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1. Introduction 

The viscoelastic behavior of structures, such as the vibration of 

aerospace craft, the stress analysis of solid propellant rocket motor, 

the creep analysis of concrete buildings and the design of a turbine 

blade is of vital importance in engineering design. In particular, 

the damping effect of the viscoelastic material can be utilized to 
diminish the vibration of structures [1]. Employment of the theory 

of elasticity to simplify the analysis proves to be inconsistent with 

the accurate behavior of materials since most engineering 

materials display much time dependency due to internal friction 

[2]. Hence, viscoelastic constitutive relations should be adopted 

rather than elastic constitutive relations regarding the behavior of 
materials. There are many works in the literature on the theory of 

Viscoelasticity such as Flugge [3], Christensen [4], Brinson [5], 

Gutierrez-Lemini [6], Tschoegl [7]. In structural analysis of time-

dependent materials, conventionally linear viscoelasticity has been 

employed. There are fundamentally three approaches that may be 

adopted in a linear viscoelastic analysis: Laplace transformation, 
Fourier transformation, and direct time integration method [2, 8, 

9]. Analytical solutions to the equations of viscoelasticity are 
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generally obtained by the implementation of the correspondence 

principle. These methods take advantage of the fact that the 

governing equations of viscoelasticity can be converted to the 

governing equations of elasticity by using integral transformations 
[1]. Hence, if an explicit solution to the associated equations of 

elasticity is available, then the solution of that viscoelasticity can 

be found by inversion of the Laplace transform. The demerit of 

this approach is that it can only solve a narrow class of problems 

for which it is possible to obtain an explicit solution to the 

associated equations of elasticity [10]. Flugge [3] applied the 
Laplace transform to viscoelastic beams. Christensen [4] presented 

the application of the Fourier transform to viscoelastic beams. 

Sorvari and Hamalainen [11] analyzed and compared the time 

integration method in linear viscoelasticity [2]. 

Since there are often no closed-form solutions for the problems 

with complex geometries, loading conditions and constitutive 
relations, numerical solution approaches should be adopted. Finite 

element method (FEM) and boundary element method (BEM) are 

the most prevalent techniques in solving viscoelastic problems 

among several numerical methods [2]. 
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In this paper, the finite element analysis of two-dimensional linear viscoelastic 
problems is performed using quadrilateral complex Fourier elements and the results 
are compared with those obtained by quadrilateral classic Lagrange elements. 
Complex Fourier shape functions contain a shape parameter which is a constant 
unknown parameter adopted to enhance approximation’s accuracy. Since the iso-
parametric formulation utilized in the finite element code, based on the experience 
of authors, it is proposed that a suitable shape parameter for each problem is 
adopted based on an acceptable approximation of the problem’s geometry by a 
complex Fourier element. Several numerical examples solved, and the results 
showed that the finite element solutions using complex Fourier elements have 
excellent agreement with analytical solutions, even though noticeable fewer 
elements than classic Lagrange elements are employed. Furthermore, the run-times 
of the executions of the developed finite element code to obtain accurate results, in 
a same personal computer, using classic Lagrange and complex Fourier elements 
compared. Run-times indicate that in the finite element analysis of viscoelastic 
problems, complex Fourier elements reduce computational cost efficiently in 
comparison to their classic counterpart. 
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Implementation of the FEM to the solution of static and 

dynamic problems incorporating materials exhibiting viscoelastic 

behavior has been evolved over recent decades [2]. The FEM has 
been applied to viscoelasticity problems by several researchers. To 

the best of authors’ knowledge, King [12] developed the first 

viscoelastic FE code. The application of this program was 

restricted to plane stress and plane strain conditions. The theory 

was developed utilizing Boltzmann hereditary integral 

representations of constitutive equations in terms of creep 
compliance. The essential assumptions in this approach were that 

the creep compliance could be split into an elastic part and a creep 

part, and the strain could be assumed to remain constant within a 

time step [13]. 

Ghazlan et al. [10] developed an incremental formulation in 

time domain for the displacement and stress analysis of quasi-
static, linear, thin viscoelastic structures undergoing mechanical 

deformation. By using a discrete creep spectrum, they represented 

the viscoelastic behavior of a material by incremental constitutive 

equations. Zocher et al. [13] developed a numerical algorithm for 

the solution of the uncoupled, quasi-static initial/boundary value 

problem involving orthotropic linear viscoelastic media 
undergoing thermal and mechanical deformation. They used an 

integral form of constitutive equation involving the relaxation 

moduli, which is transformed into an incremental algebraic form, 

prior to the development of the FE formulation. The relaxation 

moduli has been represented by a Dirichlet-Prony series that leads 

to derive a recursive relationship after incrementalization. 

It is crucially important to choose the type of shape functions 

as interpolation tools in FEM. Classic Lagrange shape functions 

usually have been employed in conventional FEM. It just has been 

relied upon the increasing the degree of these shape functions in 

complicated problems, if necessary. In this study, the application 

of a specific type of modern shape functions, called complex 
Fourier, in FE analysis is investigated. 

Complex Fourier shape functions, which derive from complex 

Fourier radial basis functions (RBF), were implemented in solving 

two-dimensional potential problems using BEM by Khaji and 

Hamzehei Javaran [14]. Recently, Hamzehei-Javaran employed 

complex Fourier shape functions to approximate the state variables 
of Navier’s differential equation in transient dynamic problems by 

using FEM [15]. In the present study, the application of FEM, in 

solving viscoelastic problems, is developed by adopting complex 

Fourier elements, hereinafter referred to as CFEs in the article, in 

the 2D domain. Both complex Fourier RBFs and shape functions 

contain shape parameters because the latter is derived from the 
enrichment of the former. In order to adapt CFEs with the optimum 

shape functions, we should find a way for the estimation of shape 

parameters in complex Fourier shape functions. 

For the demonstration of the validity and accuracy of the 

proposed elements, some numerical examples with available 

analytical solutions are presented. Convergence of FE solutions in 
some examples is also examined. It is verified that the patch test is 

passed by CFEs to guarantee the convergence of solutions. 

The influence of the number of CFEs on the convergence 

toward a common solution (analytical or numerical) is compared 

with classic Lagrange elements to assess accuracy and robustness 

of these elements in FE analysis of viscoelastic problems. It is 
forecast that CFE is much more robust than classic Lagrange 

element because the former satisfies trigonometric, exponential 

and polynomial function fields simultaneously, while the latter 

only satisfies polynomial function fields. This paper is organized 

as follows: FE formulations for viscoelasticity, which are adopted 

in this study, are explained in Section 2. Complex Fourier RBFs 

are briefly introduced in Section 3. Radial point interpolation 

method, which is generally used in meshless methods, is described 
in Section 4. In Section 5, CFEs are derived, and their properties 

are discussed in Section 6. In Section 7, an essential discussion 

about shape parameters in CFEs are presented, and an approach 

for the approximation of the shape parameters based on the 

experience of the authors is proposed. Some illustrative examples 

are studied in Section 8. Finally, Section 9 draws the conclusion. 

2. Finite element formulation adopted for linear 
viscoelasticity  

Based on Boltzmann hereditary integral [3-7], mathematical 
expression of viscoelastic constitutive equation is given by [13, 

16]: 
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Where  
ij

  and  
kl
  are stress and strain tensors at time 

, respectively. The term 
ijkl

C  represents the fourth-order tensor of 

isotropic relaxation moduli, relating stress to strain. By converting 

the constitutive equation (1) into an incremental form, the 
following equation is obtained [13, 16]: 
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1

( , , , )
1

(1 )
ijklq

q

M

ijkl ijkl ijkl

q

no sum on i j k lC C e













   

  (3) 

 
kl

R


     (4) 

 q

q

q

ijkl

ijkl

ijkl
C


   (5) 

Where 
qijkl

C ,
qijkl

 and 
q

ijkl
 are spring constant, dashpot 

coefficient, and relaxation time of q-th Maxwell element, 

respectively and ijkl
C


is spring constant of the single spring 

element in Wiechert model as depicted graphically in Figure 1 [5]. 
Note that Einstein summation convention is not adopted in 

repeated indices. In equation (3), M is the total number of Maxwell 
elements in Wiechert model. 

 

Figure 1. Wiechert model [5] 
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The timeline is subdivided into discrete intervals and the state 

of stress at time 
n

 is known. In equation (4), R


is a constant, 

representing the time rate of change of strain over the time interval. 
This approximation is shown in Figure 2 [13]. 

 

Figure 2. Approximation of  
kl

  over  [13] 

And R

ij
 is given by [13, 16]: 
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Where [13, 16]: 
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This incremental form of the constitutive equation is well suited 
to use in an FE code [13]. By applying the weighted residual 

method to the equilibrium equation as governing differential 

equation, and taking full advantage of incrementalized constitutive 

equation (2), after some algebraic manipulations, the FE 

formulation for one element is obtained as below [13, 16]: 
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with the following definitions of matrices [13, 16]: 
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It is noted that the domain and boundary of elements are 

denoted by 
e

 and 
e

 , respectively. 

In equations (9) and (10),  e

K is referred to as the element 

stiffness matrix,  e

u  is the vector of change in nodal 

displacement during  . 
1

e

f ,  
2

e

f ,  
3

e

f  and  
4

e

f  are 

contributions to the element load vector with respect to body 

forces, surface tractions, stresses at the start of the time step, and 

change of stresses during the time step  , respectively. In 

equations (10),     e e

B    , is strain-displacement (gradient) 

matrix. Where    and  e

 are derivation operator matrix and 

element shape functions matrix, respectively.   is the mass 

density, and  1n

f


and  1n

T


are element body force and 

element surface traction vectors at time 
1n




, respectively. 

Finally  n

 and  R

  are vector of stress at the start of the time 

step and vector of change of stress during the time step, 
respectively [13, 16].  

The governing global matrix equation, which results from the 

appropriate assembly of elements’ contribution, is obtained by [13, 
16]: 

     F K u   (11) 

Where  K is the global stiffness matrix,  F is the global 

load vector and  u is the change in the displacement vector 

during the time step  [13]. 

3. Complex Fourier RBFs 

Based on the definition of the Fourier series, any piecewise 

continuous periodic function  B r can be represented by a series 
of complex exponential functions as follows [14, 15]: 

  
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n
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Where 
n

C and L are the usual parameters of complex Fourier 

series. 

By assuming only one term of equation (12) as [14, 15]: 

 ( )
i r

B r e


  (13) 

In the above equation, r represents the Euclidean norm among 

data points,  and   are shape parameters of complex Fourier 

RBFs which are constants that can be chosen to increase the 

approximation’s accuracy. In this way, complex Fourier RBFs 

were obtained [14, 15]. 

4. Point Interpolation based on RBFs 

Consider an approximation function  u x  in an influence 

domain that consists of a set of arbitrary distributed nodes 

   , 1, 2, ,
i i

P i nx . n is the number of nodes in the influence 

domain of x [16]. At the node 
i

x , the nodal value of the function 
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is assumed to be 
i

u . Radial Point Interpolation Method (RPIM) 

constructs the approximation function  u x to pass through all 

these node points using radial basis function  
i

B x and 

polynomial basis function   
j

P x  [17]. 
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where i
a is the coefficient for   
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B x and j

b the coefficient 

for  
j

P x   (usually m < n). The definitions of vectors are as 

follows [18, 19]: 
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Basis functions are usually the functions of coordinates 

 T
,x yx for 2D problems.  

The general form of a radial basis function is as follows [18, 

19]: 
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Where i
r  is a distance between interpolating point  ,x y and 

the node  ,
i i

x y . In the Euclidean plane space, this distance is 

expressed as [18, 19]: 
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A polynomial basis function has the following monomial terms 

as [18, 19]: 
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The interpolation is made to pass through all n scattered nodal 

points across the influence domain to obtain coefficients 
and

i j
a b in equation (14). 

The interpolation at the k-th point can be obtained by equation 

(19) [18, 19]: 
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In order to guarantee the uniqueness of approximation, an 

extra-requirement for the polynomial term is considered [20]. 
Therefore, the following constraints should be imposed [18, 19]: 
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It can be expressed in matrix form as follows [18, 19]: 
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Where 
e

u is the vector for function values and defined as [18, 
19]: 
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The coefficient matrix  
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P on unknowns b is [18, 19]: 
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If the inverse of matrix 
0

B exists, a unique solution can be 

determined [18, 19]: 
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Finally, the interpolation may be expressed as [18, 19]: 

 
T T 1

( ) [ ( ) ( )] ( )

e

e
u


 

 
 
 

u
x B x P x G Φ x u

0
 (26) 

Since the expression    T T 1

  B x P x G is relating the 

vector of nodal values 
e

u to the function field  u x , it is a matrix 

of shape functions based on the definition of shape function [14, 
15]. 

Therefore the matrix of shape functions is defined by [18, 19]: 
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G is the  ,i k element of the matrix 
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G [18, 19]. 
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Now, let us apply the above-mentioned approach utilizing 

complex Fourier RBFs in a nine node 2D Lagrange element in a 

natural coordinate system  ,  in order to use in FEM. 

5. Complex Fourier elements (CFEs) 

In order to obtain shape functions in the two- dimensional CFE, 

we have to consider the equi-spaced nodes in a 2D natural 

coordinate system  ,  . The distances between each node to its 

adjacent nodes in each direction, i.e.   and  , are equal to one. 

For this purpose, first shape functions associated with each node 
in each direction of the 2D natural coordinate system are obtained; 

then two shape functions corresponding to each node are 

multiplied by the following relation [15]. 

        
3 1

,
m n m n
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Where in equation (29), m is the number of nodes in the natural 

coordinate system   from left to right and n is the number of nodes 
in the natural coordinate system   from bottom to top. Two- 

dimensional CFE and one- dimensional CFE in the natural 

coordinate system are depicted in Figures 3 and 4, respectively 

[15]. 

 

Figure 3. Two- dimensional CFE with 9 nodes in natural coordinate 

system  ,   [15] 

 

Figure 4. One-dimensional CFE with 3 nodes in the natural coordinate 

system    [14] 

For a three-node one-dimensional element, the vectors of 
complex Fourier RBFs are obtained in relations (a), which are 

represented by and
 

B B in the natural coordinate systems 

and  , respectively. In relations (b), and
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P P represent vectors 

of polynomial basis functions for a three-node 1D element in the 

natural coordinate systems   and  , respectively. 
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The following relations are obtained by applying the explained 

RPIM approach [14, 15]: 
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Finally, shape functions for the 2D CFE with nine nodes are 

obtained by the following equations [15]:  
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Where 

 1c c   (33) 
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6. Properties of CFEs 

Complex Fourier shape functions and elements have the 

following properties as shown by Khaji and Hamzehei Javaran 

[14] and Hamzehei-Javaran [15]: 

1. Kronecker delta property 

2. Partition of unity 

3. Infinite piecewise continuity 

4. Excellent accuracy in geometry approximation 

5. Versatility due to satisfaction of polynomial,   

trigonometric and exponential function fields simultaneously 
6. Perfectly approximation of all kinds of surfaces such as 

smooth or folded ones 

7. No Runge phenomenon 

8. Linear independence property 

9. Moreover, in the present study, Patch test, including 

displacement and force patch test, for the 2-D CFEs with nine 
nodes is assessed and passed. 

7. Shape parameters 

At first, the motivation for developing approximation 

techniques using RBFs was to improve accuracy in curve/surface 
fitting [18]. Even though RBFs have almost half of a century 

history, the history of the application of them in solving Partial 

Differential Equations (PDEs) is shorter [19]. 

For the first time, RBFs were employed to solve the Navier-

Stocks equations of fluid flow by Kansa [21, 22]. In his proposed 

approach, the PDEs directly were discretized over unstructured 
nodes through Multi-quadric (MQ) basis functions. There were 

some similarities between his proposed algorithm and finite 

difference method (FDM), but unlike FDM, node distribution was 

completely unstructured. He understood that the crucial factor to 

obtain accurate results was the condition number of the MQ 

coefficient matrix, which can be adapted through variable shape 
parameters in the RBFs [19].  

The RBFs in the literature usually contain a few shape 

parameters (from one to four shape parameters) [14]. Generally 

speaking, in curve/surface fitting through a particular RBF, which 

has some shape parameters, the use of variable shape parameters 

can improve the accuracy of the approximation results. The choice 
of shape parameters has been a hot topic in data fittings [23-26]. 

In approximation solution of PDEs, the shape parameters mainly 

represent some constant unknown parameters utilized to enhance 

the accuracy of RBFs in a specific problem. In other words, for a 

particular RBF used in a given problem, the best-selected shape 

parameter would be different for various examples according to 
the problem’s nature such as the type of analysis and applied load. 

This means that the RBF’s user is usually looking for a particular 

shape parameter that makes the best result for the undertaken 

problem possible. Hence the best suited shape parameter for a 

particular problem is regularly chosen by trial-and-error. An 

alternative approach for finding the unknown parameters of RBFs 
would be the establishment of an optimization problem [14]. If the 

exact solution of the problem is known, this solution can be 

considered as the objective of the optimization problem. Since no 

exact solutions are available for many practical problems, the 

approach mentioned above to finding optimum shape parameters 

for a specific problem is limited to the narrow class of problems. 

In the present study, authors employ iso-parametric formulation 

in the FE code to take advantage of Gaussian quadrature numerical 

integration. By definition, in the iso-parametric formulation 

element’s geometric shape and displacements within the element 

are estimated by the same shape functions. [27-29]. We are going 

to reduce the number of elements and thus reduce degrees of 

freedom that are required to solve the problem accurately by using 

robust elements. To gain this goal, the optimum shape functions 
have to be found for a particular problem. Shape parameters have 

the key role in shape functions to achieve this purpose. In this 

paper, it is proposed based on the experience of authors that in 

order to find best shape parameters in CFEs, an optimization 

problem is established in which the geometry of the problem is 

considered as the objective. The initial concept came to the 
authors’ mind when tried to find an adaptive element that can 

estimate field variables by only one element and using iso-

parametric FE formulation simultaneously, which seems 

impossible. For this purpose, an optimization code is developed by 

the authors using Particle Swarm Optimization (PSO) method to 

reproduce the geometry of the problem by a CFE. Apparently, 
prior to solving the problem with FEM, it is necessary to solve an 

optimization problem to adopt the shape parameters. The 

flowchart of the proposed approach is shown in Figure 5. In the 

next section in order to demonstrate the robustness of the CFEs in 

solving viscoelasticity problems, four problems are solved. 

 
Figure 5. Flowchart of the proposed approach 

8. Numerical Examples 

In the following section, the accuracy of the proposed method 
and robustness of the presented elements in viscoelasticity are 

evaluated through four numerical examples. The convergence rate 

of FE solution using presented elements toward a common 

solution is compared with classic FE. The common solution is 

defined as available analytical or FE results with a fine mesh. All 

the FE results using commercial software ABAQUS are 
independent of the mesh. The material property in all illustrative 

examples is modeled by a Standard Linear Solid (SLS) model, 

which combines the Maxwell model and a spring in parallel. This 

model is capable of modeling both relaxation and creep 

phenomena in viscoelasticity properly. The values of spring 

constants in the Maxwell element and single parallel spring are 0.4 
and 0.1, respectively. The dashpot coefficient in the Maxwell 

element is 0.4 and Poisson’s ratio of the material is assumed to be 

constant and equal to 0.3.  
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8.1. Example One. Cantilever Beam with the tip load 

A problem of the cantilever beam in Figure 6 is studied here. 

Consider a beam of length L and height D with values 20 m and 1 

m, respectively. The thickness of the beam is 1 m. This example 

can be considered as a plane stress problem. The beam is subjected 

to the tip load which is defined by the following expression:  

     
0 1

; 0 40sP P H t H t t t       

Where 
0 1

1N and 10sP t   and  H t  is well-known 

Heaviside function. We are looking for the tip displacement 
L

w . 

 The loading condition is almost the same as a creep-and-

recovery test, but with spatially varying stress and strain. By 

applying the standard viscoelastic correspondence principle to the 

elastic solution for tip deflection from solid mechanics, the 

analytical solution for this example is easily obtained [4, 5, 30]. 

This approach leads to the following expression for the deflection: 
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I
     (34) 

where I is moment of inertia of cross section of the beam and 

D(t) is the creep compliance. The creep compliance can be easily 

obtained from Prony series representation of relaxation modulus 

[5] and is given by: 

 1

0 1
( ) (1 )

t

D t D D e




    (35) 

In which 

 

0 0 1

0

0 1

1 1

0

1
, ,

1 1
( ) ,

D E E E
E

E
D

E E E






 

  

  

  

It is noted that even though the solid mechanics solution 

mentioned above is not exact, it can be accepted as a very good 

approximation for a beam with an aspect ratio of 20 : 1 [13, 16]. 

 
Figure 6. Cantilevered beam’s Geometry of Example 1 [13, 16] 

The FE meshes used in this example are depicted in Figure 7. 

Comparison of FE results and the analytical solution is illustrated 

in Figure 8. At least a mesh consists of 20 classic Lagrange 

elements is required to FE solution converge to the exact solution. 

By considering Figure 8, it is obvious that the rate of convergence 
in quadrilateral CFEs is much higher than classic Lagrange 

elements. The shape parameter is obtained 9i   , based on the 

mentioned approach in section 7 (Figure 9). In the FE calculations, 

the time step t  is assumed to be 0.1 s. It should be noted that the 

ratio of run time of FE code to obtain accurate results with classic 

Lagrange elements to CFEs, using an identical personal computer 
is 10.69. According to the mentioned ratio, it is apparent that CFEs 

are computationally affordable compared to their classic 

counterparts, even though required to find the appropriate shape 

parameter prior to FE analysis. 

 

8.2. Example Two. Encased Cylinder 

A long thick-walled viscoelastic pressure vessel encased in a 

shell of infinite stiffness and under a uniformly distributed internal 

pressure p  is considered as the second example. The geometry of 

the problem is depicted in Figure 10 which is representative of a 

solid propellant rocket motor. The problem is regarded as a plane 

strain case [30]. The internal pressure p  is defined by a step load 
similar to creep test, be given by  

0
; 0 40sp p H t t   . 

Analytical solution of this problem is obtained by the 

viscoelastic correspondence principle. The following analytical 

solution for the radial displacement 
r

u  is easily derived [4, 5]: 
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 (36) 

The quantities of geometry and loading are given by 

0
2 m , 4 m and 100 Paa b p   [13, 16]. 

Closed-form answer and FE results are illustrated in Figure 11 

for the radial displacement of the mid-thickness datum. Figure 11 

also provides a comparison between the FE results with two 

different meshes comprising CFEs and classic Lagrange elements. 

The aforementioned meshes are depicted in Figure 12.  

By taking advantage of the symmetry of the problem, merely a 
quarter of geometry of the problem needs to be modeled. A time 

increment of 0.1 s is employed in the FE calculations. The shape 

parameter for this example is obtained 0.65 1.66 i    . Figure 

13 compares the problem's geometry and its approximation 

through complex Fourier interpolation functions utilizing the 

above-mentioned shape parameter. 

As depicted in Figure 11, an excellent agreement exists 

between the FE results of CFEs, using much fewer elements than 

classic elements, and closed-form solution. A mesh with at least 

49 elements is required to obtain accurate results with classic 

Lagrange elements (Q9) as shown in Figure 11. Since only two 

CFEs are required to obtain the excellent results, it is obvious that 
the run time would be noticeably lower than its classic counterpart 

to reach similar solutions. The classic Lagrange elements to CFEs 

run time ratio is 10.51 in executions of the developed code in a 

similar PC. 

8.3. Example three. Elliptic membrane subjected to an outward 
pressure  

A viscoelastic elliptic membrane structure of thickness h, which 
is subjected to a uniformly distributed outward pressure P, is 

considered as the third illustrative example (Figure 14). The 
outward pressure P, is defined by 

    
0 1 1

P ; 0 30s and 10sP H t H t t t t      . 

 Symmetry conditions are exploited so that the entire elliptic 
membrane does not have to be modeled. This problem can be 

regarded as a plane stress case [30]. The geometric properties and 

loading of the structure are provided in Table 1. A time increment 

of 0.1 s is utilized in the FE calculations.  

FE results are presented in Figure 15 for the horizontal 

displacement of the point D. This point is depicted in Figure 14. 
One of these graphs is obtained by commercial software ABAQUS 

employing a fine mesh comprises 600 quadrilateral classic 

elements with midpoints (classic serendipity element Q8). Figure 

17 shows the FE mesh used in ABAQUS model. These ABAQUS 

results are considered as a common solution employed to evaluate 

the convergence rate of other types of elements. It is worthwhile 
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to mention that, the ABAQUS software in the analysis of 

viscoelasticity problems, unlike the developed code by the authors, 

does not utilize the formulation proposed by Zocher [13]. 

 

 
Figure 7. Finite element meshes used in Example 1 

 

 
Figure 8. Analytical solution and finite element results with classic Lagrange and Fourier elements in Example 1  

 

 

Figure 9. Exact geometry and approximation of geometry of Example 1 using complex Fourier interpolation functions with shape parameter  9i    

 

 
Figure 10. Encased cylinder of Example 2 [13, 16] 
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Figure 11. Exact solution and finite element results (radial displacement of the mid-thickness datum) with Lagrange and Fourier elements in Example 2 

 
Figure 12. Finite element meshes used in Example 2 

 

Figure 13. Exact geometry and approximation of geometry with complex Fourier interpolation functions using shape parameter 0.65 1.66 i     for 

Example 2 

The formulation that is employed by ABAQUS is described in 

ABAQUS/CAE user’s theories manual [31]. In CFEs, the shape 
parameter is obtained 0.98 0.5i   , using the optimization 

code discussed in section 7. The FE meshes utilized in the code for 

the present example are illustrated in Figure 16. 

 

 

 

Table 1. Geometric properties and Loading of the Elliptic membrane [32] 

Geometric Properties Loading 

a 1.75m    

0 10MPaP     b 1.0 m   

c 2.0 m   

d 1.25m   
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h 0.1m   

 
Figure 14. The elliptic membrane of Example 3 [32] 

 

The graph obtained by complex Fourier shape functions with 

only 16 elements has a perfect agreement with the graph of the 

common solution, while at least 64 classic Lagrange elements (Q9) 

is required to reach accurate results, as depicted in Figure 15. The 

classic Lagrange to CFEs run time ratio is obtained 1.8939, in the 
execution of the developed code in the similar PC. Therefore CFEs 

may reduce computational cost efficiently. 

 

8.4. Example Four. Bending of a Curved Beam  

A viscoelastic curved beam spans a 90-degree arc as shown in 
Figure 18 is selected as fourth illustrative example in this paper. 

The bottom end is supported while the top end is free.  The beam 
is under a clockwise bending moment M applied at the top end. 

The geometric properties and loading of the curved beam are listed 
in Table 2. The bending moment at the top end is given by 

    
0 1 1

M ; 0 10s and 4sM H t H t t t t       where 

 H t  is well-known Heaviside function. This problem can be 

considered as a typical plane stress problem. 

 

Table 2. Geometric properties and Loading of Curved Beam [33] 

Geometric Properties Loading 

i
r 3.5 m    

0
100 N.mM    

o
r 4.5 m   

h 1.0 m   

 

 

 
Figure 15. Horizontal displacements of point D obtained by the developed code using complex Fourier and classic Lagrange elements with two different 

meshes compared with a common solution (ABAQUS) in Example 3 

 

 
Figure 16. Finite element meshes used in the code for Example 3 



Journal of Computational Applied Mechanics, Vol. 51, No. 1, June 2020 

 

167 

 

 

 

Figure 17. Finite element mesh used in ABAQUS for Example 3 

 

Figure 18. Curved Beam of Example 4 [33] 

 

FE meshes used in the code for this example are illustrated in 

Figure 19. In order to obtain a common solution as a basis point to 
compare convergence of different types of elements, the FE 

commercial software ABAQUS is employed in this problem, 

similar to Example 3. The displacements of point A, obtained by 

ABAQUS utilizing a fine mesh consists of 600 classic 

quadrilateral serendipity elements Q8 (Figure 20) are shown in 

Figures 21 and 22. Point A is depicted in Figure 19. FE analysis is 
performed using two different meshes consist of 16 CFEs and, 16 

and 81 classic Lagrange elements and the results are depicted in 

Figures 21 and 22. Similar to other examples, the time increment 

of 0.1 s is used in FE calculations. The shape parameter for this 

problem is obtained 0.65 1.66 i    similar to Example 2.  

It is apparent from Figures 21 and 22 that, the employment of 
CFEs can leading to the acceptable solution using the coarse mesh 

with 16 elements, unlike classic Lagrange elements. The ratio of 

run time (classic Lagrange to CFEs) to achieve acceptable results 

is 2.45 in executions of the developed FE program in the same PC. 

This ratio is reliable evidence for the computational efficiency of 

the CFEs. 

 

 

 

Figure 19. Finite element meshes used in the code for Example 4 
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Figure 20. Finite element mesh used in ABAQUS for Example 4 

 
Figure 21. Displacements of point A in Y direction obtained by the developed code using complex Fourier and classic Lagrange elements with two different 

meshes compared with a common solution (ABAQUS) in Example 4 

 
Figure 22. Displacements of point A in X direction obtained by the developed code using complex Fourier and classic Lagrange elements with two different 

meshes compared with a common solution (ABAQUS) in Example 4 

 

9. Conclusions 

In this study, quadrilateral CFEs with nine nodes were 

employed in the FE analysis of 2D viscoelasticity problems and 
were compared with conventional FEM. CFEs contain a complex 

shape parameter which has a crucial role in FE solution. 

A finite element code has been developed with the capability of 

predicting the time-dependent response of viscoelastic materials 
by the formulation proposed by Zocher using quadrilateral CFEs 

and classic Lagrange elements. Moreover, an optimization code 

has been developed by employing the PSO method in order to 

obtain shape parameter based on the best approximation of the 

problem’s geometry utilizing a CFE. 
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Four numerical examples were examined and were compared 

to the results of analytical solution whenever is available, 

commercial software ABAQUS results and those obtained by 

classic Lagrange elements to demonstrate the validity and 

accuracy of the presented approach. In comparison with the classic 

Lagrange elements, all problems were solved utilizing fewer 
degrees of freedom with much more accurate results by employing 

CFEs. This fact can be attributed to the robustness of CFEs which 

can satisfy various function fields such as exponential, 

trigonometric and polynomial functions. Moreover, using 

presented elements made the run time up to ten times shorter than 

classic elements; therefore CFEs could reduce computational cost 
efficiently. 
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