intention 

matrix play the roles of processors for analyzing the problem 

to reach the goal defined for the agent. In this architecture, 

the information such as layers, spatial relation among entities 

of layers, and statistical information among attributes were 

considered as the current state of the environment (believe). 

In this paper, a general architecture was presented to address 

spatial issues. In such a general model there was no need to 

know how many agents were needed. Additionally, the 

number of goals and also the changes in the environment 

(actions) were unknown for each problem. Therefore, the 

problem was divided into some sub-problems based on the 

goals and actions. One goal and one action were assigned to 

each agent. Each agent had only one goal, so a single 

objective optimizer could be easily used by the agent to 

satisfy the goal. Therefore, the main advantage of this model 

is generality. To illustrate the capability of the proposed 

model, forest fire perdition was considered as a case study. 

Optimally, forest fire prediction presented an agent’s desire 

and intention defined based on the common action used in 

GIS. To solve forest fire prediction based on the proposed 

architecture, one agent was generated to extract the current 

state of the spatial and non-spatial information, then 

considered the goal and selected the tools based on its 

intention. 

In forest fire prediction, at first, agent understands the 

structure of the environment, together with the impact of 

different data layers on each other. Then, the agent starts to 

predict the forest fire spread. To assess the result of the 

agent’s prediction, a comparison between the predicted 

values and actual-observed were made. The Kappa 

coefficient was obtained at around 68.2%. The reason for the 

errors was attributed to the lack of adequate information. In 

reality, forest fire spread does not only depend on the type 

and density of vegetation and elevation, but also to other 
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factors such as wind speed and direction. Another reason for 

the dissimilarity between the results was that the agent 

needed more forest fire events to understand the structure of 

the problem more correctly. 
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